mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-11-03 04:49:42 +01:00
+ software implementation of exp(<double>)
git-svn-id: trunk@5065 -
This commit is contained in:
parent
67851f6aba
commit
02a553668f
@ -597,6 +597,204 @@ type
|
||||
|
||||
|
||||
{$ifndef FPC_SYSTEM_HAS_EXP}
|
||||
{$ifdef SUPPORT_DOUBLE}
|
||||
{
|
||||
This code was translated from uclib code, the original code
|
||||
had the following copyright notice:
|
||||
|
||||
*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*}
|
||||
|
||||
{*
|
||||
* Returns the exponential of x.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
*
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* accuracy.
|
||||
*
|
||||
* 2. Approximation of exp(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Reme algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* and
|
||||
* | 5 | -59
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + -------
|
||||
* R - r
|
||||
* r*R1(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - R1(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
* exp(x) = 2^k * exp(r)
|
||||
*
|
||||
* Special cases:
|
||||
* exp(INF) is INF, exp(NaN) is NaN;
|
||||
* exp(-INF) is 0, and
|
||||
* for finite argument, only exp(0)=1 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
||||
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
}
|
||||
function fpc_exp_real(x: Double):Double;compilerproc;
|
||||
const
|
||||
one = 1.0,
|
||||
halF : array[0..1] of double = (0.5,-0.5);
|
||||
huge = 1.0e+300;
|
||||
twom1000 = 9.33263618503218878990e-302; { 2**-1000=0x01700000,0}
|
||||
o_threshold = 7.09782712893383973096e+02; { 0x40862E42, 0xFEFA39EF }
|
||||
u_threshold = -7.45133219101941108420e+02; { 0xc0874910, 0xD52D3051 }
|
||||
ln2HI : array[0..1] of double = ( 6.93147180369123816490e-01: { 0x3fe62e42, 0xfee00000 }
|
||||
-6.93147180369123816490e-01); { 0xbfe62e42, 0xfee00000 }
|
||||
ln2LO : array[0..1] of double = (1.90821492927058770002e-10; { 0x3dea39ef, 0x35793c76 }
|
||||
-1.90821492927058770002e-10); { 0xbdea39ef, 0x35793c76 }
|
||||
invln2 = 1.44269504088896338700e+00; { 0x3ff71547, 0x652b82fe }
|
||||
P1 = 1.66666666666666019037e-01; { 0x3FC55555, 0x5555553E }
|
||||
P2 = -2.77777777770155933842e-03; { 0xBF66C16C, 0x16BEBD93 }
|
||||
P3 = 6.61375632143793436117e-05; { 0x3F11566A, 0xAF25DE2C }
|
||||
P4 = -1.65339022054652515390e-06; { 0xBEBBBD41, 0xC5D26BF1 }
|
||||
P5 = 4.13813679705723846039e-08; { 0x3E663769, 0x72BEA4D0 }
|
||||
var
|
||||
double hi : double = 0.0;
|
||||
double lo = 0.0;
|
||||
c : double;
|
||||
t : double;
|
||||
int32_t k=0;
|
||||
xsb : longint;
|
||||
hx,hy,lx : dword;
|
||||
begin
|
||||
hx:=float64(x).high;
|
||||
xsb := (hx shr 31) and 1; { sign bit of x }
|
||||
hx := hx and $7fffffff; { high word of |x| }
|
||||
|
||||
{ filter out non-finite argument }
|
||||
if hx >= $40862E42 then
|
||||
begin { if |x|>=709.78... }
|
||||
if hx >= $7ff00000
|
||||
begin
|
||||
lx:=float64(x).low;
|
||||
if ((hx and $fffff) or lx)<>0 then
|
||||
begin
|
||||
result:=x+x; { NaN }
|
||||
exit;
|
||||
else
|
||||
else
|
||||
begin
|
||||
if xsb=0 then
|
||||
result:=x
|
||||
else
|
||||
result:=0.0; { exp(+-inf)=begininf,0end }
|
||||
exit;
|
||||
end;
|
||||
end;
|
||||
if x > o_threshold then
|
||||
begin
|
||||
result:=huge*huge; { overflow }
|
||||
exit;
|
||||
end;
|
||||
if x < u_threshold then
|
||||
begin
|
||||
result:=twom1000*twom1000; { underflow }
|
||||
exit;
|
||||
end;
|
||||
end;
|
||||
|
||||
{ argument reduction }
|
||||
if hx > $3fd62e42 then
|
||||
begin { if |x| > 0.5 ln2 }
|
||||
if hx < $3FF0A2B2 then { and |x| < 1.5 ln2 }
|
||||
begin
|
||||
hi := x-ln2HI[xsb];
|
||||
lo:=ln2LO[xsb];
|
||||
k := 1-xsb-xsb;
|
||||
end
|
||||
else
|
||||
begin
|
||||
k := invln2*x+halF[xsb];
|
||||
t := k;
|
||||
hi := x - t*ln2HI[0]; { t*ln2HI is exact here }
|
||||
lo := t*ln2LO[0];
|
||||
end;
|
||||
x := hi - lo;
|
||||
end
|
||||
else if hx < $3e300000 then
|
||||
begin { when |x|<2**-28 }
|
||||
if huge+x>one then
|
||||
begin
|
||||
result:=one+x;{ trigger inexact }
|
||||
exit;
|
||||
end;
|
||||
end
|
||||
else
|
||||
k := 0;
|
||||
|
||||
{ x is now in primary range }
|
||||
t:=x*x;
|
||||
c:=x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
if k=0 then
|
||||
begin
|
||||
result:=one-((x*c)/(c-2.0)-x);
|
||||
exit;
|
||||
end
|
||||
else
|
||||
y := one-((lo-(x*c)/(2.0-c))-hi);
|
||||
|
||||
if k >= -1021
|
||||
begin
|
||||
hy:=float64(y).high;
|
||||
float64(y).high:=hy+(k shl 20); { add k to y's exponent }
|
||||
result:=y;
|
||||
end
|
||||
else
|
||||
begin
|
||||
hy:=float64(y).high;
|
||||
float64(y).high:=hy+((k+1000) shl 20); { add k to y's exponent }
|
||||
result:=y*twom1000;
|
||||
end;
|
||||
end;
|
||||
|
||||
{$else SUPPORT_DOUBLE}
|
||||
|
||||
function fpc_exp_real(d: ValReal):ValReal;compilerproc;
|
||||
{*****************************************************************}
|
||||
{ Exponential Function }
|
||||
@ -668,6 +866,8 @@ type
|
||||
result := d;
|
||||
end;
|
||||
end;
|
||||
{$endif SUPPORT_DOUBLE}
|
||||
|
||||
{$endif}
|
||||
|
||||
|
||||
@ -695,7 +895,7 @@ type
|
||||
else
|
||||
result:=tr;
|
||||
end;
|
||||
{$endif}
|
||||
{$endif FPC_SYSTEM_HAS_EXP}
|
||||
|
||||
|
||||
{$ifdef FPC_CURRENCY_IS_INT64}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user