* initial version

git-svn-id: trunk@10064 -
This commit is contained in:
marco 2008-01-27 17:45:38 +00:00
parent dc56d1c82d
commit 332add0f01
15 changed files with 8041 additions and 0 deletions

14
.gitattributes vendored
View File

@ -3901,6 +3901,20 @@ packages/svgalib/src/vgamouse.h svneol=native#text/plain
packages/svgalib/src/vgamouse.pp svneol=native#text/plain
packages/svgalib/tests/testvga.pp svneol=native#text/plain
packages/svgalib/tests/vgatest.pp svneol=native#text/plain
packages/symbolic/Makefile svneol=native#text/plain
packages/symbolic/Makefile.fpc svneol=native#text/plain
packages/symbolic/doc/optimization.txt svneol=native#text/plain
packages/symbolic/doc/symbolic.txt svneol=native#text/plain
packages/symbolic/examples/Makefile svneol=native#text/plain
packages/symbolic/examples/Makefile.fpc svneol=native#text/plain
packages/symbolic/examples/evaltest.pas svneol=native#text/plain
packages/symbolic/examples/rpnthing.pas svneol=native#text/plain
packages/symbolic/src/exprstrs.inc svneol=native#text/plain
packages/symbolic/src/parsexpr.inc svneol=native#text/plain
packages/symbolic/src/rearrang.inc svneol=native#text/plain
packages/symbolic/src/symbexpr.inc svneol=native#text/plain
packages/symbolic/src/symbolic.pas svneol=native#text/plain
packages/symbolic/src/teval.inc svneol=native#text/plain
packages/syslog/Makefile svneol=native#text/plain
packages/syslog/Makefile.fpc svneol=native#text/plain
packages/syslog/fpmake.pp svneol=native#text/plain

2289
packages/symbolic/Makefile Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,30 @@
#
# Makefile.fpc for Free Pascal ImLib 1.x Packages
#
[package]
name=symbolic
version=2.2.0
[target]
units=symbolic
[require]
libc=y
[compiler]
includedir=src
sourcedir=src tests
[install]
fpcpackage=y
fpcsubdir=packages
[default]
fpcdir=../..
[shared]
build=n
[rules]
.NOTPARALLEL:

View File

@ -0,0 +1,89 @@
Simplifications
----------------
Simplification levels:
0 Do not simplify.
1 add real only to real and int only to int.
2 Same as 1, but integers are added to reals. (real1=int+real2)
3 Convert all integers to real, and then do 1.
SimplifyConstants:
If Mode=0: only check integrity
- Evaluates all real constants, including things like Sin(5.0)
- Evaluates Real
CO
/ \
/ \
A B
/ \ / \
/ \ / \
C D E F
Node types:
Ci constant (nodetype=iconstnode)
Cr real constant, (nodetype=constnode)
Cy expression (ExprIsConstant IN Flags, things like Sin(5) or even 4 DIV 6 if integer to real is off)
Cn is any of the three above constant types
CO= Commutative Operator (mul, add)
X Any other expression,
Constants always have to be arranged Ci<Cr<Cy<
if A <> CO then (C and D have no relevance)
if B <> CO then (E and F have no relevance)
A C D B E F
action Cn - - CO Cn Cn (killed in SimplifyConstants}
Cn - - CO X Cn (Changed to E=C, F=X in killed in SimplifyConstants)
Cn - - CO Cn X (if A=Cx and E=Ci then swap(A,E))
X - - CO
----------------
(from an older version of this doc:)
A D Action
Xcomm <>Xcomm Process [b c d]
Xcomm Xcomm Process [b c e f]
<>Xcomm Xcomm Process [a e f]
<>Xcomm <>Xcoom Process [a d]
How to process:
If Simplicationlevel<>0 then
begin
if (Simplicationlevel=3) or ((simplicationlevel=2) and (Cr in [])) then
{convert all Ci to Cr}
If more than one Ci in [] then
{addall Ci's to one Ci}
If more than one Cr in [] then
{addall Crs to one Cr}
end;
{determine how many elements in set left. (in practice kept track of in code
above)}
If we have only one xcomm on the right, xchg right and left}
{Rearrange set so that
Ci < Cr < Cx < X
#nodes nodes filled:
0 Not possible.
1 Root node only, but not possible (cases that could lead to this
are covered by the standard simplifications)
2 A, D
3 A, e f
4 b c e f
TreeType: 0 A d
1 b c d
2 A e f
3 b c e f
}

View File

@ -0,0 +1,390 @@
Unit Symbolic
------------
Unit Symbolic is something I wrote to take care of all my needs in the fields
of simple expression parsing and evaluating, and to act as base for more
complex manipulation.
This doc originally was a notes file for myself. If it is unreadable, then
sorry. Rewrite of docs will have to wait until FCL doc-making practices
are clear.
Author:
-------
Marco van de Voort (Marco@freepascal.org)
Target/Compiler:
------
FreePascal 1.1 (post 1.0 development). www.freepascal.org
Should run on Delphi 4 with minimal changes. (and any Delphi that supports
overloading). If you remove the overloading it should run on D2..D5. I never
programmed 16-bit Object Pascal, so I don't know the D1 status
I tested with D4, but forgot to merge all changes.
I fixed the more difficult Delphi problems see the ifdef near
the pvliwevalword definition) Probably replacing all Upcase() functions with
ansiuppercase and commenting the runerror msgs should get it to compile under
Delphi.
Key features:
--------------
(for the meaning of abbreviations, see the glossary
at the end of this document)
General:
- 32-bit. Probably close to being 64-bit clean. (no integer <->
pointer casts). D1 status unknown, since I never used it, and can't
tell easily. Biggest problem for ports is probably that it doesn't
account for aligned arrays. It also assumes pointer arithmic.
- OOP interface design, but sometimes uses procedures internally for
speed.
- Doesn't use (co)processor dependant features atm. An alternate method
in TEvaluator will have to take care of that.
- Optimised (algorithm) with high speed repeated evaluations in mind.
Parsing is NOT optimised, but not particulary dumb either.
If parsing is a speed problem, one should eliminate the parsetree
generation and conversion to back VLIWRPN, and generate VLIWRPN
directly
- Expression parsing and conversion:
- Infix to RPN
- infix to Parsetree
- Parsetree to infix
- Parsetree to RPN
- Symbolic Expression handling.
- Simple operators on expressions + / * - ^
- Derivation of simple functions (all operators + most functions in math
unit)
- taylor polynomal.
- Precalculate Newton. (almost non-feature :-)
- Primitives for rearranging
- Identifying of terms.
- Simple simplying (2*2*x -> 4*x)
- (de)factoring (*)
- Rearrange so that when converted to RPN, maximal stack depth
for evaluation is 4. This also needs a detector routine
(determine required RPN stack room)
- Operator overloading possible?
- High speed evaluating. (parse once, evaluate often principle)
- Infinite variables
- Infinite (symbolic) constants.
- Fast (hopefully)
- Structure designed so that a lowlevel (processor dependant) version of
the core evaluating routine is possible.
TO DO, problems, missing features.
------
The biggest feature missing for me (at the moment) is the possibility to use
user defined (other TExpression) functions in my expressions. Only built in
functions are allowed. A procedure variable system as seen in some freeware
examples could be done too. Procedure variables would be faster. However they
would be compiletime (while texpressions can be changed runtime)
(one can workaround this for the evaluator by applying some substitutions)
Another problem can be seen both as bug and as missing feature: 5+x+7 doesn't
get simplified to x+13 or 13+x. Only 5+7+x gets optimised. This also goes for
the other infix operators.
- (Symbolic) Integration. At least the parts that *can* be done. Hard, there is
no foolproof approach, and even determining *if* integration is possible is
hard.
User assisted? (e.g. let the user identify the partial integration terms)
Integration further opens the door to Laplace and Fourier.
- Equation support? Or Equation is an equity operator and 2 TExpressions?
- Other mathematical symbolic functions.
- The RPNCalc example is 90% of a simple (symbolic!) RPN calculator. It looks
and feels awfull, but the base functionality is all there, and more important
easy to use and extend.
Maybe for the GUI freaks it is nice to have some GUI RPNcalc widget. Same for
TUI (TV/FV/IDE)
- Polynomal to (Jedi's or other) vector/Matrix type conversion.
Would create entanglement between the units though. Maybe better via
^array of arbfloat. Could need an import method in target unit somewhere.
- Rearranging of the parsetree so that it requires maximally 4 stack
positions to evaluate the expression (which according to RPN theory
is possible?)
This would allow to run the evaluator purely on the i386 coprocessor
stack, which probably would mean an enormous speed increase.
- As first step: inline math functions in assembler in evaluator
(with conditional)
- Other "smart" rearranging of expressions. Since this is not always possible
without user intervention, this will boil down in creating the support
methods for user assisted symbolic rearraning.
- Clean up, real docs. I waited with real docs because Jedi and FPC use
different document formats and philosophies with it. Personally I prefer the
FPC way of course. A PDF loads as fast as such a html-hlp, and looks ten
times better. AND can generate html if necessary, and get used for real books.
- Complex?
- Predefined symbolic constants? pi, G, h, e(logaritm), e(elementary charge)
(comment: Essentially not necessary anymore.)
- Some more experienced classes programmer must decide which methods to make
virtual, and maybe rework the current inheritance between the classes.
- Support in TEvaluator for constant substitution followed by an
TExpression.Simplify BEFORE vliwarr generation. This to avoid recalculating
things like h/(2*pi) in each evaluation. Will need to copy exprtree for
this?
- Changing parser to allow foreign characters. (anything not in a certain
set is appended to token). Important for people using other codepages.
- Common subexpression elimination? (probably needed in some form for some
rearrangements)
- XML / HTML 4.0 / \Latex formatted output expression :-)
- (Delphi) Controls that allow you to enter mathematical expressions in
numerical fields?
- Graphical viewing of expressions? How to do it graph library (graph,
graphiX,GTK,QT,directx etc etc) independant?
(I have some idea for an algoritm for this from a LaTeX tutorial. Basically
parse the tree and assign all end nodes a size. Parents size can be
calculated from children. Then another pass for rendering to coordinates,
followed by the plot. Will have to be parameterized and with callbacks for
flexibility and system independance)
- Doesn't check for bounderies. (treats e.g. x/x=1 but if x=0 then officially
it isn't defined) I hope to implement a TExpression method for this
someday. (that checks a function for continuety problem spots)
Class overview.
-------------
1. TBaseExpression. Very basic support for creating parsetrees.
2. TBaseExprParser(TBaseExpression) Parser class. Most basic conversion
between the three expression types
(infix, RPN, parsetree)
3. TExpression(TBaseExprParser) Main class. An expression and the operations
you can do on them.
Can do some simple evaluation.
4. TEvaluator Plugin evaluation class. Operates
on a parsetree.
Evaluating an expression.
-------------------------
There are two ways of evaluating a simple expression, the method
TExpression.SimplifyConstants and the class TEvaluator. The differences are:
- TExpression.SimplifyConstants is actually not written for evaluations but
for flexible combining constants after derivation. ( deriv(2x^2) returns
2*2*x, calling SimplifyConstants changes it to 4*x)
It can be used for simple evaluations too, but it is probably too slow for
repeated iterations. So in case of repeated iterations use TEvaluator.
For one simple evaluation: use simplify, unless you have symbolic
constants.
- TEvaluator is written for speed. More specifically for high speed *repeated*
evaluations. So setting up the evaluation (creating the TEvaluator class),
is a parsing process and relatively slow. Each iteration after that however
is about as fast as I can imagine without using processor specific lowlevel
features in a HLL. (like internal compilation, FP assembler etc)
- TEvaluator requires you to subst all values for symbolic constants/variables.
Simplify doesn't allow to subst values for symbolic constants/variables.
TEvaluator algoritm and internals.
--------------------
TEvaluator had two design requirements:
1 High speed for repeated evaluations of the same function with slightly
different values. (read: plot a graph reasonably fast)
2 Must be usable to evaluate TExpressions, but not inherit directly from
TExpression. Since TEvaluate only needs the parsetree from TExpression,
this was easily possible.
The reason for requirement 1 is that on modern computers the application's
speed won't be affected by a little more parsing overhead for a single
evaluation, while repeated evaluations can still slow down any system.
(people who object to this, please calculate the Wave function for all known
organic compounds:-)
This is implemented by moving as much as possible to the (single) parsing
stage, and keeping the repeated part as lean and fast as possible.
As an application for the repeated evaluations I mainly had numerical searching
for roots and drawing graphs in mind.
The TEvaluator class generates something what I named VLIW-RPN array.
- RPN because the array's elemental operations are equivalent to RPN stack
operations (very comparable to a Hewlett Packard RPN calculator).
This is mainly important because RPN is
- parsed linearly, and
- each operation is very simple, which is both fast.
- VLIW because all operations are of uniform size. This makes sure that
finding the next item is equivalent to one pointer addition instruction.
Also looking ahead and back is easy. Contrary to "real" VLIW, only one
instruction per word exists.
- Array vs linked list or OOP thingy like tlist: Same reasons as VLIW.
In TEvaluator, symbolic values are subdivided into symbolic constants and
variables. There is no mathematical difference (you define what a constant,
and what is a variable. If you choose "wrong", there is a speed penalty, but
no failure). The difference between constants and variables is that constants
are embedded in the VLIW-RPN array before each evaluation, while variables are
passed as parameters to each evaluation.
Constants can be changed between each evaluation. If a variable only changes
each 50 or more evaluations, make it a constant, and change it after 50
evaluations.
Example:
somefunc(x,y,pi,h)=h/(2*pi)*x^2+5*x+y
Obviously, it is smart to choose pi and h for constants, since they won't
change each evaluation again. (even smarter would be to evaluate h/2*pi :-)
A VLIW record basically can be 4 or 5 things atm:
- a floating point value.
- an integer value.
- a RPN operator or function (which isn't a difference in RPN), though
this routine makes a difference between one and two parameter
functions/operators for speed. Two types:
- An operator or a function which takes two arguments. (there is no
difference in RPN, an operator is a function and vice versa)
- A function that takes one argument.
- (administrative value, no mathematical meaning) placeholder for a symbolic
constant, to be able to to detect a constant/variable which wasn't given a
value, and raise an exception.
- Symbolic variables. The variables in the expression are identified by an
integer sequential value (first var=1, second 2 etc). Variable values ARE
looked up each occurance during evaluation, and the only data used from
outside the RPN-VLIW array in a standard evaluation.
The symbolic constants initially get the "placeholder" value, and when the
user sets the constants via the SetConstant method, it gets a "floating point
value" or "integer value" type.
The class stores all references to all occurances of a constant in the VLIW
array in a tlist.
The Parser
----------
The parser is based on a PD stack RPN based non symbolic constant evaluator, I
found in SWAG. It is practically rewritten, and only the elegant principle
stands. The parser is NOT recursive-descent. It purely parses from left to
right and creates for each token it finds a parsetree record.
Parsetree records that can't be added to the parsetree yet, are pushed on an
argument or separate operator stack.
When an operator is found, then the operator stack is evaluated (popping arguments
of the argument stack) until an operator with higher precendence than the new
one is found. Only then the new operator is pushed on the operator stack.
I don't know if this is the fastest way, but it is simple, quite elegant and
probably not very bug-sensitive. If somebody has sensible reasons to change it
to recur. descent, please mail me.
Exceptions
-------------
I'm still working on the errorhandling (exceptions) of the classes.
Besides some more specific cases, there are two or three basic exception groups:
- (RPN)Stack under/overflow exceptions. This is not necessarily a fault
in the program, but more likely a fault in the passed (infix) expression.
(specially if they occur in the parser). Smartest is to log the expression
passed to parser somewhere in such cases.
Note: These signal problems with internal RPN stacks,
not the processor stack. Do not mix these up. (by reraising a processor
stack exception). The fault is not necessarily in the program.
- Internal errors. (IE) These are mosttimes problems in the class, and logging
the "message" gives some information about the location of the problem.
Most IE's are ELSE clauses that shouldn't occur, or datacorruption that
is not acceptable. Probably they only occur if one part of the package
is out of sync with another part, with dangling pointers etc.
E.g. Parser is updated to support function "x", but TEvaluator.Evaluate
wasn't. The CASE node for "x" doesn't exist, so it ends up in the ELSE
clause which triggers the exception.
If you use FPC, and your application is compiled with -gl, you'll probably
get a nice backtrace with sourcename and line of the exception.
- Division by zero might be the third. This is NOT the processor division
trap by zero, but a RPN stack one.
Glossary
---------
Some often used abbreviations and terms:
FPC : Free Pascal Compiler, the one that I use. Has a 32-bit Delphi mode.
Misses dynamic arrays, interfaces, and nearly the entire VCL in
production version 1.0.x. (Meanwhile, most of the language is
already in 1.1.x development version)
http://www.freepascal.org
IE : Internal error. Under FPC we try to append an ELSE clause to all
CASE statements, even if the ELSE shouldn't occur. In such CASE
statement the ELSE calls an internal error procedure.
This is also used for other important decisions with situations that
shouldn't occur. (e.g. enumerations with values that aren't defined,
placed there by casts, circular references in linked lists etc.)
I use the same system in these units, but with Exceptions.
See "Exceptions" paragraph for more information about IEs.
A good generic IE routine should be able to obtain the name of the class
in string form.
Infix: The way poeple usually write down expressions. An operator between its
operands. (5+2 operates on 5 and 2. Could also be written as add(5,2)
or 5 2 +
Has some advantages, but is complicated and slow to parse. However
users(except some Hewlett Packard calculator users like me) seem to
prefer it.
RPN : Reverse Polish Notation, an alternate notation of expression.
Any operator appears AFTER its operands.
e.g. 1+2+3*sin(4) could be written as 1 2 + 3 4 sin * +
Biggest advantage: Linear parsing from left to right.
Being able to convert a parsetree to RPN is also a good debugging aid.
(since it can be simply printed instead of having to browse a
parsetree runtime)
You can also think of it as replacing the infix operators in an infix
expression by functions (so add(x,y) instead of x+y), and then parse
from end to start (the "Reverse" of RPN)
This also displays another feature of RPN: There is no difference between
operators and functions. There are only functions that take different
amounts of parameters.
Parsetree:
The way an expression (or even an entire program) is stored
after parsing in compilers. Often, the main type is a variant record
(see treenode, pnode in the source) in which an operator or a function
has pointers to each operand. Parsetrees are often visualised as below.
Each operation, function or constant is a record, the lines made with
slashes are the pointers between the records. (so the top "+" has a
pointer to another "+" record, and one to a "*" record)
+
/ \
+ \
/ \ \
1 2 \
*
/ \
3 SIN
\
4
Fig 1. 1+2+3*sin(4)
Parsetrees are the easiest way to operate on (transform, derive etc)
expressions. Mainly because you don't have to move much data to move one
part of the expression to another place. Parsetrees are kinda slow though)
(compared to RPN), or VLIWRPN
VLIW: Very Large Instruction Word. Acronym from the RISC world that simply
boils down to "a linear sequence (array,stream) of uniform sized
"items" is the simplest and fastest way to parse something."
The RISC people are of course talking about instructions to process
and schedule. I'm using the analogy to evaluate an array of
elementary RPN instructions.
This principle is used to get the expression evaluator fast per
iteration. The main difference is that in VLIW processors more than
one operation can be packed in a VLI-Word. (which must be independant
then). This unit doesn't :-)


File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,18 @@
#
# Makefile.fpc for apache2.0 units example
#
[target]
programs=evaltest rpnthing
[require]
packages=symbolic
[install]
fpcpackage=y
[default]
fpcdir=../../..
[rules]
.NOTPARALLEL:

View File

@ -0,0 +1,100 @@
{
$ id: $
Copyright (c) 2000 by Marco van de Voort (marco@freepascal.org)
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright. (LGPL)
Most basic test for TEvaluator class.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************
}
program EvalTest;
{$AppType Console}
Uses Classes,Symbolic, SysUtils;
VAR Expr : TExpression;
SymVars : TStringList;
I : Longint;
VarName : TStringList;
Eval : TEvaluator;
Vars : Array[0..1] OF ArbFloat;
begin
{Lets create in a nice equation. Totally nonsense. Don't try to
make sense of it}
Expr:=TExpression.Create('pi*sin(x-x0)+x^(t-1)+exp(x*t)+5');
Writeln('Expression after parsing :',Expr.InfixExpr);
{Hmm. But the user could have typed that in. Let's check if he used
symbolic values}
SymVars:=Expr.SymbolicValueNames;
If SymVars.Count>0 Then
For I:=0 TO SymVars.Count-1 DO
Writeln(I:5,' ',Symvars[I]);
{Assume the user selected X and T from above stringlist as our variables}
VarName:=TStringList.Create;
VarName.Add('X');
VarName.Add('T');
{Create the Evaluator Object}
Eval:=TEvaluator.Create(VarName,Expr);
{My HP48g provided this value for PI:}
IF Symvars.IndexOf('PI')<>-1 THEN {If PI exists, then assume it is the
circle radius vs diameter ratio}
Eval.SetConstant('PI',3.14159265359);
IF Symvars.IndexOf('X0')<>-1 THEN {Set X0 to Douglas' number}
Eval.SetConstant('X0',42);
{All this above looks slow isn't? It probably even is. Unit symbolic has
evaluations as plus, not as target. The evaluation is built for
fast repeated evaluations, not just one.
However the Evaluate method is hopefully reasonably fast.
Under FPC TEvaluator.Evaluate is about 600-700 assembler instructions,
without operation on pointer trees and without recursion.
If your compiler (and hopefully FPC too) can inline the math unit functions,
the speed gain could be dramatic.}
Writeln('Stackdepth needed for evaluation: ',eval.EvalDepth);
FOR I:=1 TO 50 DO
begin
Vars[0]:=1/I *1.1;
Vars[1]:=1/I*2;
Writeln(VarName.Strings[0] + '=' + FloatToStrF(Vars[0], ffFixed, 4, 4) + ' ' +
VarName.Strings[1] + '=' + FloatToStrF(Vars[1], ffFixed, 4, 4) + ' = ' +
FloatToStrF(Eval.Evaluate(Vars), ffFixed, 4, 4));
end;
Eval.Free;
Expr.Free;
SymVars.Free;
// VarName.Free; {Is freed by TEvaluator.Destroy. Should TEvaluator copy it?}
Readln;
end.
{
$Log$
Revision 1.1 2002/12/15 21:01:22 marco
Initial revision
}

View File

@ -0,0 +1,179 @@
program RPNThing;
{
$ id: $
Copyright (c) 2000 by Marco van de Voort(marco@freepascal.org)
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright. (LGPL)
Much too simplistic program to test some basic features of Symbolic unit.
It is the very rough skeleton of a symbolic RPN calculator like a HP48.
Since there are no exception conditions in the parser or evaluator,
please enter valid expressions.
Don't use 5E6 notation, it is not implemented yet. You can enter
symbolic expressions using x, integer constants and half the math
unit's function.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
}
{$ifdef FPC}
{$Mode ObjFpc}
{$endif}
Uses Symbolic,Crt;
function GetKey:char;
begin
repeat
while keypressed DO ;
result:=ReadKey;
if result=#0 then {Make sure control codes are skipped apropiately}
begin
result:=readKey;
result:=#0;
end;
until result IN ['X','x','O','o','q','Q',' ','+','-','*','/','^','e','E','d','D','T','t'];
end;
VAR Stack : array[0..100] of TExpression;
I,StackPtr : Integer;
InputC : Char;
S : String;
Flag : Boolean;
Procedure Redraw;
var I : Integer;
begin
for I:=1 to 20 DO
begin
GotoXY(1,I);
Write(' ':79);
GotoXY(1,I);
IF (StackPtr>(20-I)) then
begin
IF NOT Assigned(stack[20-I]) then
begin
gotoXY(1,1); write(' ':50);
gotoxy(1,1); writeln(I,' ',20-I);
Writeln(stackptr);
HALT;
end;
Writeln(stack[StackPtr-(21-I)].InfixExpr);
end
else
write('-');
end;
GotoXY(1,21);
Write(' ':80);
end;
begin
Writeln(' + - / * ^ : perform the RPN operation');
Writeln(' [space],'#39' : get a "prompt" to input a number or infix expression');
Writeln(' E,e : Try to simplify/evaluate the expression. ');
Writeln(' For now this is restricted to constant values only');
Writeln(' D,d : Drop 1 value from the stack');
Writeln(' Q,q : By pressing this key you agree this program is great');
Writeln(' O,o : Derive the expression with respect to X');
Writeln(' T,t : Taylor polynomal. Also with respect to X, and to 2nd ');
writeln(' stacklevel degree');
Writeln;
Writeln('Press enter to start calculating');
ReadLn;
ClrScr;
StackPtr:=0;
repeat
InputC:=GetKey;
Case InputC OF
'+','-','*','/','^' : if stackPtr>1 then
begin
Dec(StackPtr);
case InputC of {Double case is ugly but short}
'+' : Stack[StackPtr-1].AddTo(Stack[StackPtr]);
'-' : Stack[StackPtr-1].SubFrom(Stack[StackPtr]);
'*' : Stack[StackPtr-1].Times(Stack[StackPtr]);
'/' : Stack[StackPtr-1].DivBy(Stack[StackPtr]);
'^' : Stack[StackPtr-1].RaiseTo(Stack[StackPtr]);
end;
Stack[StackPtr].free;
Redraw;
end;
'E','e' : If Stackptr>0 then
begin
Stack[StackPtr-1].SimplifyConstants;
Redraw;
end;
'T','t' : If StackPtr>1 then {Stackptr-1=function. Stackptr-2=degree
x is assumed, and x0 is substed}
begin
Flag:=True;
Try
i:=Stack[StackPtr-2].ValueAsInteger;
except
on ENotInt do
begin
GotoXY(1,1);
WritelN('This constant doesn''t evaluate to an integer');
Flag:=False;
end;
end;
If I<0 then
begin
GotoXY(1,1);
WritelN('I never heard of negative terms in a Taylor polynomal');
end
else
If Flag then
begin
Stack[StackPtr-2].Free;
Stack[StackPtr-2]:=Stack[StackPtr-1];
Stack[StackPtr-1]:=Stack[StackPtr-2].Taylor(I,'X','0.0');
Redraw;
end;
end;
'O','o' : if StackPtr>0 then
begin
Stack[StackPtr]:=Stack[StackPtr-1].Derive('X');
Inc(StackPtr);
Redraw;
end;
'D','d' : If StackPtr>0 Then
begin
Stack[StackPtr-1].free;
Dec(StackPtr);
Redraw;
end;
' ',#39 : If Stackptr<100 then
begin
GotoXY(1,1); Writeln(' ':60);
gotoxy(1,1); write('Enter expr. : '); readln(s);
s:=upcase(S);
stack[StackPtr]:=TExpression.Create(S);
Stack[StackPtr].Simplificationlevel:=2; {Don't add reals to integer. Only evaluates
(integer op integer) and (real op real) and
function(real)}
Inc(Stackptr);
Redraw;
end;
'X','x' : begin
ClrScr;
Writeln(stdout,stack[StackPtr-1].InfixExpr);
Writeln;
Writeln(stdout,stack[StackPtr-1].RPNExpr);
inputC:='q';
end;
end;
until (InputC IN ['q','Q']);
If StackPtr>0 THEN
For I:=0 To StackPtr-1 Do
Stack[I].Free;
end.

View File

@ -0,0 +1,40 @@
{
$ id: $
Copyright (c) 2000 by Marco van de Voort(marco@freepascal.org)
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright. (LGPL)
Some resourcestrings.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
resourcestring
SEvalIE ='TEvaluator: Internal Error: ';
SEvalStackDepthExceeded ='TEvaluator: Stack depth Evaluate exceeded';
SEvalBadNumberOfVars ='TEvaluator: Invalid number of variables';
SParsIE ='TBaseExprParser: Internal Error:';
SParseRPNOverflow ='TBaseExprParser: RPN stack overflow';
SParseRPNUnderflow ='TBaseExprParser: RPN stack underflow';
SParsDiv0 ='TBaseExprParser: RPN Division by zero in parser';
SParsOpOverflow ='TBaseExprParser: Operator stack Overflow';
SParsOpUnderflow ='TBaseExprParser: Operator stack Underflow';
SNILDeref ='NIL dereference';
SExprIE ='TExpression: Internal error: ';
SExprNotInt ='TExpression: This is not an integer';
SExprNotFloat ='TExpression: This is not a float';
SExprInvmsg ='TExpression: Inv(x) evaluates to 1/0';
SExprInvSimp ='TExpression: Division by 0 encountered while simplifying';
{
$Log$
Revision 1.1 2002/12/15 21:01:22 marco
Initial revision
}


View File

@ -0,0 +1,498 @@
{
$ id: $
Copyright (c) 2000 by Marco van de Voort(marco@freepascal.org)
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright. (LGPL)
Implementation of Infix to parsetree/RPN converter based on principles
copied from a RPN constant expression evaluator by Trai Tran
(PD, from SWAG.)
Parsetree to infix and parsetree to RPN/infix conversion
by Marco v/d Voort
OOP interface and vast improvements by Marco v/d Voort
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************
Problems:
- -x^12 is -(x^12) or (-x)^12 ? (FIXED: Chose to do it as in FPC)
- No errorhandling. (will be rewritten to use classes and exceptions first)
(this is partially done now)
Original comments:
---------------------------------------------------------------------------
THAI TRAN
I've netmailed you the full-featured version (800 lines!) that will do
Functions, exponentiation, factorials, and has all the bells and whistles,
but I thought you might want to take a look at a simple version so you can
understand the algorithm.
This one only works With +, -, *, /, (, and ). I wrote it quickly, so it
makes extensive use of global Variables and has no error checking; Use at
your own risk.
Algorithm to convert infix to postfix (RPN) notation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Parse through the entire expression getting each token (number, arithmetic
operation, left or right parenthesis). For each token, if it is:
1. an operand (number) Send it to the RPN calculator
2. a left parenthesis Push it onto the operation stack
3. a right parenthesis Pop operators off stack and send to RPN
calculator Until the a left parenthesis is
on top of the stack. Pop it also, but don't
send it to the calculator.
4. an operator While the stack is not empty, pop operators
off the stack and send them to the RPN
calculator Until you reach one With a higher
precedence than the current operator (Note:
a left parenthesis has the least precendence).
Then push the current operator onto the stack.
This will convert (4+5)*6/(2-3) to 4 5 + 6 * 2 3 - /
Algorithm For RPN calculator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note: this Uses a different stack from the one described above.
In RPN, if an operand (a number) is entered, it is just pushed onto the
stack. For binary arithmetic operators (+, -, *, /, and ^), the top two
operands are popped off the stack, operated on, and the result pushed back
onto the stack. if everything has gone correctly, at the end, the answer
should be at the top of the stack.
Released to Public Domain by Thai Tran (if that matters).
---------------------------------------------------------------------------
MvdV: It does for me. My routines might end up in either FPC or Jedi, and
anything except LGPL and PD is unacceptable. :-)
Modifications: (starting to get so big that the original is hardly
recognisable)
- OOP. Mainly to allow symbolic TExpression class to have custom parsers.
- Working with pnode stack instead of reals. Pnodes can be any expression,
see inteface unit symbolic. (creating a parsetree)
- Support for functions(one or two parameter arguments), which weren't in the
short Swag version. Most MATH functions are supported.
- Can make a difference between the minus of (-x) and the one in (x-y).
The first is converted to function minus(x);
- power operator
- Faculty operator
- Conversions back to RPN and infix.
- Removing of excess parentheses.
}
type {Tokens generated by the parser. Anything else is a constant or variable}
ParseOperation=(padd,psub,pmul,pdvd,ppow,pfacul,pleft,pright,
pcos,psin,ptan,psqr,psqrt,pexp,pln,pinv,
pminus, pcotan,parcsin,parccos,parctan,psinh,pcosh,ptanh,
parcsinh,parccosh,parctanh,plog10,
plog2,plnxpi,parctan2,pstep,ppower,phypot,
plogn,pnothing);
CONST
ParserFunctionNamesUpper : array[padd..pnothing] of string[7]=
('+','-','*','/','^','!','(',')','COS','SIN',
'TAN','SQR','SQRT','EXP','LN','INV','-',
'COTAN','ARCSIN','ARCCOS','ARCTAN',
'SINH','COSH','TANH','ARCSINH',
'ARCCOSH','ARCTANH','LOG10',
'LOG2','LNXP1','ARCTAN2','STEP',
'POWER','HYPOT','LOGN','NOTHING');
{Operator or function-}
Priority : array[padd..pnothing] of ArbInt=
(1,1,2,2,3,0,0,0,
4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5);
OppsXlat='+-*/^!()'; {Must match the first entries of ParseOperation.
Pos(OppsXlat,c)-1+ord(Padd) is typecast!}
Const
RPNMax = 20; { I think you only need 4-8, but just to be safe }
OpMax = 25;
AllowedInToken = ['0'..'9','.','E','e'];
Type
String15 = String[15];
Procedure ParserInternalError(const Msg:String;A,B:ArbInt);
VAR S,S2 : String;
begin
Str(A,S); {Usually a identification number for the occurance}
Str(B,S2); {Usually the value that tripped the IE}
Raise EParserIE.Create(SParsIE+Msg+S+' '+S2);
end;
function TBaseExprParser.InFixToParseTree(Expr : String;VAR RPNexpr: String):pnode;
Var
RPNStack : Array[1..RPNMax] of PNode; { Stack For RPN calculator }
RPNTop,
OpTop : ArbInt;
OpStack : Array[1..OpMax] of ParseOperation; { Operator stack For conversion }
Procedure RPNPush(Num : PNode); { Add an operand to the top of the RPN stack }
begin
if RPNTop < RPNMax then
begin
Inc(RPNTop);
RPNStack[RPNTop] := Num;
end
else
RAISE EParserStack.Create(SParseRPNOverflow);
end;
Function RPNPop : pnode; { Get the operand at the top of the RPN stack }
begin
if RPNTop > 0 then
begin
RPNPop := RPNStack[RPNTop];
Dec(RPNTop);
end
else
RAISE EParserStack.Create(SParseRPNUnderflow);
end;
Procedure RPNCalc(Token : String15); { RPN Calculator }
Var
treal : ArbFloat;
tint : ArbInt;
Error : ArbInt;
begin
RPNExpr:=RPNExpr+token+' ';
Val(Token, treal, Error);
IF (error=0) then
begin
if (Pos('.',token)=0) and (Pos('E',token)=0) Then
begin
Val(Token,tint,Error);
RpnPush(Newiconst(tint));
end
else
RPNPush(NewConst(Treal));
end
else { Handle error }
RPNPush(NewVar(Token));
end;
Procedure RPNOperation(Operation:ParseOperation);
{The workhorse. Creates the tree, and associates a parseoperation with
the TExpression enumerations. Avoids some ugly (and shaky) typecasts
between operations like in earlier versions.}
var Temp: pnode;
begin
RPNExpr:=RPNExpr+ParserFunctionNamesUpper[Operation]+' ';
Case Operation of { Handle operators }
padd : RPNPush(newcalc(addo,RPNPop,RPNPop));
psub : begin
Temp:=RPNPOP;
RPNPush(NewCalc(subo,RPNPOP,Temp));
end;
pmul : RPNPush(newcalc(mulo,RPNPOP,RPNPop));
pdvd : begin
Temp := RPNPop;
if Temp <> NIL then
RPNPush(newcalc(dvdo,RPNPop,Temp))
else
Raise EDiv0.Create(SParsDiv0); { Handle divide by 0 error }
end;
ppow,ppower : {are only different in parsing x^y and power(x,y)}
begin
Temp:=RpnPop;
RpnPush(NewCalc(powo,RpnPop,Temp));
end;
pfacul : RPNPush(NewFunc(faculx,RPNPOP));
psin : RPNPush(NewFunc(sinx,RPNPop));
pcos : RPNPush(NewFunc(cosx,RPNPop));
ptan : RPNPush(NewFunc(tanx,RPNPop));
psqr : RPNPush(NewFunc(sqrx,RPNPop));
pexp : RPNPush(NewFunc(expx,RPNPop));
pln : RPNPush(NewFunc(lnx,RPNPop));
pinv : RPNPush(NewFunc(invx,RPNPop));
Pminus : RPNPush(newFunc(minus,RPNPop));
pcotan : RPNPush(NewFunc(cotanx,rpnpop));
parcsin : RPNPush(NewFunc(arcsinx,rpnpop));
parccos : RPNPush(NewFunc(arccosx,rpnpop));
parctan : RPNPush(NewFunc(arctanx,rpnpop));
psinh : RPNPush(NewFunc(sinhx,rpnpop));
pcosh : RPNPush(NewFunc(coshx,rpnpop));
ptanh : RPNPush(NewFunc(tanhx,rpnpop));
parcsinh : RPNPush(NewFunc(arcsinhx,rpnpop));
parccosh : RPNPush(NewFunc(arccoshx,rpnpop));
parctanh : RPNPush(NewFunc(arctanhx,rpnpop));
plog10 : RPNPush(NewFunc(log10x,rpnpop));
plog2 : RPNPush(NewFunc(log2x,rpnpop));
plnxpi : RPNPush(NewFunc(lnxpix,rpnpop));
parctan2 : begin
Temp:=RpnPop;
RpnPush(Newfunc(arctan2x,RpnPop,temp));
end;
pstep : begin
Temp:=RpnPop;
RpnPush(Newfunc(stepx,RpnPop,temp));
end;
phypot: begin
Temp:=RpnPop;
RpnPush(Newfunc(hypotx,RpnPop,temp));
end;
plogn : begin
Temp:=RpnPop;
RpnPush(Newfunc(lognx,RpnPop,Temp));
end;
else
ParserInternalError('Unknown function',1,ORD(Operation));
end;
end;
Function IsFunction(S:String):ParseOperation;
var Count:ParseOperation;
begin
IsFunction:=pnothing;
for Count:=pCos to pInv do {Minus is a pseudo function, and in this category
because it has only 1 argument}
begin
If Copy(S,1,3)=ParserFunctionNamesUpper[Count] then
IsFunction:=Count;
end;
end;
Procedure OpPush(operation : ParseOperation); { Add an operation onto top of the stack }
begin
if OpTop < OpMax then
begin
Inc(OpTop);
OpStack[OpTop] := operation;
end
else
RAISE EParserStack.Create(SParsOpOverflow);
end;
Function OpPop : ParseOperation; { Get operation at the top of the stack }
begin
if OpTop > 0 then
begin
OpPop := OpStack[OpTop];
Dec(OpTop);
end
else
RAISE EParserStack.Create(SParsOpUnderflow);
end;
Var
I,len : ArbInt;
Token : String15;
OperationNr : ParseOperation;
FunctionNr : ArbInt;
isminus : boolean;
begin
RPNExpr:='';
OpTop := 0; { Reset stacks }
RPNTop := 0;
Token := '';
{$ifdef fpc}
Expr:=Upcase(Expr);
{$endif}
i:=1; len:=Length(Expr);
while I<=Len do
begin
{Flush token, if we feel an infix operator coming}
FunctionNr:=Pos(expr[I],OppsXlat);
If (FunctionNr<>0) and (Token<>'') THEN
begin { Send last built number to calc. }
RPNCalc(Token);
Token := '';
end;
If (FunctionNr>0) and (FunctionNr<7) then
begin
OperationNr:=ParseOperation(FunctionNr-1+ORD(padd));
If (OperationNr=psub) then {Minus(x) or x-y?}
begin
IsMinus:=False;
if I=1 then
IsMinus:=true
else
If Expr[I-1] IN ['+','(','*','/','-','^'] then
IsMinus:=true;
If IsMinus then
OperationNr:=PMinus;
end;
While (OpTop > 0) AND
(Priority[OperationNr] <= Priority[OpStack[OpTop]]) DO
RPNOperation(OpPop);
OpPush(OperationNr);
end
else
case Expr[I] of
'0'..'9' : begin
While (Expr[I] in AllowedInToken) and (I<=len) do
begin
Token:=Token+Expr[I];
inc(i);
end;
dec(i);
end;
',' : if Token <> '' then {Two parameter functions}
begin { Send last built number to calc. }
RPNCalc(Token);
Token := '';
end;
'(' : OpPush(pleft);
')' : begin
While OpStack[OpTop] <> pleft DO
RPNOperation(OpPop);
OpPop; { Pop off and ignore the '(' }
end;
'A'..'Z' : begin
if Token <> '' then
begin { Send last built number to calc. }
RPNCalc(Token);
Token := '';
end;
While (Expr[I] IN ['0'..'9','A'..'Z']) AND (I<=Len) DO
begin
Token:=Token+Expr[I];
Inc(I);
end;
Dec(i);
OperationNr:=IsFunction(Token);
if OperationNr<>pnothing then
begin
Token:='';
While (OpTop > 0) AND
(Priority[OperationNr] <= Priority[OpStack[OpTop]]) DO
RPNOperation(OpPop);
OpPush(OperationNr);
end
else
begin
RpnCalc(Token);
Token:='';
end;
end;
end; { Case }
inc(i);
end;
If Token<>'' Then
RpnCalc(Token);
While OpTop > 0 do { Pop off the remaining operations }
RPNOperation(OpPop);
InFixToParseTree:=RpnPop;
end;
function TBaseExprParser.ParseTreeToInfix(expr:pnode):string;
var S,right,left : string;
IsSimpleExpr : boolean;
begin
IF expr=nil then
ParserInternalError(SNILDeref,5,0);
case expr^.nodetype of
VarNode : S:=expr^.variable;
iconstnode: str(expr^.ivalue,S);
ConstNode: str(expr^.value,s);
CalcNode : begin
right:=ParseTreeToInfix(expr^.right);
left:=ParseTreeToInfix(expr^.left);
S:=left+InfixOperatorName[Expr^.op]+right;
if (expr^.op=addo) or (expr^.op=subo) then
S:='('+S+')';
end;
FuncNode : begin
left:=functionnames[expr^.fun];
right:=ParseTreeToInfix(expr^.son);
issimpleExpr:=false;
If ((Expr^.fun=minus) or (Expr^.fun=faculx)) and
(expr^.son^.nodetype in [varnode,iconstnode,constnode]) then
issimpleExpr:=true;
if expr^.fun<>faculx then
begin
If IsSimpleExpr then
S:=Left+Right
else
S:=Left+'('+Right+')';
end
else
If IsSimpleExpr then
S:=Right+Left
else
S:='('+Right+')'+Left;
end;
Func2Node : begin
S:=functionnames[expr^.fun];
Left:=ParseTreeToInfix(Expr^.son2right);
right:=ParseTreeToInfix(expr^.son2left);
S:=S+'('+Left+','+Right+')';
end;
end;
ParseTreeToInfix:=S;
end;
function TBaseExprParser.ParseTreeToRPN(expr:pnode):string;
{not fast because of the prepending. Creating an array of pnode would maybe
be faster}
procedure SearchTree(Tree:pnode;var s:string);
var temp:string;
begin
if tree<>nil then
case Tree^.nodetype of
VarNode : s:=Tree^.Variable +' '+s;
ConstNode: begin
str(Tree^.value:5:9,temp); {should be configurable}
s:=temp+' '+s;
end;
iconstnode: begin
str(Tree^.ivalue,temp);
s:=temp+' '+s;
end;
CalcNode : begin
s:=InfixOperatorName[Tree^.op]+' '+s;
SearchTree(tree^.right,s);
SearchTree(tree^.left,s);
end;
FuncNode: begin
s:=functionnames[tree^.fun]+' '+s;
SearchTree(tree^.son,s);
end;
Func2Node: begin
s:=functionnames[tree^.fun]+' '+s;
SearchTree(tree^.son2right,s);
SearchTree(Tree^.son2left,s);
end;
end;
end;
var s : String;
begin
s:='';
searchTree(expr,s);
ParseTreeToRPN:=S;
end;
{
$Log$
Revision 1.1 2002/12/15 21:01:24 marco
Initial revision
}


View File

@ -0,0 +1,90 @@
{$IFDEF DetectConstFlagCorruption}
TYPE
EConstCorruption=Class(Exception);
{$ENDIF}
PROCEDURE TExpression.UpdateConstants;
function InternalUpdateConstants(expr:pnode):boolean;
{Shouldn't be necessary. Detects both corruption of flags if
DetectConstFlagCorruption is defined
and rebuilds them.}
begin
if Expr<>NIL THEN
case Expr^.NodeType of
VarNode : begin {A symbol is not a constant}
{$IFDEF DetectConstFlagCorruption}
if (ExprIsConstant IN Expr^.Flags) then
Raise EConstCorruption.Create('Corrupt Varnode');
{$ENDIF}
Exclude(Expr^.flags,ExprIsConstant);
Result:=false;
end;
IConstNode,
ConstNode: begin
{$IFDEF DetectConstFlagCorruption}
if NOT (ExprIsConstant IN Expr^.Flags) then
Raise EConstCorruption.Create('Corrupt (I)constnode');
{$ENDIF}
Include(Expr^.flags,ExprIsConstant);
Result:=TRUE;
end;
calcnode: begin
Result:=InternalUpdateConstants(Expr^.Left) AND InternalUpdateConstants(Expr^.Right);
{$IFDEF DetectConstFlagCorruption}
if (ExprIsConstant IN Expr^.Flags)<>Result then
Raise EConstCorruption.Create('Corrupt calcnode');
{$ENDIF}
IF Result THEN
Include(Expr^.flags,ExprIsConstant)
else
Exclude(Expr^.flags,ExprIsConstant)
end;
funcnode: begin
Result:=InternalUpdateConstants(Expr^.Son);
{$IFDEF DetectConstFlagCorruption}
if (ExprIsConstant IN Expr^.Flags)<>Result then
Raise EConstCorruption.Create('Corrupt funcnode');
{$ENDIF}
IF Result THEN
Include(Expr^.flags,ExprIsConstant)
else
Exclude(Expr^.flags,ExprIsConstant)
end;
func2node: begin
Result:=InternalUpdateConstants(Expr^.Son2Left) and InternalUpdateConstants(Expr^.Son2Right);
{$IFDEF DetectConstFlagCorruption}
if (ExprIsConstant IN Expr^.Flags)<>Result then
Raise EConstCorruption.Create('Corrupt func2node');
{$ENDIF}
IF Result THEN
Include(Expr^.flags,ExprIsConstant)
else
Exclude(Expr^.flags,ExprIsConstant)
end;
end;
end;
begin
InternalUpdateConstants(ExprTree);
end;
{
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,493 @@
unit Symbolic;
{
$ id: $
Copyright (c) 2000 by Marco van de Voort(marco@freepascal.org)
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright. (LGPL)
Base types for expression trees, and some small procs to create them.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Seems not to have memory leaks atm. If you experience them, check procedure
newcalc first.
}
interface
{$ifdef FPC}
{$Mode ObjFpc}
{$ENDIF}
Uses Math,Classes,Sysutils;
Const
VLIWIncr = 40; { Initial size and increment of VLIW array}
DelphiMaxOps = 5000; { Unused for FPC. Max records in VLIW array
FPC: 2 Gb/sizeof(vliwevalword).}
Type {Should be somewhere in the JCLMath or even in JCLtypes unit}
{$ifdef FPC}
ArbFloat = float; {Float is set to mathtype used by FPC Math unit}
ArbInt = longint;
{$else}
ArbFloat = extended;
ArbInt = Integer;
{$endif}
calcop=(addo,subo,mulo,dvdo,powo); {real operators}
FuncOp=(cosx,sinx,tanx,sqrx,sqrtx,expx,lnx,invx,minus,cotanx,arcsinx,arccosx,
arctanx,sinhx,coshx,tanhx,arcsinhx,arccoshx,arctanhx,log10x,
log2x,lnxpix,faculx,arctan2x,stepx,powerx,hypotx,lognx,unknown0,
unknown1,unknown2,unknown3,unknown4);
{functions, both one and two parameter ones. Including pseudo function
minus}
CONST UnknownTokens : array[0..4] OF FuncOp =(unknown0,unknown1,unknown2,
unknown3,unknown4);
TYPE
Operation=(VarNode,ConstNode,iconstnode,CalcNode,FuncNode,func2node,VLIWVar,CustomNode);
TFlagsEnum=(ExprIsConstant); {ExprIsConstant signals that this node of
the tree and deeper can evaluate to a single
float constant}
TFlags = SET OF TFlagsEnum;
pnode =^treenode;
treenode=record
Flags : TFlags;
case nodetype:operation of
iconstnode: (ivalue:ArbInt);
VarNode: (variable:string[11]);
VLIWVar: (vliwindex:ArbInt); {^float?}
ConstNode: (value:ArbFloat);
CalcNode: (op:calcop;left,right:pnode);
FuncNode: (fun:funcop;son:pnode);
Func2Node: (fun2:funcop;son2left,son2right:pnode);
CustomNode: (Indent:Longint);
end;
ERPNStack = Class(Exception); {All RPN stack problems category}
EIError = Class(Exception); {All internal errors. Most often
these are raised when unknown
function enumerations are found}
EDiv0 = Class(Exception); {Division by zero, but RPN, not processor!}
TBaseExpression = class
protected
ExprTree : pnode;
function NewConst(value:ArbFloat):pnode;
function NewiConst(value:ArbInt):pnode;
function NewCalc(op:calcop;left,right:pnode):pnode;
function CopyTree(p :pnode):pnode;
function NewFunc(fun:funcop;son:pnode):pnode; overload;
function NewFunc(fun:funcop;son,son2:pnode):pnode; overload;
function NewVar(variable:string):pnode;
procedure DisposeExpr(p:pnode);
end;
EParserStack = class(ERPNStack); {RPN stack under/overflow.}
EParserIE = class(EIError); {Internal error}
TBaseExprParser= class(TBaseExpression)
public
function InFixToParseTree(Expr : String;VAR RPNexpr: String):pnode; virtual;
function ParseTreeToRPN (expr:pnode):string; virtual;
function ParseTreeToInfix(expr:pnode):string; virtual;
end;
TEvaluator= CLASS;
EFaculNotInt = Class(exception); {Faculty on a real value deviating from an integer value by more than 0.01}
EExprIE = Class(EIerror);
ENotInt = Class(exception);
ENotFloat = Class(Exception);
TExpression = class(TBaseExprParser)
protected
InfixClean : Boolean;
InfixCache : String;
Evaluator : TEvaluator;
EvaluatorUpToDate : Boolean;
function GetInfix:String;
function GetRPN:String;
procedure Simpleop(expr:TExpression;oper:calcop);
function Simpleopwithresult(expr:TExpression;oper:calcop):TExpression;
Function IntDerive(const derivvariable:String;theexpr:pnode):pnode;
Function GetIntValue:LongInt;
Procedure SetIntValue(val:Longint);
Function GetFloatValue:ArbFloat;
Procedure SetFloatValue(val:ArbFloat);
Procedure UpdateConstants; {Kind of integrity check}
public
SimplificationLevel : Longint;
CONSTRUCTOR Create(Infix:String);
CONSTRUCTOR EmptyCreate;
DESTRUCTOR Destroy; override;
Procedure SetNewInfix(Infix:String);
Function Derive(derivvariable:String):TExpression;
procedure SymbolSubst(ToSubst,SubstWith:String);
function SymbolicValueNames:TStringList;
function Taylor(Degree:ArbInt;const x,x0:String):TExpression;
function Newton(x:String):TExpression;
procedure SimplifyConstants;
function add(Expr:TExpression):TExpression;
function dvd(Expr:TExpression):TExpression;
function mul(Expr:TExpression):TExpression;
function power(Expr:TExpression):TExpression;
function sub(Expr:TExpression):TExpression;
procedure Addto(Expr:TExpression);
procedure Divby(Expr:TExpression);
procedure RaiseTo(Expr:TExpression);
procedure SubFrom(Expr:TExpression);
procedure Times(Expr:texpression);
property InfixExpr: string read GetInfix write SetNewInfix;
property RpnExpr: string read GetRPN;
property ValueAsInteger:longint read GetIntValue write SetIntvalue; {Default?}
property ValueAsFloat:arbfloat read GetFloatValue write SetFloatValue;
end;
VLIWWordtype= (avariable,anoperation, afunction,
afconstant, aiconstant,placeholder);
{ RPN operators or functions with two arguments are the same.}
vliwop2=(addv,subv,mulv,dvdv,powv,arctan2v,stepv,hypotv,lognv);
pArbFloat = ^ArbFloat;
{$ifdef FPC}
pVliwArr = ^VLIWEvalWord;
{$else} {Delphi doesn't allow referencing of ^simpletype as array,
but does allow it for ^ array of VLIWEvalWord}
TVLIWArr = array[0..DelphiMaxOps] of VLiwEvalWord;
pVliwArr = ^TVliwArr;
{$ENDIF}
pVLIWEvalWord = ^VLIWEvalWord;
VLIWEvalword = record
case VLIWEntity : VLIWWordType OF
AVariable : (IndexOfVar : ArbInt);
AnOperation: (op:vliwop2); {2 arguments}
AFunction : (fun1:funcop); {functions with one argument}
AiConstant : (ivalue:ArbInt);
AfConstant : (value:ArbFloat);
placeholder: (IndexOfConstant:ArbInt) ;
end;
TEvaluatorNotEnoughVariables=class(Exception); {Not enough variables passed to Evaluate}
TEvaluatorStackException =class(ERPNStack); {RPN Stack over/under flow}
TEvaluatorBadConstant =class(Exception); {Constant value not specified}
TEvaluatorIE =class(Exception); {Internal error. Probably something out of sync.}
TEvaluator = Class {Only needs the notion of a pnode }
Private
VariableName : TStringList;
ConstantValue : TList;
ConstantNames : TStringList;
MaxStack,
VLIWCount,
VLIWAlloc : ArbInt;
VLIWRPNExpr : pVLIWArr;
public
function Evaldepth:longint;
PROCEDURE SetConstant(Name:String;Value:ArbFloat);
CONSTRUCTOR Create(VariableList:TStringList;Expression:pnode);
CONSTRUCTOR Create(VariableList:TStringList;Expression:TExpression);
DESTRUCTOR Destroy; override;
Procedure TreeToVLIWRPN(expr:pnode);
function Evaluate(const variables:Array of ArbFloat):ArbFloat;
{$IFDEF DebugDump}
procedure debugger;
procedure WriteVliw(p:VLIWEvalWord);
{$ENDIF}
end;
{
Structures used to index a pnode tree to identify terms.
PTerms = ^TTerms;
PtermNode=^TTermNode;
TtermNode= record
NrTerms :ArbInt;
Terms : Array[0..499] of PNode;
end;
TTerms = record
NrTerms : ArbInt;
Terms: Array[0..499] of PtermNode;
end;
}
const InfixOperatorName : array[addo..powo] of char= ('+','-','*','/','^');
FunctionNames : array[cosx..lognx] of string[8]=(
'cos','sin','tan','sqr','sqrt','exp','ln','inv','-',
'cotan','arcsin','arccos','arctan','sinh',
'cosh','tanh','arcsinh','arccosh','arctanh',
'log10','log2','lnxp1','!','arctan2',
'step','power','hypot','logn');
FunctionNamesUpper: array[cosx..lognx] of string[8]=(
'COS','SIN','TAN','SQR','SQRT','EXP','LN','INV','-',
'COTAN','ARCSIN','ARCCOS','ARCTAN','SINH',
'COSH','TANH','ARCSINH','ARCCOSH','ARCTANH',
'LOG10','LOG2','LNXP1','!','ARCTAN2',
'STEP','POWER','HYPOT','LOGN');
LenFunctionNames : array[cosx..lognx] of longint=
(3,3,3,3,3,3,2,3,1,5,6,6,6,4,4,4,7,7,7,5,4,5,1,7,4,5,5,4);
{$I exprstrs.inc}
implementation
{newconst and newiconst are overloaded in FPC}
function TBaseExpression.NewConst(value:ArbFloat):pnode;
{Generate a new node for a floating point constant}
var t : pnode;
begin
new(t);
t^.nodetype:=constnode;
t^.value:=value;
t^.Flags:=[ExprIsConstant];
NewConst:=T;
end;
function TBaseExpression.NewiConst(value:ArbInt):pnode;
{Generate a new node for integer constant}
var t : pnode;
begin
new(t);
t^.nodetype:=iconstnode;
t^.ivalue:=value;
t^.Flags:=[ExprIsConstant];
NewiConst:=T;
end;
procedure TBaseExpression.DisposeExpr(p:pnode);
{Recursively kill expression tree}
begin
IF p<>NIL THEN
begin
case p^.nodetype of
CalcNode : begin
DisposeExpr(p^.right);
DisposeExpr(p^.left);
end;
FuncNode : DisposeExpr(p^.son);
end;
Dispose(p);
end;
end;
function TBaseExpression.NewCalc(op:calcop;left,right:pnode):pnode;
{Create NewCalc node. Left and Right may be nil because
to avoid introducing empty nodes, the deriv()
function may return NIL's, which are to be treated as newiconst(0);
Also one of the functions most likely to have memory leaks
}
function isintegerone(testme:pnode) : boolean;
begin
Isintegerone:=(testme^.nodetype=iconstnode) and (testme^.ivalue=1);
end;
var t : pnode;
begin
if op=powo then
begin
if right=NIL then {x^0 =1 for every X}
begin
DisposeExpr(left);
newcalc:=newiconst(1);
exit;
end;
if left=NIL THEN { 0^y = 0 except for y=0, but that is}
begin { covered above}
DisposeExpr(right);
NewCalc:=NIL;
exit;
end;
if IsIntegerone(left) then {x^1 =x}
begin
DisposeExpr(left);
NewCalc:=right;
exit;
end;
If IsIntegerone(right) then { 1^y=1}
begin
DisposeExpr(left);
NewCalc:=right;
exit;
end;
end; {generate a plain power node for all other cases}
if left=NIL then
begin
if (right=nil) or (op=mulo) or (op=dvdo) then { 0*0, 0*t or 0/t =0}
begin { We have no way to check T for nul}
IF Right<>NIL then
DisposeExpr(Right);
NewCalc:=NIL;
exit;
end;
if op=addo then { Don't generate a calc node for 0+x, but return x}
begin
NewCalc:=right;
exit;
end;
new(t);
t^.nodetype:=funcnode; { 0-x = minus(x) }
t^.fun:=minus;
t^.son:=right;
t^.flags:=[];
if ExprIsConstant in t^.son^.flags then
include(t^.flags,ExprIsConstant);
NewCalc:=T;
exit;
end;
if right=NIL then
begin
if (left=nil) or (op=mulo) or (op=dvdo) then { 0*0, 0*t or 0/t =0}
begin
IF left<>NIL then
disposeExpr(Left);
NewCalc:=Nil;
exit;
end;
NewCalc:=Left; { for x-0 or x+0, simply return 0}
exit;
end;
If ((op=mulo) or (op=dvdo)) and isintegerone(right) then { simplify t*1 and t/1}
begin
DisposeExpr(right);
NewCalc:=Left;
exit;
end;
if (op=mulo) and isintegerone(left) then { simplify 1*t}
begin
DisposeExpr(left);
NewCalc:=right;
exit;
end;
new(t);
t^.nodetype:=calcnode;
t^.op:=op;
t^.left:=left;
t^.right:=right;
t^.Flags:=[];
if (ExprIsConstant In T^.Left^.Flags) and (ExprIsConstant In T^.Right^.Flags) then
include(t^.flags,ExprIsConstant);
newcalc:=t;
end;
function TBaseExpression.CopyTree(p :pnode):pnode;
var newtree : pnode;
begin
new(newtree);
move(p^,Newtree^,sizeof(treenode));
if newtree^.nodetype=CalcNode then
begin
newtree^.left:=CopyTree(p^.left);
newtree^.right:=CopyTree(p^.right);
end
else
if newtree^.nodetype=FuncNode then
newtree^.son:=CopyTree(p^.son);
CopyTree:=NewTree;
end;
function TBaseExpression.NewFunc(fun:funcop;son:pnode):pnode;
var t : pnode;
begin
IF son<>nil then
begin
new(t);
t^.nodetype:=funcnode;
t^.fun:=fun;
t^.son:=son;
t^.flags:=[];
if ExprIsConstant IN son^.flags then
Include(t^.flags,ExprIsConstant);
NewFunc:=T;
end
else
NewFunc:=NIL;
end;
function TBaseExpression.NewFunc(fun:funcop;son,son2:pnode):pnode;
var t : pnode;
begin
new(t);
t^.nodetype:=func2node;
t^.fun:=fun;
t^.son2Left:=son;
t^.son2Right:=son2;
t^.flags:=[];
if(ExprIsConstant IN son^.flags) and (ExprIsConstant IN son2^.flags) then
Include(t^.flags,ExprIsConstant);
NewFunc:=T;
end;
{function TBaseExpression.NewFunc(fun:funcop;unknownIdent:longint):pnode;
var t : pnode;
begin
new(t);
t^.nodetype:=func2node;
t^.fun:=fun;
t^.son2Left:=son;
t^.son2Right:=son2;
t^.flags:=[];
if(ExprIsConstant IN son^.flags) and (ExprIsConstant IN son2^.flags) then
Include(t^.flags,ExprIsConstant);
NewFunc:=T;
end;}
function TBaseExpression.NewVar(variable:string):pnode;
var p :pnode;
begin
new(p);
p^.nodetype:=varnode;
p^.variable:=variable;
p^.Flags:=[];
newvar:=p;
end;
{$I parsexpr.inc} {Parser categories}
{$I symbexpr.inc} {standard symbolic manip}
{$I teval.inc}
{$I rearrang.inc}
end.
{
$Log$
Revision 1.1 2002/12/15 21:01:26 marco
Initial revision
}

View File

@ -0,0 +1,722 @@
{
$ id: $
Copyright (c) 2000 by Marco van de Voort (marco@freepascal.org)
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright. (LGPL)
Evaluator class implementation. Evaluates a parsetree expression in
a way optimized for fast repeated evaluations of the same expression
with different variables and constants.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************
}
{$IFDEF DebugDump}
procedure TEvaluator.WriteVliw(p:VLIWEvalWord); forward;
{$ENDIF}
Procedure TEvalInternalError(A,B:ArbInt);
VAR S,S2 : String;
begin
Str(ORD(A),S);
Str(ORD(B),S2);
Raise TEvaluatorIE.Create(SEvalIE+S+' '+S2);
end;
CONSTRUCTOR TEvaluator.Create(VariableList:TStringList;Expression:pnode);
{Constructor. Stringlist to set the order of variables in the function while
xconverting the pnode tree to a TEvaluator structure. This avoids any string
parsing during a real evaluation, and moves all stringparsing to the setup.
So for Func(x,y,z) Variablelist contains ('x','y','z') in that order.
}
begin
VariableName:=VariableList;
ConstantNames:=TStringList.Create;
ConstantValue:=TList.Create;
Getmem(VLIWRPnExpr,SIZEOF(VLIWEvalWord)*VLIWIncr);
VLIWCount:=0;
VLIWAlloc:=VLIWIncr;
MaxStack :=0;
TreeToVLIWRPN(Expression);
end;
CONSTRUCTOR TEvaluator.Create(VariableList:TStringList;Expression:TExpression);
{Overloaded, same as other constructor. (which it even calls), except that
it has a TExpression as argument.
Besides that it gets the pnode from the TExpression, it sets the
TExpression.Evaluator to self, and a flag to set in the TExpression that its
assiociated TEvaluator is up to date with the TExpression.
}
begin
Self.Create(VariableList,Expression.ExprTree);
Expression.Evaluator:=Self;
Expression.EvaluatorUpToDate:=TRUE;
end;
DESTRUCTOR TEvaluator.Destroy;
VAR I : LONGINT;
TmpList : Tlist;
begin
VariableName.Free;
ConstantNames.Free;
IF ConstantValue.Count>0 THEN
FOR I:=0 to ConstantValue.Count -1 DO
begin
TmpList:=TList(ConstantValue[I]);
TmpList.Free;
end;
ConstantValue.Free;
If VLIWAlloc>0 THEN
FreeMem(VLIWRPNExpr,VLIWAlloc*SIZEOF(VLIWEvalWord));
inherited Destroy;
end;
PROCEDURE TEvaluator.SetConstant(Name:String;Value:ArbFloat);
Var Ind,I : Longint;
TmpList : TList;
begin
Ind:=ConstantNames.IndexOf(Name);
If Ind<>-1 THEN
begin
TmpList:=TList(ConstantValue[Ind]);
I:=TmpList.Count;
If I>0 Then
For I:=0 TO TmpList.Count-1 DO
begin
PVLIWEvalWord(TmpList[I])^.VLIWEntity:=AfConstant;
PVLIWEvalWord(TmpList[I])^.Value:=Value;
end;
end;
end;
procedure TEvaluator.TreeToVLIWRPN(expr:pnode);
procedure CheckVLIWArr;
begin
if VLIWCount=VLIWAlloc then
begin
ReAllocMem(VLIWRPNExpr,(VLIWAlloc+VLIWIncr)*SIZEOF(VLIWEvalWord));
Inc(VLIWAlloc,VLIWIncr);
end;
end;
procedure searchTree(Tree:pnode);
var Ind : ArbInt;
TmpList : TList;
begin
if tree<>nil then
case Tree^.nodetype of
VarNode : begin
{some variable or constant. First: Variable?}
Ind:=VariableName.IndexOf(Tree^.Variable);
If Ind<>-1 then
begin {We have identified a variable}
CheckVLIWArr; {Make sure there is at least room for one variable}
WITH VLIWRPNExpr[VLIWCount] do
begin
VLIWEntity:=AVariable;
IndexOfVar:=Ind;
end;
{$IFDEF DebugDump}
WriteVliw(VLIWRPNExpr[VLIWCOUNT]);
{$ENDIF}
inc(VLIWCount);
end
else
begin {We have a constant}
ind:=ConstantNames.IndexOf(Tree^.Variable);
if Ind=-1 then
begin {That doesn't exist. Make sure it exists}
ConstantNames.Add(Tree^.Variable);
TmpList:=TList.Create;
ConstantValue.Add(TmpList);
end
else
begin
TmpList:=tlist(ConstantValue[Ind]);
end;
{Create the VLIW record}
CheckVLIWArr;
WITH VLIWRPNExpr[VLIWCount] do
begin
VLIWEntity:=Placeholder;
IndexOfConstant:=255;
end;
{$IFDEF DebugDump}
WriteVliw(VLIWRPNExpr[VLIWCOUNT]);
{$ENDIF}
{Store a pointer to the VLIW record to be able to change the
constant}
TmpList.Add(pointer(VLIWCount)); {Can't pick pointer here, due to realloc}
inc(VLIWCount);
end; {Ind<>-1}
end;
ConstNode: begin
CheckVLIWArr;
WITH VLIWRPNExpr[VLIWCount] do
begin
VLIWEntity:=AfConstant;
Value:=tree^.value;
end;
{$IFDEF DebugDump}
WriteVliw(VLIWRPNExpr[VLIWCOUNT]);
{$ENDIF}
inc(VLIWCount);
end;
iconstnode: begin
CheckVLIWArr;
WITH VLIWRPNExpr[VLIWCount] do
begin
VLIWEntity:=AiConstant;
IValue:=tree^.ivalue;
end;
{$IFDEF DebugDump}
WriteVliw(VLIWRPNExpr[VLIWCOUNT]);
{$ENDIF}
inc(VLIWCount);
end;
CalcNode : begin
CheckVLIWArr;
WITH VLIWRPNExpr[VLIWCount] do
begin
VLIWEntity:=AnOperation;
op:=vliwop2(ord(Tree^.op));
end;
{$IFDEF DebugDump}
WriteVliw(VLIWRPNExpr[VLIWCOUNT]);
{$ENDIF}
inc(VLIWCount);
SearchTree(tree^.left);
SearchTree(tree^.right);
end;
FuncNode: begin
CheckVLIWArr;
WITH VLIWRPNExpr[VLIWCount] do
begin
VLIWEntity:=AFunction;
fun1:=Tree^.fun;
end;
{$IFDEF DebugDump}
WriteVliw(VLIWRPNExpr[VLIWCOUNT]);
{$ENDIF}
inc(VLIWCount);
SearchTree(tree^.son);
end;
Func2Node: begin
CheckVLIWArr;
WITH VLIWRPNExpr[VLIWCount] do
begin
VLIWEntity:=AnOperation;
if tree^.fun2=powerx then
op:=VLIWOp2(powo)
else
if tree^.fun2 >powerx then
op:=vliwop2(ord(powv)+ord(tree^.fun2)-ord(arctan2x))
else
op:=vliwop2(1+ord(powv)+ord(tree^.fun2)-ord(arctan2x))
end;
{$IFDEF DebugDump}
WriteVliw(VLIWRPNExpr[VLIWCOUNT]);
{$ENDIF}
inc(VLIWCount);
SearchTree(tree^.son2left);
SearchTree(tree^.son2right);
end
else
TEvalInternalError(4,ORD(Tree^.nodetype ));
end;
end;
Procedure FixLists;
{We added constants as VLIWCount indexes. To speed up we convert them to
pointers. We couldn't do that directly as a consequence of the ReAlloc.}
VAR I,J : Longint;
TmpList : TList;
begin
I:=ConstantValue.Count;
IF I>0 THEN
FOR J:=0 TO I-1 DO
begin
TmpList:=TList(ConstantValue[J]);
IF (Tmplist<>NIL) and (TmpList.Count>0) then
for I:=0 TO TmpList.Count-1 DO
TmpList[I]:=@VLIWRPNExpr[longint(TmpList[I])];
end;
end;
begin
VLIWCount:=0;
SearchTree(expr);
FixLists;
end;
function TEvaluator.Evaluate(const variables:Array of ArbFloat):ArbFloat;
{The one that does the work}
CONST StackDepth=50;
var TheArray : pVLIWEvalWord;
VLIWRecs : Longint;
RPNStack : ARRAY[0..StackDepth] OF ArbFloat;
I,
RPNPointer : Longint;
// S : ansiString;
procedure push(Val:ArbFloat); {$IFDEF FPC} InLine; {$endif}
begin
IF RPNPointer=StackDepth THEN
RAISE TEvaluatorStackException.Create(SEvalStackDepthExceeded);
RPNStack[RpnPointer]:=Val;
INC(RPNPointer);
end;
begin
VLIWRecs:=VariableName.Count;
if (High(Variables)+1)<>VLIWRecs then
Raise TEvaluatorNotEnoughVariables.Create(SeValBadNumberOfVars);
RPNPointer:=0;
VliwRecs:=VliwCount-1;
TheArray:=@VLIWRPNExpr[VLIWRecs];
REPEAT
{$IFDEF DebugMe}
Writeln(VliwRecs,' ',ord(TheArray^.VLIWEntity));
{$ENDIF}
TheArray:=@VLIWRPNExpr[VLIWRecs];
CASE TheArray^.VLIWEntity OF
AVariable : begin
{$IFDEF DebugMe}
Writeln('var:', TheArray^.IndexOfVar);
{$ENDIF}
Push(Variables[TheArray^.IndexOfVar]);
end;
AfConstant : begin
{$IFDEF DebugMe}
Writeln('FP value:', TheArray^.value);
{$ENDIF}
Push(TheArray^.Value);
end;
AiConstant : begin
{$IFDEF DebugMe}
Writeln('Int value:', TheArray^.ivalue);
{$ENDIF}
Push(TheArray^.iValue);
end;
Placeholder: begin
// RAISE TEvaluatorBadConstant.Create(ConstantNames[TheArray^.IndexOfConstant]);
end;
AnOperation: begin
{$IFDEF DebugMe}
Writeln('Operator value:', ord(TheArray^.op));
{$ENDIF}
Case TheArray^.Op of
addv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]+RPNStack[RPNPointer-1];
end;
subv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]-RPNStack[RPNPointer-1];
end;
mulv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]*RPNStack[RPNPointer-1];
end;
dvdv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]/RPNStack[RPNPointer-1];
end;
powv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=Power(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
arctan2v : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=ArcTan2(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
stepv : begin
Dec(RPNPointer);
If RPNStack[RPNPointer-1]>RPNStack[RPNPOINTER] THEN
RPNStack[RPNPointer-1]:=1.0
else
RPNStack[RPNPointer-1]:=0.0;
end;
hypotv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=hypot(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
lognv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=logn(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
else
TEvalInternalError(1,ORD(TheArray^.op));
end;
end;
AFunction : begin
{$IFDEF DebugMe}
Writeln('function value:', ord(TheArray^.fun1));
{$ENDIF}
Case TheArray^.Fun1 of
cosx: RPNStack[RPNPointer-1]:=cos(RPNStack[RPNPointer-1]);
sinx: RPNStack[RPNPointer-1]:=sin(RPNStack[RPNPointer-1]);
tanx: RPNStack[RPNPointer-1]:=tan(RPNStack[RPNPointer-1]);
sqrx: RPNStack[RPNPointer-1]:=sqr(RPNStack[RPNPointer-1]);
sqrtx: RPNStack[RPNPointer-1]:=sqrt(RPNStack[RPNPointer-1]);
expx: RPNStack[RPNPointer-1]:=exp(RPNStack[RPNPointer-1]);
lnx: RPNStack[RPNPointer-1]:=ln(RPNStack[RPNPointer-1]);
invx: RPNStack[RPNPointer-1]:=1/RPNStack[RPNPointer-1];
minus: RPNStack[RPNPointer-1]:=-RPNStack[RPNPointer-1];
cotanx: RPNStack[RPNPointer-1]:=cotan(RPNStack[RPNPointer-1]);
arcsinx: RPNStack[RPNPointer-1]:=arcsin(RPNStack[RPNPointer-1]);
arccosx: RPNStack[RPNPointer-1]:=arccos(RPNStack[RPNPointer-1]);
arctanx: RPNStack[RPNPointer-1]:=arctan(RPNStack[RPNPointer-1]);
sinhx: RPNStack[RPNPointer-1]:=sinh(RPNStack[RPNPointer-1]);
coshx: RPNStack[RPNPointer-1]:=cosh(RPNStack[RPNPointer-1]);
tanhx: RPNStack[RPNPointer-1]:=tanh(RPNStack[RPNPointer-1]);
arcsinhx: RPNStack[RPNPointer-1]:=ArcSinh(RPNStack[RPNPointer-1]);
arccoshx: RPNStack[RPNPointer-1]:=ArcCosh(RPNStack[RPNPointer-1]);
arctanhx: RPNStack[RPNPointer-1]:=ArcTanh(RPNStack[RPNPointer-1]);
log10x: RPNStack[RPNPointer-1]:=Log10(RPNStack[RPNPointer-1]);
log2x: RPNStack[RPNPointer-1]:=Log2(RPNStack[RPNPointer-1]);
lnxpix: RPNStack[RPNPointer-1]:=lnxp1(RPNStack[RPNPointer-1]);
else
TEvalInternalError(2,ORD(TheArray^.fun1));
end;
end;
else
TEvalInternalError(3,ORD(TheArray^.VLIWEntity));
end;
{$Ifdef DebugDump}
Writeln('RecordNo: ',VliwRecs);
IF RPNPointer>0 then
begin
Writeln('RPN stack');
for I:=0 TO RpnPointer-1 DO
Writeln(I:2,' ',RpnStack[I]);
end;
{$Endif}
dec(TheArray);
dec(VliwRecs);
UNTIL VliwRecs<0;
Result:=RPNStack[0];
end;
{
function TEvaluator.i387Evaluate(const variables:Array of ArbFloat):ArbFloat;
{This should become the really *cool* one in time.
Still experimental though.
Current status:
- Can be entirely FP, but isn't allowed to use more that 4 stack-pos then.
- Math's ARCCOS ARCCOSH ARCSIN ARCSINH ARCTAN2 ARCTANH COSH COTAN HYPOT LNXP1 LOG10
LOG2 LOGN POWER SINH TAN TANH
and System.Exp are forbidden because they use stackroom internally.
This is a problem, because specially Exp() is much too common.
}
CONST StackDepth=50;
var TheArray : pVLIWEvalWord;
VLIWRecs : Longint;
RPNStack : ARRAY[0..StackDepth] OF ArbFloat;
I,
RPNPointer : Longint;
procedure push(Val:ArbFloat); {$IFDEF FPC} InLine; {$endif}
begin
IF RPNPointer=StackDepth THEN
RAISE TEvaluatorStackException.Create(SEvalStackDepthExceeded);
RPNStack[RpnPointer]:=Val;
INC(RPNPointer);
end;
begin
VLIWRecs:=VariableName.Count;
if (High(Variables)+1)<>VLIWRecs then
Raise TEvaluatorNotEnoughVariables.Create(SeValBadNumberOfVars);
RPNPointer:=0;
VliwRecs:=VliwCount-1;
TheArray:=@VLIWRPNExpr[VLIWRecs];
REPEAT
{$IFDEF DebugMe}
Writeln(VliwRecs,' ',ord(TheArray^.VLIWEntity));
{$ENDIF}
TheArray:=@VLIWRPNExpr[VLIWRecs];
CASE TheArray^.VLIWEntity OF
AVariable : begin
{$IFDEF DebugMe}
Writeln('var:', TheArray^.IndexOfVar);
{$ENDIF}
Push(Variables[TheArray^.IndexOfVar]);
end;
AfConstant : begin
{$IFDEF DebugMe}
Writeln('FP value:', TheArray^.value);
{$ENDIF}
Push(TheArray^.Value);
end;
AiConstant : begin
{$IFDEF DebugMe}
Writeln('Int value:', TheArray^.ivalue);
{$ENDIF}
Push(TheArray^.iValue);
end;
Placeholder: begin
// RAISE TEvaluatorBadConstant.Create(ConstantNames[TheArray^.IndexOfConstant]);
end;
AnOperation: begin
{$IFDEF DebugMe}
Writeln('Operator value:', ord(TheArray^.op));
{$ENDIF}
Case TheArray^.Op of
addv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]+RPNStack[RPNPointer-1];
end;
subv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]-RPNStack[RPNPointer-1];
end;
mulv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]*RPNStack[RPNPointer-1];
end;
dvdv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=RPNStack[RPNPointer]/RPNStack[RPNPointer-1];
end;
powv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=Power(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
arctan2v : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=ArcTan2(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
stepv : begin
Dec(RPNPointer);
If RPNStack[RPNPointer-1]>RPNStack[RPNPOINTER] THEN
RPNStack[RPNPointer-1]:=1.0
else
RPNStack[RPNPointer-1]:=0.0;
end;
hypotv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=hypot(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
lognv : begin
Dec(RPNPointer);
RPNStack[RPNPointer-1]:=logn(RPNStack[RPNPointer],RPNStack[RPNPointer-1]);
end;
else
TEvalInternalError(1,ORD(TheArray^.op));
end;
end;
AFunction : begin
{$IFDEF DebugMe}
Writeln('function value:', ord(TheArray^.fun1));
{$ENDIF}
Case TheArray^.Fun1 of
cosx: RPNStack[RPNPointer-1]:=cos(RPNStack[RPNPointer-1]);
sinx: RPNStack[RPNPointer-1]:=sin(RPNStack[RPNPointer-1]);
tanx: RPNStack[RPNPointer-1]:=tan(RPNStack[RPNPointer-1]);
sqrx: RPNStack[RPNPointer-1]:=sqr(RPNStack[RPNPointer-1]);
sqrtx: RPNStack[RPNPointer-1]:=sqrt(RPNStack[RPNPointer-1]);
expx: RPNStack[RPNPointer-1]:=exp(RPNStack[RPNPointer-1]);
lnx: RPNStack[RPNPointer-1]:=ln(RPNStack[RPNPointer-1]);
invx: RPNStack[RPNPointer-1]:=1/RPNStack[RPNPointer-1];
minus: RPNStack[RPNPointer-1]:=-RPNStack[RPNPointer-1];
cotanx: RPNStack[RPNPointer-1]:=cotan(RPNStack[RPNPointer-1]);
arcsinx: RPNStack[RPNPointer-1]:=arcsin(RPNStack[RPNPointer-1]);
arccosx: RPNStack[RPNPointer-1]:=arccos(RPNStack[RPNPointer-1]);
arctanx: RPNStack[RPNPointer-1]:=arctan(RPNStack[RPNPointer-1]);
sinhx: RPNStack[RPNPointer-1]:=sinh(RPNStack[RPNPointer-1]);
coshx: RPNStack[RPNPointer-1]:=cosh(RPNStack[RPNPointer-1]);
tanhx: RPNStack[RPNPointer-1]:=tanh(RPNStack[RPNPointer-1]);
arcsinhx: RPNStack[RPNPointer-1]:=ArcSinh(RPNStack[RPNPointer-1]);
arccoshx: RPNStack[RPNPointer-1]:=ArcCosh(RPNStack[RPNPointer-1]);
arctanhx: RPNStack[RPNPointer-1]:=ArcTanh(RPNStack[RPNPointer-1]);
log10x: RPNStack[RPNPointer-1]:=Log10(RPNStack[RPNPointer-1]);
log2x: RPNStack[RPNPointer-1]:=Log2(RPNStack[RPNPointer-1]);
lnxpix: RPNStack[RPNPointer-1]:=lnxp1(RPNStack[RPNPointer-1]);
else
TEvalInternalError(2,ORD(TheArray^.fun1));
end;
end;
else
TEvalInternalError(3,ORD(TheArray^.VLIWEntity));
end;
{$Ifdef DebugDump}
Writeln('RecordNo: ',VliwRecs);
IF RPNPointer>0 then
begin
Writeln('RPN stack');
for I:=0 TO RpnPointer-1 DO
Writeln(I:2,' ',RpnStack[I]);
end;
{$Endif}
dec(TheArray);
dec(VliwRecs);
UNTIL VliwRecs<0;
Result:=RPNStack[0];
end;
}
function TEvaluator.Evaldepth:longint;
{estimate stackdepth}
var TheArray : pVLIWEvalWord;
VLIWRecs : Longint;
Deepest : Longint;
RPNPointer : Longint;
begin
RPNPointer:=0;
Deepest:=0;
VliwRecs:=VliwCount-1;
TheArray:=@VLIWRPNExpr[VLIWRecs];
REPEAT
TheArray:=@VLIWRPNExpr[VLIWRecs];
CASE TheArray^.VLIWEntity OF
AVariable,
afconstant,
aiconstant, {a placeholder always changes into a push}
placeholder : Inc(rpnpointer);
AnOperation : Dec(rpnpointer); {take two args, put one back}
{ AFunction : Doesn't do anything}
end;
If Deepest<RPNPointer then
Deepest:=RPNPointer;
dec(TheArray);
dec(VliwRecs);
UNTIL VliwRecs<0;
Result:=deepest;
end;
{$IFDEF DebugDump}
CONST VLIWOPNames : array[addv..lognv] of String[9] =
('add','sub','mul','dd','pow',
'arctan2','step','hypot','logn');
procedure TEvaluator.WriteVliw(p:VLIWEvalWord);
begin
Write('writevliw ',(ord(p.vliwentity)-ORD(AVariable)):2,' ');
CASE p.VLIWEntity OF
AVariable : Writeln('variable : ', VariableName[p.IndexOfVar]);
AfConstant : Writeln('FP value : ', p.value);
AiConstant : Writeln('Int value: ', p.ivalue);
Placeholder: begin
writeln('placeholder');
end;
AnOperation: begin
Write('Operator : ');
IF not (p.OP IN [addv..lognv]) then
Writeln('Bad OPERATOR!')
ELSE
Writeln(VLIWOpNames[p.op]);
end;
AFunction : begin
Write('Function: ');
IF not (p.fun1 IN [cosx..lognx]) then
Writeln('xBad function')
ELSE
Writeln(FunctionNames[p.fun1]);
end;
else
Writeln('xBAD Entity');
end;
end;
procedure TEvaluator.debugger;
{Dump the VLIWArray in textual form for debugging}
var TheArray : pVLIWEvalWord;
VLIWRecs : Longint;
{$IFNDEF GoUp}
{$DEFINE GoDown}
{$ENDIF}
begin
VLIWRecs:=VariableName.Count;
Writeln('Variables : ',VLIWRecs);
Writeln('Constants : ',ConstantNames.Count);
VliwRecs:=VliwCount-1;
Writeln('VLIWCount : ',VLIWCOUNT);
{$IFDEF GoDown}
TheArray:=@VLIWRPNExpr[VLIWRecs-1];
{$ELSE}
TheArray:=VLIWRPNExpr;
{$ENDIF}
REPEAT
{$IFDEF GoDown}
Writeln(VliwRecs,' ',ord(TheArray^.VLIWEntity));
{$ELSE}
Writeln(VLIWCount-VliwRecs,' ',ord(TheArray^.VLIWEntity));
{$ENDIF}
Writeln('------------------------------------------------------');
WriteVliw(TheArray^);
{$IFDEF GoDown}
dec(TheArray);
{$ELSE}
INC(TheArray);
{$ENDIF}
dec(VliwRecs);
UNTIL VliwRecs<0;
end;
{$ENDIF}
{
$Log$
Revision 1.1 2002/12/15 21:01:28 marco
Initial revision
}