mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-04-07 22:47:59 +02:00
parent
15ff2c1236
commit
3a7cde492e
@ -41,7 +41,6 @@
|
||||
|
||||
What's to do:
|
||||
o some statistical functions
|
||||
o all financial functions
|
||||
o optimizations
|
||||
}
|
||||
|
||||
@ -543,6 +542,25 @@ function norm(const data : array of Extended) : float;inline;
|
||||
function norm(const data : PExtended; Const N : Integer) : float;
|
||||
{$endif FPC_HAS_TYPE_EXTENDED}
|
||||
|
||||
{ Financial functions }
|
||||
|
||||
function FutureValue(ARate: Float; NPeriods: Integer;
|
||||
APayment, APresentValue: Float; APaymentTime: TPaymentTime): Float;
|
||||
|
||||
function InterestRate(NPeriods: Integer; APayment, APresentValue, AFutureValue: Float;
|
||||
APaymentTime: TPaymentTime): Float;
|
||||
|
||||
function NumberOfPeriods(ARate, APayment, APresentValue, AFutureValue: Float;
|
||||
APaymentTime: TPaymentTime): Float;
|
||||
|
||||
function Payment(ARate: Float; NPeriods: Integer;
|
||||
APresentValue, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
||||
|
||||
function PresentValue(ARate: Float; NPeriods: Integer;
|
||||
APayment, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
||||
|
||||
{ Misc functions }
|
||||
|
||||
function ifthen(val:boolean;const iftrue:integer; const iffalse:integer= 0) :integer; inline; overload;
|
||||
function ifthen(val:boolean;const iftrue:int64 ; const iffalse:int64 = 0) :int64; inline; overload;
|
||||
function ifthen(val:boolean;const iftrue:double ; const iffalse:double =0.0):double; inline; overload;
|
||||
@ -2504,6 +2522,110 @@ begin
|
||||
result:=AValues[random(High(AValues)+1)];
|
||||
end;
|
||||
|
||||
function FutureValue(ARate: Float; NPeriods: Integer;
|
||||
APayment, APresentValue: Float; APaymentTime: TPaymentTime): Float;
|
||||
var
|
||||
q, qn, factor: Float;
|
||||
begin
|
||||
if ARate = 0 then
|
||||
Result := -APresentValue - APayment * NPeriods
|
||||
else begin
|
||||
q := 1.0 + ARate;
|
||||
qn := power(q, NPeriods);
|
||||
factor := (qn - 1) / (q - 1);
|
||||
if APaymentTime = ptStartOfPeriod then
|
||||
factor := factor * q;
|
||||
Result := -(APresentValue * qn + APayment*factor);
|
||||
end;
|
||||
end;
|
||||
|
||||
function InterestRate(NPeriods: Integer; APayment, APresentValue, AFutureValue: Float;
|
||||
APaymentTime: TPaymentTime): Float;
|
||||
{ The interest rate cannot be calculated analytically. We solve the equation
|
||||
numerically by means of the Newton method:
|
||||
- guess value for the interest reate
|
||||
- calculate at which interest rate the tangent of the curve fv(rate)
|
||||
(straight line!) has the requested future vale.
|
||||
- use this rate for the next iteration. }
|
||||
const
|
||||
DELTA = 0.001;
|
||||
EPS = 1E-9; // required precision of interest rate (after typ. 6 iterations)
|
||||
MAXIT = 20; // max iteration count to protect agains non-convergence
|
||||
var
|
||||
r1, r2, dr: Float;
|
||||
fv1, fv2: Float;
|
||||
iteration: Integer;
|
||||
begin
|
||||
iteration := 0;
|
||||
r1 := 0.05; // inital guess
|
||||
repeat
|
||||
r2 := r1 + DELTA;
|
||||
fv1 := FutureValue(r1, NPeriods, APayment, APresentValue, APaymentTime);
|
||||
fv2 := FutureValue(r2, NPeriods, APayment, APresentValue, APaymentTime);
|
||||
dr := (AFutureValue - fv1) / (fv2 - fv1) * delta; // tangent at fv(r)
|
||||
r1 := r1 + dr; // next guess
|
||||
inc(iteration);
|
||||
until (abs(dr) < EPS) or (iteration >= MAXIT);
|
||||
Result := r1;
|
||||
end;
|
||||
|
||||
function NumberOfPeriods(ARate, APayment, APresentValue, AFutureValue: Float;
|
||||
APaymentTime: TPaymentTime): Float;
|
||||
{ Solve the cash flow equation (1) for q^n and take the logarithm }
|
||||
var
|
||||
q, x1, x2: Float;
|
||||
begin
|
||||
if ARate = 0 then
|
||||
Result := -(APresentValue + AFutureValue) / APayment
|
||||
else begin
|
||||
q := 1.0 + ARate;
|
||||
if APaymentTime = ptStartOfPeriod then
|
||||
APayment := APayment * q;
|
||||
x1 := APayment - AFutureValue * ARate;
|
||||
x2 := APayment + APresentValue * ARate;
|
||||
if (x2 = 0) // we have to divide by x2
|
||||
or (sign(x1) * sign(x2) < 0) // the argument of the log is negative
|
||||
then
|
||||
Result := Infinity
|
||||
else begin
|
||||
Result := ln(x1/x2) / ln(q);
|
||||
end;
|
||||
end;
|
||||
end;
|
||||
|
||||
function Payment(ARate: Float; NPeriods: Integer;
|
||||
APresentValue, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
||||
var
|
||||
q, qn, factor: Float;
|
||||
begin
|
||||
if ARate = 0 then
|
||||
Result := -(AFutureValue + APresentValue) / NPeriods
|
||||
else begin
|
||||
q := 1.0 + ARate;
|
||||
qn := power(q, NPeriods);
|
||||
factor := (qn - 1) / (q - 1);
|
||||
if APaymentTime = ptStartOfPeriod then
|
||||
factor := factor * q;
|
||||
Result := -(AFutureValue + APresentValue * qn) / factor;
|
||||
end;
|
||||
end;
|
||||
|
||||
function PresentValue(ARate: Float; NPeriods: Integer;
|
||||
APayment, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
||||
var
|
||||
q, qn, factor: Float;
|
||||
begin
|
||||
if ARate = 0.0 then
|
||||
Result := -AFutureValue - APayment * NPeriods
|
||||
else begin
|
||||
q := 1.0 + ARate;
|
||||
qn := power(q, NPeriods);
|
||||
factor := (qn - 1) / (q - 1);
|
||||
if APaymentTime = ptStartOfPeriod then
|
||||
factor := factor * q;
|
||||
Result := -(AFutureValue + APayment*factor) / qn;
|
||||
end;
|
||||
end;
|
||||
|
||||
{$else}
|
||||
implementation
|
||||
|
Loading…
Reference in New Issue
Block a user