o support for copying value parameters at the callee side if they were
passed by reference in hlcg
o JVM g_concatcopy() implementation for arrays
o moved code to get length of an array from njvminl to hlcgcpu so it can
be reused elsewhere as well
o export array copy helpers from system unit for use when assigning one
array to another
o some generic support for types that are normally not implicit pointers,
but which are for the JVM target (such as normal arrays)
* handle assigning nil to a dynamic array by generating a setlength(x,0)
node instead of by hardcoding a call to fpc_dynarray_clear, so
target-specific code can handle it if required
* hook up gethltemp() for JVM ttgjvm so array temps are properly
allocated
git-svn-id: branches/jvmbackend@18388 -
o since the JVM does not support call-by-reference, setlength() works
by taking an argument pointing to the old array and one to the new
array (the latter is always created in advance on the caller side,
even if not strictly required, because we cannot easily create it
on the callee side in an efficient way). Then we copy parts of the
old array to the new array as necessary
o to represent creating a new dynamic array, the JVM target uses
an in_new_x tinlinenode
+ tasnode support for the JVM. Special: it can also be used to convert
java.lang.Object to dynamic arrays, and dynamic arrays of java.lang.Object
to dynamic arrays with more dimensions (arrays are special JVM objects,
and such support is required for the setlength support)
+ check whether explicit type conversions are valid, and if so, add the
necessary conversion code since we cannot simply reinterpret bit patterns
in most cases in the JVM:
o in case of class and/or dynamic array types, convert to an as-node
o in case of int-to-float or float-to-int, use java.lang.Float/Double
helpers (+ added the definitions of these helpers to the system unit)
git-svn-id: branches/jvmbackend@18378 -