* omit several error messages when in_generic is true because the error can be checked only during specialisation, resolves the issue reported in #21592
git-svn-id: trunk@20699 -
For the solution symbols will now contain a "sp_explicitrename" flag if they
were created through a type rename. This is necessary, because we can't
decide whether a type is a renamed generic para which contains by default a
reference to the default undefined def. Using individual undefined defs will
lead to duplicate identifiers as they are created before a symtable was
pushed (thus they'll ba part of whatever symtable is at the top).
+ symconst.pas, tsymoption:
Add a new option "sp_explicitrename" which will be used to track type
renames.
+ pdecl.pas, type_dec:
Set the new flag if we're dealing with a type rename
* pexpr.pas, factor_read_id:
If we have an undefined def that is also a rename then we assume that
it's a rename of a generic parameter
* utils/ppudump.pp:
Adjustment because of change to tsymoption
* utils/ppu.pp:
Increase PPU version
+ added test
git-svn-id: trunk@20250 -
pexpr.pas: Changes in postfixoperators and the base of handle_factor_typenode not yet incorporated (the code from trunk was simply commented for now)
git-svn-id: branches/svenbarth/generics@19676 -
* symconst.pas: remove tf_methods_specialized
* psub.pas: remove check for/inclusion of tf_methods_specialized as this isn't needed anymore since the generic is specialized in a temporary symtable
pgenutil.pas: remove merge artifacts
pdecl.pas: fix compilation ("s" was duplicate)
pexpr.pas:
* fix calling of generate_specialization
* disable the goto in sub_expr for now; this will be enabled again once right hand sides work as well
git-svn-id: branches/svenbarth/generics@19675 -
The changes regarding pretty names for generics and token buffer endianess were integrated into my changes. Not every call to generate_specialization is fixed though, so compilation will fail.
git-svn-id: branches/svenbarth/generics@19674 -
Conflicts:
compiler/pdecl.pas
compiler/pexpr.pas
compiler/pgenutil.pas
compiler/ptype.pas
The original log messages as git was a bit forgetting here :( (newest at the top):
commit 7ef252de8023494ee6d39910e289f9e31658d47b
Author: Sven Barth <pascaldragon@minerva>
Date: Mon Nov 21 17:13:36 2011 +0100
Fix the compilation of inline specializations of which the generic is derived from another generic.
pgenutil.pas, generate_specialization:
* Set the "block_type" to "bt_type" when parsing the type parameters, so that the nodes are returned as "ttypenode" instead of e.g. "tloadvmtaddrnode" in case of classes outside of type sections.
* Set the "block_type" to "bt_type" before calling "read_name_type", so that no unexpected sideeffects happen, because types like classes normally only are declared inside type sections (e.g. for the case a generic class is derived from another generic class a classrefdef for the specialized parent class will be created inside the derived specialized class if the block type is not a type one).
commit 1041a8f7a3a41f4fdf2975ce40055c698281ce71
Author: Sven Barth <pascaldragon@minerva>
Date: Fri Nov 18 19:03:50 2011 +0100
Improve inline specializations a bit, so now expressions like "TSomeGeneric<TSomeType>.SomeClassProc OP SomeNonGeneric" is possible. Using another class function of a generic as the right side is not yet working (that still needs some thinking).
To achive this the generalization code must basically continue directly after the "factor" call, so that the operator and the right side are correctly parsed when walking up the call stack. This is done by jumping from the end of the specialization code in the "<"-case to the start of "sub_expr". The freshly generated node (in the above example a callnode) will be passed down the callstack through a new parameter "factornode". If that is set (currently only in the case of a specialization on the left side) "factor" won't be called and the right side will be parsed with the "factornode" as the left side. If it is not set (which is the case for all other calls to "sub_expr" in the unit) then the usual call to "factor" will be done and the result will be used as the left side.
commit a01ccd265f8d6cc5a2f3e88e23afbcd3d5960afb
Author: Sven Barth <pascaldragon@minerva>
Date: Fri Nov 18 18:37:04 2011 +0100
Fix compilation of ppudump.
symconst.pas:
* Remove sto_has_generic, which was the last remainer of my "overloaded type symbols" approach.
* Remove df_methods_specialized, as it isn't needed anymore with the recent "temporary symtable" solution.
psub.pas, specialize_objectdefs, process_abstractrecorddef:
Remove the checks for/inclusion of df_methods_specialized.
utils/ppudump.pp:
Add "sp_generic_dummy" to the symbol options.
commit d16deac060e65d4b53e8fe9c27fe7e1f6d00a416
Author: Sven Barth <pascaldragon@minerva>
Date: Wed Nov 16 16:34:51 2011 +0100
Fix compilation of "gset.pp" from fcl-stl.
nld.pas:
Extend ttypenode by a reference to the type symbol. Normally this is simply the typesym of the given def, but for specializations in type sections of generics this is not the case, because generate_specialization will return a reference to the generic definition and not the new one (thus the symbol will be wrong).
ppu.pas:
Increase PPU version because of the extension of ttypenode.
pexpr.pas:
* handle_factor_typenode: Extend the function by a "sym" parameter which will normally be "nil". In that case it is set to the def's typesym. The "typesym" field of the created type node is then set to this sym.
* For now pass nearly always "nil" for the above mentioned sym except inside factor_read_id when we've encountered a typesym.
ptype.pas, read_named_type, expr_type:
Exchange the "is_owned_by" check with a "sym_is_owned_by" check so that we can correctly detect that we are using a specialized type declaration inside a generic (once nested generic are allowed this condition needs to be checked).
commit 23668d2fc9070afc26b4288ed0db9a8eaf6f40e6
Author: Sven Barth <pascaldragon@minerva>
Date: Wed Nov 16 07:51:12 2011 +0100
psub.pas:
* tcgprocinfo.parse_body: Methods of generic classes need to set "parse_generic" as well, so that variables for "stacked generics" (generic array => generic record) inside the method body are handled correctly.
* specialize_objectdefs: Don't try to generate method bodies for abstract methods.
pdecvar.pas, read_property_dec:
Allow specializations for the return types of properties (should they be allowed for index types as well?).
symtable.pas:
Add a new class "tspecializesymtable" which is basically a globalsymtable but is always assuming to be the current unit. This symtable is used in "generate_specializations" (see below) and is needed to allow visibilty checks for "private", etc. to succeed.
pgenutil.pas, generate_specializations:
Instead of hackily pushing a symtable that may contain conflicting symbols onto the symtable stack for the specialization, a temporary global symtable using the above mentioned "tspecializesymtable" is created and pushed. After the specialization is done all symbols and defs that were added to the temporary symtable are moved to their final symtable (either the global- or localsymtable of the unit, depending on the current position of compilation). This way symbols are correctly added to a top level symtable, but without potential side effects like resolving the wrong symbol.
git-svn-id: branches/svenbarth/generics@19671 -
- don't pass CP_NONE encoding to internal functions. They handled it as 0 encoding. This will optimize the generated code a bit.
- convert all king of string/char/pchar constants to local ansistring def if they needs to be passed to rawbytestring type. They should not get a CP_NONE codepage (delphi compatible)
- don't convert left and right arguments of string concatenation to ansistring type if they are already ansistrings but with different codepage - RTL already handles different codepages in concat routine
- fix resultdef for ansistring concatenations inside assignments - return def of left assignment operand if it is already ansistring - this reduces amount of unneeded condepage conversions since concat functions can return result in any desired codepage
rtl: remove CP_NONE comparisions from most of RTL functions, replace 0 constant with CP_ACP
tests: add test to check various conversions to RawByteString type
git-svn-id: trunk@19519 -
* symconst.pas:
add an entry for the generic dummy symbol to the symbol options enumeration
* pgenutil.pas:
- extend "generate_specialization" by the possibility to pass a symbol name instead of a def
- if "symname" is given that is used; otherwise "genericdef" or "tt" is used
* pexpr.pas:
- in case of "<" we are trying to receive a generic dummy symbol from the left node (new function "getgenericsym")
- it's name is then passed to "generate_specialization" which in turn fills genericdef
- adjust call to "generate_specialization"
* pdecl.pas:
- we can now check for "sp_generic_dummy instead of "not sp_generic_para" to check whether we've found the dummy symbol of a previous generic declaration
- if a new dummy symbol is created we need to include "sp_generic_dummy"
- if we've found a non-generic symbol with the same name we need to include the "sp_generic_dummy" flag as well
* symtable.pas
- add a new function "searchsym_with_symoption" that more or less works the same as "searchsym", but only returns successfully if the found symbol contains the given flag
- "searchsym_with_symoption" and "searchsym" are based on the same function "maybe_searchsym_with_symoption" which is the extended implementation of "searchsym" (note: object symtables are not yet searched if a symoption is to be looked for)
- add a function "handle_generic_dummysym" which can be used to hide the undefineddef symbol in a symtable
- correctly handle generic dummy symbols in case of variables in "tstaticsymtable.checkduplicate"
git-svn-id: branches/svenbarth/generics@19429 -
- fix a comment
- the created undefineddef must not be freed, as the count of the list the def is contained in, is used to find other defs again
git-svn-id: branches/svenbarth/generics@19428 -
Reasons for the "unique symbol" approach:
- no special search operations for cross unit search needed (which is supported by Delphi) => less performance impact
- no special care needed to really find the correct generic => less increase of parser complexity
Currently all generic tests except tgeneric29.pp compile and inline specializations work as well.
The changes in detail:
* pdecl.pas/types_dec:
- The variables used to hold the final name of the symbol are now prefixed with "gen". In case of non-generics the prefixed ones are equal to the non-prefixed ones (e.g. orgtypename=genorgtypename). In case of a generic symbol the "gen"-variants contain the type parameter count suffix (e.g. '$1' in case of 'TTest<T>') as well.
- The unmodified pattern is used to insert and detect a dummy symbol with that name, so that type declarations and - more important - inline specializations can find that symbol.
- In non-Delphi modes this symbol is also used to detect whether we have a type redefinition which is not allowed currently; its typedef points to the generic def.
- In mode Delphi the def of that dummy symbol (which contains an undefineddef) is modified when a corresponding non-generic type is parsed, so that it contains the def of the real type.
* pdecsub.pas/parse_proc_head
- consume_generic_type_parameter now only parses the type parameters and picks the generic with the correct amount of parameters. The verification of the order and names of the parameters needs to be added again.
- it also does not use "def" anymore, but it sets "srsym"
- in parse_proc_head the symbol (srsym) is only searched if the symbol isn't assigned already; in case of a generic in mode FPC it will find the dummy symbol that points to the generic def
* pexpr.pas
- in factor_read_id there are three cases to handle:
+ the symbol is not assigned => error
+ a possible generic symbol (either an undefined def or the non-generic variant) => no error and no hints
+ a non-generic symbol => hints
Point 1 is handled correctly, point 2 and 3 aren't currently and also they might be needed to be moved somewhere else
- sub_expr:
+ a node can be a tloadvmtaddrnode as well if the non-generic variant of a generic symbol is a class
+ we can only check afterwards whether the specialization was successful
* pgenutil.pas/generate_specialization
using the count of the parsed types the correct symbol can be found easily
git-svn-id: branches/svenbarth/generics@19424 -
- don't parse '(' token after the type declaration inside the type block
- replace parse of "string<codepage>" to "type AnsiString(codepage)" for delphi compatibility
- fix tests to use "type AnsiString(codepage)"
git-svn-id: trunk@19148 -
pobjdec.pas (object_dec) / ptype.pas (record_dec, array_dec, procvar_dec):
- enable "parse_generic" if a nested type is parsed and we're already inside a generic (this prevents code to be generated for the nested type's methods)
- set the "df_specialization" flag so that the code for generating the methods (and thus resolving the forwards declarations) is called for this symbol
pexpr.pas:
add "post_comp_expr_gendef" which basically calls "handle_factor_typenode" and "postfixoperators" as those aren't exported from the unit themselves
ptype.pas, read_named_type.expr_type:
- use "post_comp_expr_gendef" to parse the use of nested types (e.g. "var t: TTest<T>.TTestSub")
psub.pas, specialize_objectdefs:
implement the generation of the method bodies for nested structures (resolves the forward declarations)
pdecl.pas, types_dec:
when we encounter a nested structure inside a specialization of a structure, we need to find the corresponding generic definition so that the generic can be correctly parsed later on.
git-svn-id: branches/svenbarth/generics@18002 -
Reasons for the "unique symbol" approach:
- no special search operations for cross unit search needed (which is supported by Delphi) => less performance impact
- no special care needed to really find the correct generic => less increase of parser complexity
Currently all generic tests except tgeneric29.pp compile and inline specializations work as well.
The changes in detail:
* pdecl.pas/types_dec:
- The variables used to hold the final name of the symbol are now prefixed with "gen". In case of non-generics the prefixed ones are equal to the non-prefixed ones (e.g. orgtypename=genorgtypename). In case of a generic symbol the "gen"-variants contain the type parameter count suffix (e.g. '$1' in case of 'TTest<T>') as well.
- The unmodified pattern is used to insert and detect a dummy symbol with that name, so that type declarations and - more important - inline specializations can find that symbol.
- In non-Delphi modes this symbol is also used to detect whether we have a type redefinition which is not allowed currently; its typedef points to the generic def.
- In mode Delphi the def of that dummy symbol (which contains an undefineddef) is modified when a corresponding non-generic type is parsed, so that it contains the def of the real type.
* pdecsub.pas/parse_proc_head
- consume_generic_type_parameter now only parses the type parameters and picks the generic with the correct amount of parameters. The verification of the order and names of the parameters needs to be added again.
- it also does not use "def" anymore, but it sets "srsym"
- in parse_proc_head the symbol (srsym) is only searched if the symbol isn't assigned already; in case of a generic in mode FPC it will find the dummy symbol that points to the generic def
* pexpr.pas
- in factor_read_id there are three cases to handle:
+ the symbol is not assigned => error
+ a possible generic symbol (either an undefined def or the non-generic variant) => no error and no hints
+ a non-generic symbol => hints
Point 1 is handled correctly, point 2 and 3 aren't currently and also they might be needed to be moved somewhere else
- sub_expr:
+ a node can be a tloadvmtaddrnode as well if the non-generic variant of a generic symbol is a class
+ we can only check afterwards whether the specialization was successful
* pgenutil.pas/generate_specialization
using the count of the parsed types the correct symbol can be found easily
git-svn-id: branches/svenbarth/generics@17535 -
*a check for overloads with the same count of arguments is not yet in place
*in non-Delphi modes overloads need to be checked for non-generics as well, e.g. "TTest<T>" is already defined and now a "TTest" is declared
*when a generic is encountered and the symbol does not yet exist, a new symbol with an undefineddef is added and the generic def is added as an overload; if the symbol already exists, the generic is just added
*if a non-generic is parsed and the symbol is already defined (but the typedef is still an undefineddef) then the typedef is updated
*the symtable tree (up to the unit symtable (global or local)) gets the "sto_has_generic" flag which will be used when searching generics with the same name, but different parameter counts in different units
State of generics:
broken, because the generic defs are not yet searched/found
git-svn-id: branches/svenbarth/generics@17393 -
forward-declared class, only search the current symtable rather than the
entire symtable stack (to prevent finding types in e.g. nested types)
git-svn-id: trunk@17128 -
* pdecl.pas: prohibit generic helper declarations
* pdecobj.pas: helpers extending generic types are not allowed (theoretically one could experiment with allowing this for Delphi style generics...)
* symtable.pas:
- is_visible_for_object: helpers can access (strict) protected fields of extended types
- searchsym_in_helper: use the correct contextclass and the correct search function
- search_default_property: search for default properties in helpers first
* symsym.pas: added a global variable that allows to track whether we are parsing inside a special system function
* pexpr.pas:
- statement_syssym: track the current syssym
- factor.factor_read_id: helper types are allowed inside "sizeof", "bitsizeof" and "typeinfo"
git-svn-id: branches/svenbarth/classhelpers@17097 -
This change became necessary of the following reasons:
- Records don't support inheritance, thus for "record helpers" some creativity would have been necessary to implement them; with the new implementation this is more easily
- the new approach allows for easy checks regarding virtual methods and their overrides which would have been more complicated in the old variant
- if someone feels the need the types of helpers (object, interface) can be added rather easily
- unnecessary things like VMT generation can be disabled now
details:
- msg*:
* moved some messages from parser to type
* adjusted a message ("class helper" => "helper")
- symdef.pas:
* renamed "helperparent" to "extendeddef" and changed its type from "tobjectdef" to "tabstractrecorddef", so records can be extended as well (somewhen in the near future)
* removed "finish_class_helper" method as it isn't necessary (luckily I haven't yet adjusted the ObjC variant)
* changed name of "is_objectpascal_classhelper" to "is_objectpascal_helper" to reflect that this function applies to all helper types
* tobjectdef.create: ImplementedInterfaces isn't created for odt_helper anymore
* tobjectdef.alignment: for helpers it's the same as for classes although this shouldn't be used anywhere...
* tobjectdef.vmtmethodoffset: set to 0 for helpers to be sure...
* tobjectdef.needs_inittable: not needed for helpers (no fields allowed)
* is_objectpascal_helper: only needs check for "odt_helper" object type
- symconst.pas:
* changed odt_classhelper to more general odt_helper
* added new type "thelpertype" which is used to check that "(record|class) helper" corresponds with the given extended type (as Delphi XE checks this as well this strict solution can be kept for modes Delphi and ObjFPC)
- symtable.pas:
* extended "searchsym_in_class" with the possibility to disable the search for helper methods (needed for inherited) => this implies changing all occurences of "searchsym_in_class" with a "true" except some special locations
* renamed "search_objectpascal_classhelper" to "search_objectpascal_helper"
* searchsym_in_class:
** when an extended method is defined with "overload" it can be that a same named method of the extended class might be called (sadly this means that this search was unnecessary...)
** contextclassh is the def of the helper in the case of an inherited call inside the helper's implementation
** when methods inside a helper are searched, it must be searched in the extended type first
- ptype.pas:
* single_type is used to parse the parent of a helper as well, so allow a helper if the stoParseClassParent is given (needs check in pdecobj.pas/parse_class_parents for normal classes)
* read_named_type: currently the only case when something <> ht_none is passed to the modified parse_objdec (see below) is when the combination "class helper" is encountered ("record helper" will be another one)
- pinline.pas: adjustment for extended "searchsym_in_class"
- pexpr.pas:
* adjustments regarding "searchsym_in_class" and "is_objectpascal_helper"
* factor/factor_read_id: moved the check for "TSomeClassType.SomeMethod" outside of the "is_class" check
* factor:
** in case of an inherited we need to search inside the extended type first (Note: this needs to be extended to find methods in the helper parent if no method is found in the extended type)
** we also need to disable the search for helper methods when searching for an inherited method (Note: it might be better to introduce a enum to decide whether a helper method should search before or after the methods of the extended type or even never)
- pdecsub.pas:
* insert_self_and_vmt_para: in a helper the type of Self is of the extended type
* pd_abstract, pd_final: more nice error message
* pd_override, pd_message, pd_reintroduce: adjusted checks because now "is_class" is no longer true for helpers
* proc_direcdata: allowed "abstract" for helpers (only to produce a more nice error message)
* parse_proc_direc: adjustment because of "is_objectpascal_helper"
- pdecobj.pas:
* adjustments regarding "is_objectpascal_helper"
* adjusted object_dec to take the type of the helper (class, record) as a parameter to be able to check whether the correct extended type was given
* struct_property_dec: properties are allowed in helpers
* parse_object_options: nothing to be parsed for helpers (at least I hope so ^^)
* parse_parent_classes:
** the parent of a helper is now parsed as a normal parent, the extended type is parsed in an extra procedure
** check for "sealed" no longer needed
** added check that the parsed parent of a helper is indeed a helper
** allow to parse the closing ")" of the helper's parent
* parse_extended_class:
** new procedure that parses the type which is extended
** it checks that the extended type is a class for "class helper" and a record for "record helper"
** it checks that a helper extends the same class or a subclass for class helpers
** it checks that a helper extends the same record for record helpers
* parse_object_members:
** "type", "const", "var" is allowed in helpers
** don't exclude flags regarding virtual methods, they are needed for the checks in mode Delphi (this implies that VMT loading must be disabled for helpers)
* object_dec:
** don't change "odt_helper" to "odt_class", but still include the "oo_is_classhelper" flag
** allow the parsing of object options (there are none)
** parse the extended type for helpers
- pdecl.pas
* adjustment because of extension of object_dec
* types_dec: remove the call to finish_classhelper
- objcdef.pas
* objcaddencodedtype, objcdochecktype: add references to helpers as implicit pointers although that should not be used in any way...
- nld.pas
* tloadnode.pass_typecheck: self is a reference to the extended type
- nflw.pas
* create_for_in_loop: adjustment because of changed procedure and inheritance type
- ncgrtti.pas
* TRTTIWriter.write_rtti_data: disable for helpers for now (I need to check what Delphi does here)
- ncgld.pas
* tcgloadnode.pass_generate_code: virtual methods of helpers are treated as normal methods
- ncgcal.pas
* tcgcallnode.pass_generate_code: virtual methods of helpers are treated as normal methods
- ncal.pas
* tcallnode.pass_typecheck: adjust for extension of tcallcandidates constructor
- htypechk.pas
* tcallcandidates declaration: extend some methods to (dis)allow the search for helper methods (needed for inherited)
* tcallcandidates.collect_overloads_in_struct:
** search first in helpers for methods and stop if none carries the "overload" flag
** move the addition of the procsyms to an extra nested procedure because it's used for helper methods and normal struct methods
git-svn-id: branches/svenbarth/classhelpers@16947 -
- add stoAllowSpecialization to TSingleTypeOption enum to differentiate between any new type definition and only generic specialization
- allow only specializations for class parents (not any other type definition)
- allow specialization for method arguments and return types (maybe this must be allowed only in delphi mode but in this case tgeneric11 must fail)
git-svn-id: trunk@16738 -
- tokens: added support for "helper" token
- symconst.tobjecttyp: added a new entry "odt_classhelper"
- symdef: added two functions to check whether a "tdef" instance is a class helper in general ("is_classhelper") or an Object Pascal class helper in particular ("is_objectpascal_classhelper")
- symdef.tobjectdef: added a new method "finish_classhelper" which calls "create_class_helper_for_procdef" for every method (maybe this can be used for Objective-C categories as well)
- symdef.tobjectdef.create: "ImplementedInterfaces" must be created for class helpers as well
- symtable.searchsym_in_class: class helper methods must be searched for Object Pascal classes as well (this is currently wrong, as those must be searched before the class symbols, but for a first test it's sufficient)
- ptype.read_named_type: "helper for" currently indicates a class helper ("for" should be checked inside "object_dec" though, as after "helper" there might be a parent class helper)
- pdecobj.parse_parent_classes: parse the name of the extended class and disable sealed check for those
- pdecobj.object_dec: "odt_classhelper" are changed to "odt_class" and "oo_is_classhelper" is added to the object options
- pdecl.types_dec: create class helper symbols by using "finish_classhelper"
git-svn-id: branches/svenbarth/classhelpers@16729 -
- store type parameter in parasymtable, push it to the symtablestack before parsing arguments and return type
- move procedure/function declaration parsing to procvar_dec subroutine
- don't skip parasymtable while searching types because they store type parameters now
- add TParaSymTable.ReadOnly field to prevent adding defs into symtable. Add defs to the parent symtable in this case (we are adding this symtable to stack to read type parameters only, add defs should go to parent in this case as it was before)
git-svn-id: trunk@16719 -
change is that it is now also allowed to specify an external name for
formal external class definitions, but if they are later mixed with
regular class definitions the external names have to match.
o because the "external" status of methods is now set while parsing the
class rather than afterwards, some procdir compatibility checks had to
be inlined because they only have to be performed for
* also adapted the syntax for external cppclasses in the same way
* fixed return type of NSObject.retainCount and NSObject.hash
(NSUInteger instead of cint)
* moved "patches" directory from cocoaint/src to cocoaint/utils/cocoa-skel
so they are used by the conversion script when re-parsing the headers
* updated Objective-C header parser script to
o use the new external class syntax
o not write inheritance information for root classes (NSObject, NSProxy)
o use internal translation tables for some conflicting method names that
are named specially in objcbase.pp
and updated parsed headers
* fixed rtl/inc/objcbase.pp and tests to conform to the new external class
syntax
git-svn-id: trunk@16684 -
- add tarraysymtable to store generic type symbols
- process generic and specialize declarations similar to generic records and classes
- fix insert_generic_parameter_types to use def passed in argument instead of current_structdef because generic array type can't be assigned to the current_structdef variable
- increase ppu version because of arraydef changes
- tests
git-svn-id: trunk@16681 -
is_implicit_pointer_object_type() to better indicate the purpose of
that routine, and to avoid having to change its name every time
a new object type with this property is added
git-svn-id: trunk@16664 -
- don't use source pointeddef for copied tpointerdef,tclassrefdef if pointteddef is a forward def because in this case when forward def will be resolved copied def will point to garbage
- put copied def into list of defs awaiting resolve if it was copied from forward def
+ test
git-svn-id: trunk@16575 -
- rename tprocdef._class to tprocdef.struct and change the type from tobjectdef to tabstractrecorddef because methods can belong not to classes only now but to records too
- replace in many places use of current_objectdef to current_structdef with typcast where is needed
- add an argument to comp_expr, expr, factor, sub_expr to notify that we are searching type only symbol to solve the problem with records,objects,classes which contains fields with the same name as previosly declared type (like:
HWND = type Handle;
rec = record
hWnd: HWND;
end;)
- disable check in factor_read_id which was made for object that only static fields can be accessed as TObjectType.FieldName outside the object because it makes SizeOf(TObjectType.FieldName) imposible and since the same method was extended to handle records it also breaks a52 package compilation
- rename tcallcandidates.collect_overloads_in_class to tcallcandidates.collect_overloads_in_struct and addapt the code to handle overloads in records too
- fix searchsym_type to search also in object ancestors if we found an object symtable
- add pd_record, pd_notrecord flags to mark procedure modifies which can or can't be used with records. Disallow the next modifiers for records: abstract, dynamic, export, external, far, far16, final, forward, internconst, internproc, interrupt, message, near, override, public, reintroduce, virtual, weakexternal,
Allow the next modifiers for records: static
git-svn-id: branches/paul/extended_records@16526 -
- add parse_record_members function to parse record blocks based on parse_object_members code
- disable published section in records
- rename in_class argument in some functions to in_structure because the same code can work for records now which are not classes
git-svn-id: branches/paul/extended_records@16513 -
- fix type visibility (was always public)
- fix parsing of class sections after the type declaration
- allow nested classes declarations
+ tests
git-svn-id: trunk@14607 -