o primitive types are first boxed
o the parameter is passed inside an array of one class instance
o changing the parameter inside the routine (by assigning a value to it
like in Delphi.NET and different from regular Pascal code) will replace
this class instance (again boxing the value if required)
o on return, the class instance is extracted, unboxed if required, and
assigned back to the original location
o formal const parameters are handled without the extra array indirection,
since they cannot be changed
TODO: while writing tjvmcallparanode.handleformalcopyoutpara() I forgot that
calling getcopy on ttemprefnodes whose ttempcreatenode hasn't been copied
yet works fine, so that code is more complex than needed. Still have to
fix.
git-svn-id: branches/jvmbackend@18675 -
copying that over the old one into calling a dedicated fpcInitializeRec()
method that initializes the required fields. The reason is that this
initialization is performed for out-parameters, and the fpcDeepCopy()
method (used to copy one instance over another) has an out-parameter
-> infinite loop
git-svn-id: branches/jvmbackend@18674 -
o sets of enums are handled as JUEnumSet instances, others as JUBitSet
derivatives (both smallsets and varsets, to make interoperability with
Java easier)
o special handling of set constants: these have to be constructed at run
time. In case of constants in the code, create an internal constsym to
represent them. These and regular constsyms are then aliased by an
another internal staticvarsym that is used to initialise them in the
unit initialisation code.
o until they are constructed at run time, set constants are encoded as
constant Java strings (with the characters containing the set bits)
o hlcgobj conversion of tcginnode.pass_generate_code() for the genjumps
part (that's the only part of the generic code that's used by the JVM
target)
o as far as explicit typecasting support is concerned, currently the
following ones are supported (both from/to setdefs): ordinal types,
enums, any other set types (whose size is the same on native targets)
o enum setdefs also emit signatures
o overloading routines for different ordinal set types, or for different
enum set types, is not supported on the JVM target
git-svn-id: branches/jvmbackend@18662 -
* use this counter to mark classes containing abstract methods as
"abstract" in the bytecode per the JVM spec
* also use the counter to short-circuit printing of all abstract
methods in a class when creating a new instance (we build the list
of abstract methods every time a new instance is created, which is
a waste of time if there are none in the first place)
git-svn-id: branches/jvmbackend@18635 -
property, generate a wrapper with the same visibility as the property
that calls through to the original getter/setter (JVM target only:
ensures that the JVM verifier doesn't complain about calling methods
that are not visible to the current class when using such properties
from other units/classes)
git-svn-id: branches/jvmbackend@18632 -
JDK class-style enums rather than plain ordinals like in Pascal
o for Pascal code, nothing changes, except that for the JVM target
you can always typecast any enum into a class instance (to interface
with the JDK)
o to Java programs, FPC enums look exactly like Java enum types
git-svn-id: branches/jvmbackend@18620 -
o these classes get an "enum" flag in the class files
o these classes get a class field (whose type is that same enum
class) per enum in the type, which also gets the "enum" flag
o those class fields are initialised in the class constructor
with the name of the enum and their order in the declaration
o if the enum has jumps in FPC (lowest value is not 0, or not
all values are contiguous), then we add an extra field
to hold the FPC ordinal value of the enum
o these classes get a class field valled $VALUES that contains
a reference to the aforementioned class fields in order of
declaration (= ordinal->instance mapping, JDK-mandated)
o apart from the JDK-mandated instance methods (values, valueOf),
also add FPCOrdinal (returns FPC ordinal value; same as order
of declaration in case of no jumps) instance method and FPCValueOf
(returns enum corresponding to FPC ordinal value) static class
method
o the mapping between FPC ordinals and enum instances in case of
jumps is stored in a hashmap whose size is the next prime number
greater or equal than the number of enum elements
o moved several extra JDK types to the system unit for the enum
support, and for future boxing and Java set support
o several new synthetic method identifiers to generate the enum class
methods/constructor/class constructor
o enums with jumps are ordered by FPC ordinal value in the JVM
$VALUES array so that the java.lang.Enum.doCompare() method
will properly compare them
git-svn-id: branches/jvmbackend@18616 -
mangled name handling ansistring rather than pshortstring based (required
for JVM target; little effect on speed, some extra memory usage)
git-svn-id: branches/jvmbackend@18597 -
o since the JVM target has no stack/framepointer that can be passed
on to nested routines, all local variables and parameters accessed
from nested routines are grouped into a local record whose address
is passed to nested routines. The same technique is also required
for LLVM in the future
git-svn-id: branches/jvmbackend@18588 -
creating procdef's JVM mangled name, because this situation can also
arise in case there's a simple error in the source code
git-svn-id: branches/jvmbackend@18586 -
(non-dynamic arrays, records, shortstrings)
- removed the ability to typecast such types directly into related class
types, you have to use the @-operator first now to get a pointer to
the type
o updated the RTL and internal compiler code to properly use this
new convention
o allowed removing several special cases from
tjvmtypeconvnode.target_specific_general_typeconv(), and that
method can probably be removed completely over time
* no longer give compile time errors for pointer-related typecasts that
will fail at run time, because the checking was too complex and could
be worked around via actual pointer typecasts anyway
* removed some unnecessary checkcast operations (for shortstring/
shortstringclass)
git-svn-id: branches/jvmbackend@18574 -
o support for ansistring constants. It's done via a detour because the
JVM only supports UTF-16 string constants (no array of byte or anything
like that): store every ansicharacter in the lower 8 bits of an
UTF-16 constant string, and at run time copy the characters to an
ansistring. The alternative is to generate code that stores every
character separately to an array.
o the base ansistring support is implemented in a class called
AnsistringClass, and an ansistring is simply an instance of this
class under the hood
o the compiler currently does generate nil pointers as empty
ansistrings unlike for unicodestrings, where we always
explicitly generate an empty string. The reason is that
unicodestrings are the same as JLString and hence common
for Java interoperation, while ansistrings are unlikely to
be used in interaction with external Java code
* fixed indentation
git-svn-id: branches/jvmbackend@18562 -
are JVM annotations used by Java's generics support. They cannot be used
for FPC's generics support, but they are useful in other cases
* emit classrefdefs as java.lang.Class, with a signature annotation that
indicates which class they actually refer to
git-svn-id: branches/jvmbackend@18534 -
typeconversion handling
+ support for class reference types in the JVM (although without class virtual
methods, they're not that useful)
git-svn-id: branches/jvmbackend@18516 -
current class, since constructors are not automatically inherited in
Java
o tprocdef.getcopy() implementation, which returns an (unfinished) copy
of a tprocdef. Finalise by calling symcreat.finish_copied_procdef()
o made it possible to specify an existing procdef as argument to
read_proc(), in which case it won't try to parse a procedure declaration,
but only a body and associate it with the passed procdef. This is
required for the inherited constructor support, since we cannot generate
a textual representation of inherited constructors that is guaranteed to
parse in the context of the current unit (e.g., if they use types from
a unit that is not in the uses clause of the current unit)
o folded tprocsym.find_procdef_bypara_no_rettype() into
Tprocsym.Find_procdef_bypara, by interpreting specifying nil as
retdef as not having to check the return def (required to compare
parent constructors with child constructors to see whether they
match, since the returndef will always be the current class type)
git-svn-id: branches/jvmbackend@18488 -
assignment-nodes. For global typed constants and typed constants/
local variable initialisers in regular functions/procedurs, the
assignments are performed in the unit initialisation code. For
those in object/record definitions and their methods, it's done
in the class constructor. Since we may not yet have parsed all
method implementations when the class constructor is parsed, part
of these may be initialised in a helper routine called from the
class constructor. The ones known when the class constructor is
parsed are inited there, because the ones marked as "final" and
declared as static class fields must be initialised in the class
constructor for Java
o new set systems_typed_constants_node_init in systems unit that
indicates that a target uses node trees to initialise typed consts
instead of an initialised data section
o mark typed constants in {$j-} mode as "final" for JVM
o mangle the name of staticvarsyms inside localtables a bit to avoid
name clashes (only with procedure names for now, no parameters yet
so can still cause problems with overloaded routines)
o after a routine has been parsed, it is now processed by
cnodeutils.wrap_proc_body(), which can add extra nodes before code
generation (used for injected the typed constant node trees)
git-svn-id: branches/jvmbackend@18475 -
in a single statement, to be added later)
o the unicodestrings are internally simply java.lang.String instances
o at the language level, the unicodestrings are assignment-compatible
with java.lang.String
o constant strings can be implicitly converted to java.lang.String
o since java.lang.String is immutable, in particular changing a
single character in a string is extremely inefficient. This could
be solved by letting unicodestring map to java.lang.StringBuilder,
but that would make integration with plain Java code harder
git-svn-id: branches/jvmbackend@18470 -
JLObject with the method "Free" and a virtual destructor "Destroy"
(and Free is automatically called from the "finalize" method,
which in turn is called by the JVM when the instance is collected;
note that there is no final collection before the JVM shuts down,
so it may never be called if you don't call Free explicitly yourself)
* if you don't specify an explicit ancestor for a Java class, set
the parent to TObject instead of to JLObject (for better compatibility
with regular Pascal code)
git-svn-id: branches/jvmbackend@18466 -
o initialise class vars that need initialisations (records, arrays) in
class constructors
o treat class constructors as having a "void" resultdef rather than the
class type for JVM (maybe has to be done in general?)
o make it possible to specify pno_noleadingdollar to
tprocdef.customprocname() so it can be used for class constructors
(their name is lower cased because it mustn't conflict with other
identifiers, since their name doesn't matter anyway)
o added tsk_empty synthetic procdef kind which, as the name implies,
generates an empty body (for class generated constructors)
+ auto-generate class constructors in case a class has class vars that
need initialisation
git-svn-id: branches/jvmbackend@18462 -
and initialise global variables that are wrapped (records, arrays)
in those sections
o check whether pd.localst is assigned in dbgjasm, because it's
not for the unit initialisation routine
o moved insertbssdata() from ncgutil to ngenutil and override it
njvmutil (it does nothing in the latter, since global variables
are added as fields to the class representing the unit; the
initialisation is done in gen_initialize_code() in thlcgjvm)
o added force_init() and force_final() methods to ngenutil, so
that targets can force init/final routines separate from the
regular managed types infrastructure (used by JVM for forcing
an init section in case of records/arrays)
git-svn-id: branches/jvmbackend@18460 -
implemented via classes, all descending from system.FpcBaseRecordType
(records are also considered to be "related" to system.FpcBaseRecordType
on the JVM target)
* several routines are auto-generated for all record-classes: apart
from a default constructor (if there is none), also clone (which
returns a new instance containing a deep copy of the current
instance) and deepCopy (which copies all fields of one instance
into another one)
o added new field "synthetickind" to tprocdef that indicates what
kind of synthetically generated method it is (if any), and
mark such methods also as "synthetic" in the JVM assembler code
o split off the JVM-specific parser code (e.g., to add default
constructors) into pjvm.pas
git-svn-id: branches/jvmbackend@18450 -
from tobjectdef to tabstractrecorddef, since records are implemented
via Java classes on the JVM target (and hence have an associated
package name, and we have to be able to generate their JVM-style
mangled name)
* adapted ppudump to this change
git-svn-id: branches/jvmbackend@18449 -
shortstrings to prevent cut-offs
+ ReplaceCase() ansistring overload in cutils to support the above
* always use the fully qualified name in case of nested types inside
the parameter lists of procdefs
* put extra information about array parameters between {} so they
can be passed back into the parser
git-svn-id: branches/jvmbackend@18431 -
artificially generated stuff rather than directly working with defs/syms
problems
o scanner state saving/restoring, and avoiding problems in case of
errors in the injected strings
o in case of the actual application (adding overriding constructors):
the parameters may be of types not visible in the current unit to
newly written code -> can't just use the scanner...
git-svn-id: branches/jvmbackend@18427 -
a new customprocname() method and tprocnameoption flags (add parameter
names, add "function"/"procedure", add name of owning struct or not,
don't add the "class" prefix for class methods)
Reason: for internal use by the compiler so it can output the procdef
into something that can be fed back to the parser for reuse (seems
easier than manually constructing a new procdef, or duplicating it
inside of another objectdef)
git-svn-id: branches/jvmbackend@18426 -
o always create exceptvarsym entry for on-nodes (on all targets) to remove
some special cases when an unnamed exception was caught
o the JVM tryfinally node generates the finally code twice: once for the
case where no exception occurs, and once when it does occur. The reason
is that the JVM's static bytecode verification otherwise cannot prove
that we will only reraise the caught exception when we caught one in
the first place (the old "jsr" opcode to de-duplicate finally code
is no longer used in JDK 1.6 because it suffered from the same problem,
see Sun Java bug
http://webcache.googleusercontent.com/search?q=cache:ZJFtvxuyhfMJ:bugs.sun.com/bugdatabase/view_bug.do%3Fbug_id%3D6491544 )
git-svn-id: branches/jvmbackend@18387 -
o tobjectdef.jvm_full_typename() now gets an extra parameter to determine
whether or not the package name should be prepended, so it can be easily
used to generate the name of the .j file and of the class name inside it
git-svn-id: branches/jvmbackend@18384 -
o hlcgobj support in tcgsubscriptnode.pass_2 for JVM-required functionality
o slightly different handling for class fields for the JVM than for other
platforms: instead of adding a unit-level staticvarsym with a hidden name,
rename the original (unused) field and add the staticvarsym with the original
name to the object symtable. This is required because the JVM code generator
has to know the class the field belongs to, as well as its real name
o moved tprocdef.makejvmmangledcallname() functionality mostly to
jvmdef.jvmaddtypeownerprefix() because it's also required for mangling
field symbol names
* changed the interface of jvmdef from ansistring to shortstring because
all of its results are also used in shortstring contexts (and they're
unlikely to overflow the shortstring limit)
* "protected", "private" (without strict) and implementation-only symbols
now get "package" visibility instead of "public" visibility
git-svn-id: branches/jvmbackend@18349 -
since the definition-specific adorning of JVM mangled names is Jasmin-
specific, and such code has no place in symdef
* moved code to adorn JVM mangled names for Jasmin definitions to agjasmin
git-svn-id: branches/jvmbackend@18346 -
name of a Java class (package/procname), extracted from jvmdef
* several fixes to jvmmangledname (po_has_importdll only applies to
unit-level procedures, replace incomplete mangling of class type names
with call to jvm_full_typename()
git-svn-id: branches/jvmbackend@18326 -
o support formal external definitions (like for objcclass)
o allow specifying an "import_dll" for external Java classes, which can
be used to specify the Java package name (like the dll for cppclass)
o take the package name into account when mangling the Java class name
o several messages that were specific to Objective-Pascal classes have
been generalised because they also apply to Java classes, same for
several compiler function names
o disabled some proccall directives for Java, but more needs to happen
(Java methods are always either instance-virtual or class-static)
git-svn-id: branches/jvmbackend@18319 -