{ Copyright (c) 1998-2002 by Florian Klaempfl Generate generic mathematical nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ncgmat; {$i fpcdefs.inc} interface uses symtype, node,nmat,cpubase,cgbase; type tcgunaryminusnode = class(tunaryminusnode) protected { This routine is called to change the sign of the floating point value in the floating point register r. This routine should be overridden, since the generic version is not optimal at all. The generic version assumes that floating point values are stored in the register in IEEE-754 format. } procedure emit_float_sign_change(r: tregister; _size : tdef);virtual; {$ifdef SUPPORT_MMX} procedure second_mmx;virtual;abstract; {$endif SUPPORT_MMX} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} procedure second_64bit;virtual; {$endif not cpu64bitalu and not cpuhighleveltarget} procedure second_integer;virtual; procedure second_float;virtual; procedure second_float_emulated;virtual; public procedure pass_generate_code;override; end; tcgmoddivnode = class(tmoddivnode) procedure pass_generate_code;override; protected { This routine must do an actual 32-bit division, be it signed or unsigned. The result must set into the the @var(num) register. @param(signed Indicates if the division must be signed) @param(denum Register containing the denominator @param(num Register containing the numerator, will also receive result) The actual optimizations regarding shifts have already been done and emitted, so this should really a do a divide. } procedure emit_div_reg_reg(signed: boolean;denum,num : tregister);virtual;abstract; { This routine must do an actual 32-bit modulo, be it signed or unsigned. The result must set into the the @var(num) register. @param(signed Indicates if the modulo must be signed) @param(denum Register containing the denominator @param(num Register containing the numerator, will also receive result) The actual optimizations regarding shifts have already been done and emitted, so this should really a do a modulo. } procedure emit_mod_reg_reg(signed: boolean;denum,num : tregister);virtual;abstract; {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} { This routine must do an actual 64-bit division, be it signed or unsigned. The result must set into the the @var(num) register. @param(signed Indicates if the division must be signed) @param(denum Register containing the denominator @param(num Register containing the numerator, will also receive result) The actual optimizations regarding shifts have already been done and emitted, so this should really a do a divide. Currently, this routine should only be implemented on 64-bit systems, otherwise a helper is called in 1st pass. } procedure emit64_div_reg_reg(signed: boolean;denum,num : tregister64);virtual; {$endif not cpu64bitalu and not cpuhighleveltarget} end; tcgshlshrnode = class(tshlshrnode) {$ifdef SUPPORT_MMX} procedure second_mmx;virtual;abstract; {$endif SUPPORT_MMX} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} procedure second_64bit;virtual; {$endif not cpu64bitalu and not cpuhighleveltarget} procedure second_integer;virtual; procedure pass_generate_code;override; end; tcgnotnode = class(tnotnode) protected function handle_locjump: boolean; procedure second_boolean;virtual;abstract; {$ifdef SUPPORT_MMX} procedure second_mmx;virtual;abstract; {$endif SUPPORT_MMX} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} procedure second_64bit;virtual; {$endif not cpu64bitalu and not cpuhighleveltarget} procedure second_integer;virtual; public procedure pass_generate_code;override; end; implementation uses globtype,systems, cutils,verbose,globals, symtable,symconst,symdef,aasmbase,aasmdata,aasmcpu,defutil, parabase, pass_2, ncon, tgobj,cgobj,cgutils,paramgr,hlcgobj; {***************************************************************************** TCGUNARYMINUSNODE *****************************************************************************} procedure tcgunaryminusnode.emit_float_sign_change(r: tregister; _size : tdef); var href, href2 : treference; begin { get a temporary memory reference to store the floating point value } tg.gethltemp(current_asmdata.CurrAsmList,_size,_size.size,tt_normal,href); { store the floating point value in the temporary memory area } case getregtype(r) of R_FPUREGISTER: hlcg.a_loadfpu_reg_ref(current_asmdata.CurrAsmList,_size,_size,r,href); R_MMREGISTER: hlcg.a_loadmm_reg_ref(current_asmdata.CurrAsmList,_size,_size,r,href,mms_movescalar); else internalerror(2015091005); end; { only single and double ieee are supported, for little endian the signed bit is in the second dword } href2:=href; if _size.typ<>floatdef then internalerror(2014012211); case tfloatdef(_size).floattype of s64real, s64comp, s64currency: if target_info.endian = endian_little then inc(href2.offset,4); s32real : ; else internalerror(200406021); end; { flip sign-bit (bit 31/63) of single/double } hlcg.a_op_const_ref(current_asmdata.CurrAsmList,OP_XOR,u32inttype, {$ifdef cpu64bitalu} aint($80000000), {$else cpu64bitalu} longint($80000000), {$endif cpu64bitalu} href2); case getregtype(r) of R_FPUREGISTER: hlcg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,_size,_size,href,r); R_MMREGISTER: hlcg.a_loadmm_ref_reg(current_asmdata.CurrAsmList,_size,_size,href,r,mms_movescalar); else internalerror(2015091006); end; tg.ungetiftemp(current_asmdata.CurrAsmList,href); end; {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} procedure tcgunaryminusnode.second_64bit; var tr: tregister; hl: tasmlabel; begin secondpass(left); location_reset(location,LOC_REGISTER,left.location.size); location.register64.reglo:=cg.getintregister(current_asmdata.CurrAsmList,OS_32); location.register64.reghi:=cg.getintregister(current_asmdata.CurrAsmList,OS_32); cg64.a_op64_loc_reg(current_asmdata.CurrAsmList,OP_NEG,OS_S64, left.location,joinreg64(location.register64.reglo,location.register64.reghi)); { there's only overflow in case left was low(int64) -> -left = left } if (cs_check_overflow in current_settings.localswitches) then begin tr:=cg.getintregister(current_asmdata.CurrAsmList,OS_32); cg.a_op_const_reg_reg(current_asmdata.CurrAsmList,OP_XOR,OS_32, longint($80000000),location.register64.reghi,tr); cg.a_op_reg_reg(current_asmdata.CurrAsmList,OP_OR,OS_32, location.register64.reglo,tr); current_asmdata.getjumplabel(hl); cg.a_reg_alloc(current_asmdata.CurrAsmList, NR_DEFAULTFLAGS); cg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,OS_32,OC_NE,0,tr,hl); cg.a_reg_dealloc(current_asmdata.CurrAsmList, NR_DEFAULTFLAGS); cg.a_call_name(current_asmdata.CurrAsmList,'FPC_OVERFLOW',false); cg.a_label(current_asmdata.CurrAsmList,hl); end; end; {$endif not cpu64bitalu and not cpuhighleveltarget} procedure tcgunaryminusnode.second_float_emulated; begin secondpass(left); hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,left.resultdef,false); location:=left.location; case location.size of OS_32: cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_XOR,OS_32,tcgint($80000000),location.register); OS_64: {$ifdef cpu64bitalu} cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_XOR,OS_64,tcgint($80000000),location.register); {$else cpu64bitalu} cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_XOR,OS_32,tcgint($80000000),location.registerhi); {$endif cpu64bitalu} else internalerror(2014033101); end; end; procedure tcgunaryminusnode.second_float; begin secondpass(left); location_reset(location,LOC_FPUREGISTER,def_cgsize(resultdef)); case left.location.loc of LOC_REFERENCE, LOC_CREFERENCE : begin location.register:=hlcg.getregisterfordef(current_asmdata.CurrAsmList,resultdef); case getregtype(location.register) of R_FPUREGISTER: hlcg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList, left.resultdef,resultdef, left.location.reference,location.register); R_MMREGISTER: hlcg.a_loadmm_ref_reg(current_asmdata.CurrAsmList, left.resultdef,resultdef, left.location.reference,location.register,mms_movescalar); else internalerror(2015091004); end; emit_float_sign_change(location.register,left.resultdef); end; LOC_FPUREGISTER, LOC_CFPUREGISTER: begin location.register:=hlcg.getfpuregister(current_asmdata.CurrAsmList,resultdef); hlcg.a_loadfpu_reg_reg(current_asmdata.CurrAsmList,left.resultdef,resultdef,left.location.register,location.register); emit_float_sign_change(location.register,left.resultdef); end; LOC_MMREGISTER, LOC_CMMREGISTER: begin location.register:=hlcg.getmmregister(current_asmdata.CurrAsmList,resultdef); hlcg.a_loadmm_reg_reg(current_asmdata.CurrAsmList,left.resultdef,resultdef,left.location.register,location.register,mms_movescalar); emit_float_sign_change(location.register,left.resultdef); end else internalerror(200306021); end; end; procedure tcgunaryminusnode.second_integer; var hl: tasmlabel; begin secondpass(left); if not(left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) then hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false); location_reset(location,LOC_REGISTER,def_cgsize(resultdef)); location.register:=cg.getintregister(current_asmdata.CurrAsmList,location.size); if (cs_check_overflow in current_settings.localswitches) then hlcg.a_reg_alloc(current_asmdata.CurrAsmList, NR_DEFAULTFLAGS); hlcg.a_op_reg_reg(current_asmdata.CurrAsmList,OP_NEG,resultdef,left.location.register,location.register); if (cs_check_overflow in current_settings.localswitches) then begin current_asmdata.getjumplabel(hl); hlcg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,resultdef,OC_NE,torddef(resultdef).low.svalue,location.register,hl); hlcg.a_reg_dealloc(current_asmdata.CurrAsmList, NR_DEFAULTFLAGS); hlcg.g_call_system_proc(current_asmdata.CurrAsmList,'fpc_overflow',[],nil).resetiftemp; hlcg.a_label(current_asmdata.CurrAsmList,hl); end; end; procedure tcgunaryminusnode.pass_generate_code; begin {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} if is_64bit(left.resultdef) then second_64bit else {$endif not cpu64bitalu and not cpuhighleveltarget} {$ifdef SUPPORT_MMX} if (cs_mmx in current_settings.localswitches) and is_mmx_able_array(left.resultdef) then second_mmx else {$endif SUPPORT_MMX} if (left.resultdef.typ=floatdef) then begin if (cs_fp_emulation in current_settings.moduleswitches) then second_float_emulated else second_float; end else second_integer; end; {***************************************************************************** TCGMODDIVNODE *****************************************************************************} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} procedure tcgmoddivnode.emit64_div_reg_reg(signed: boolean; denum,num:tregister64); begin { handled in pass_1 already, unless pass_1 is overridden } { should be handled in pass_1 (JM) } internalerror(200109052); end; {$endif not cpu64bitalu and not cpuhighleveltarget} procedure tcgmoddivnode.pass_generate_code; var hreg1 : tregister; hdenom : tregister; power : longint; hl : tasmlabel; paraloc1 : tcgpara; opsize : tcgsize; opdef : tdef; pd: tprocdef; begin secondpass(left); if codegenerror then exit; secondpass(right); if codegenerror then exit; location_copy(location,left.location); {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} if is_64bit(resultdef) then begin if is_signed(left.resultdef) then opdef:=s64inttype else opdef:=u64inttype; { this code valid for 64-bit cpu's only , otherwise helpers are called in pass_1 } hlcg.location_force_reg(current_asmdata.CurrAsmList,location,left.resultdef,opdef,false); location_copy(location,left.location); hlcg.location_force_reg(current_asmdata.CurrAsmList,right.location,right.resultdef,opdef,false); emit64_div_reg_reg(is_signed(left.resultdef), joinreg64(right.location.register64.reglo,right.location.register64.reghi), joinreg64(location.register64.reglo,location.register64.reghi)); end else {$endif not cpu64bitalu and not cpuhighleveltarget} begin if is_signed(left.resultdef) then begin opsize:=OS_SINT; opdef:=ossinttype; end else begin opsize:=OS_INT; opdef:=osuinttype; end; { put numerator in register } hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,opdef,false); hreg1:=left.location.register; if (nodetype=divn) and (right.nodetype=ordconstn) and ispowerof2(tordconstnode(right).value.svalue,power) then Begin { for signed numbers, the numerator must be adjusted before the shift instruction, but not wih unsigned numbers! Otherwise, "Cardinal($ffffffff) div 16" overflows! (JM) } If is_signed(left.resultdef) Then Begin current_asmdata.getjumplabel(hl); cg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,OS_INT,OC_GT,0,hreg1,hl); if power=1 then cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_ADD,OS_INT,1,hreg1) else cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_ADD,OS_INT,Tordconstnode(right).value.svalue-1,hreg1); cg.a_label(current_asmdata.CurrAsmList,hl); cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,OS_INT,power,hreg1); End Else { not signed } cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,OS_INT,power,hreg1); End else begin { bring denominator to hdenom } { hdenom is always free, it's } { only used for temporary } { purposes } hdenom := cg.getintregister(current_asmdata.CurrAsmList,OS_INT); hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,osuinttype,right.location,hdenom); { verify if the divisor is zero, if so return an error immediately, except if we have a const node, where we don't need this, because then zero check was done earlier. } if (right.nodetype <> ordconstn) then begin current_asmdata.getjumplabel(hl); cg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,OS_INT,OC_NE,0,hdenom,hl); paraloc1.init; pd:=search_system_proc('fpc_handleerror'); paramanager.getcgtempparaloc(current_asmdata.CurrAsmList,pd,1,paraloc1); cg.a_load_const_cgpara(current_asmdata.CurrAsmList,OS_S32,aint(200),paraloc1); paramanager.freecgpara(current_asmdata.CurrAsmList,paraloc1); cg.a_call_name(current_asmdata.CurrAsmList,'FPC_HANDLEERROR',false); paraloc1.done; cg.a_label(current_asmdata.CurrAsmList,hl); end; if nodetype = modn then emit_mod_reg_reg(is_signed(left.resultdef),hdenom,hreg1) else emit_div_reg_reg(is_signed(left.resultdef),hdenom,hreg1); end; location_reset(location,LOC_REGISTER,opsize); location.register:=hreg1; end; cg.g_overflowcheck(current_asmdata.CurrAsmList,location,resultdef); end; {***************************************************************************** TCGSHLRSHRNODE *****************************************************************************} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} procedure tcgshlshrnode.second_64bit; begin { already hanled in 1st pass } internalerror(2002081501); end; {$endif not cpu64bitalu and not cpuhighleveltarget} procedure tcgshlshrnode.second_integer; var op : topcg; opdef,shiftcountdef: tdef; hcountreg : tregister; opsize : tcgsize; shiftval : longint; begin { determine operator } case nodetype of shln: op:=OP_SHL; shrn: op:=OP_SHR; else internalerror(2013120102); end; {$ifdef cpunodefaultint} opsize:=left.location.size; opdef:=left.resultdef; shiftcountdef:=opdef; {$else cpunodefaultint} if left.resultdef.size<=4 then begin if is_signed(left.resultdef) then begin if (sizeof(aint)<4) and (left.resultdef.size<=sizeof(aint)) then begin opsize:=OS_SINT; opdef:=sinttype; end else begin opdef:=s32inttype; opsize:=OS_S32; end; {$ifdef cpu16bitalu} shiftcountdef:=s16inttype; {$else cpu16bitalu} shiftcountdef:=opdef; {$endif cpu16bitalu} end else begin if (sizeof(aint)<4) and (left.resultdef.size<=sizeof(aint)) then begin opsize:=OS_INT; opdef:=uinttype; end else begin opdef:=u32inttype; opsize:=OS_32; end; {$ifdef cpu16bitalu} shiftcountdef:=u16inttype; {$else cpu16bitalu} shiftcountdef:=opdef; {$endif cpu16bitalu} end end else begin if is_signed(left.resultdef) then begin opdef:=s64inttype; opsize:=OS_S64; end else begin opdef:=u64inttype; opsize:=OS_64; end; shiftcountdef:=opdef; end; {$endif cpunodefaultint} if not(left.location.loc in [LOC_CREGISTER,LOC_REGISTER]) or { location_force_reg can be also used to change the size of a register } (left.location.size<>opsize) then hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,opdef,true); location_reset(location,LOC_REGISTER,opsize); location.register:=hlcg.getintregister(current_asmdata.CurrAsmList,resultdef); { shifting by a constant directly coded: } if (right.nodetype=ordconstn) then begin { shl/shr must "wrap around", so use ... and 31 } { In TP, "byte/word shl 16 = 0", so no "and 15" in case of a 16 bit ALU } if tcgsize2size[opsize]<=4 then shiftval:=tordconstnode(right).value.uvalue and 31 else shiftval:=tordconstnode(right).value.uvalue and 63; hlcg.a_op_const_reg_reg(current_asmdata.CurrAsmList,op,opdef, shiftval,left.location.register,location.register); end else begin { load right operators in a register - this is done since most target cpu which will use this node do not support a shift count in a mem. location (cec) } hlcg.location_force_reg(current_asmdata.CurrAsmList,right.location,right.resultdef,shiftcountdef,true); hlcg.a_op_reg_reg_reg(current_asmdata.CurrAsmList,op,opdef,right.location.register,left.location.register,location.register); end; { shl/shr nodes return the same type as left, which can be different from opdef } if opdef<>resultdef then begin hcountreg:=hlcg.getintregister(current_asmdata.CurrAsmList,resultdef); hlcg.a_load_reg_reg(current_asmdata.CurrAsmList,opdef,resultdef,location.register,hcountreg); location.register:=hcountreg; end; end; procedure tcgshlshrnode.pass_generate_code; begin secondpass(left); secondpass(right); {$ifdef SUPPORT_MMX} if (cs_mmx in current_settings.localswitches) and is_mmx_able_array(left.resultdef) then second_mmx else {$endif SUPPORT_MMX} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} if is_64bit(left.resultdef) then second_64bit else {$endif not cpu64bitalu and not cpuhighleveltarget} second_integer; end; {***************************************************************************** TCGNOTNODE *****************************************************************************} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} procedure tcgnotnode.second_64bit; begin secondpass(left); if not(left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) then hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,left.resultdef,false); location_reset(location,LOC_REGISTER,left.location.size); location.register64.reglo:=cg.getintregister(current_asmdata.CurrAsmList,OS_32); location.register64.reghi:=cg.getintregister(current_asmdata.CurrAsmList,OS_32); { perform the NOT operation } cg64.a_op64_reg_reg(current_asmdata.CurrAsmList,OP_NOT,location.size,left.location.register64,location.register64); end; {$endif not cpu64bitalu and not cpuhighleveltarget} procedure tcgnotnode.second_integer; begin secondpass(left); if not(left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) then hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,left.resultdef,false); location_reset(location,LOC_REGISTER,left.location.size); location.register:=cg.getintregister(current_asmdata.CurrAsmList,location.size); { perform the NOT operation } hlcg.a_op_reg_reg(current_asmdata.CurrAsmList,OP_NOT,left.resultdef,left.location.register,location.register); end; function tcgnotnode.handle_locjump: boolean; begin result:=left.location.loc=LOC_JUMP; if result then begin if is_constboolnode(left) then internalerror(2014010101); if left.location.loc<>LOC_JUMP then internalerror(2012081306); { switch true and false labels to invert result } location_reset_jump(location,left.location.falselabel,left.location.truelabel); end; end; procedure tcgnotnode.pass_generate_code; begin if is_boolean(resultdef) then second_boolean {$ifdef SUPPORT_MMX} else if (cs_mmx in current_settings.localswitches) and is_mmx_able_array(left.resultdef) then second_mmx {$endif SUPPORT_MMX} {$if not defined(cpu64bitalu) and not defined(cpuhighleveltarget)} else if is_64bit(left.resultdef) then second_64bit {$endif not cpu64bitalu and not cpuhighleveltarget} else second_integer; end; begin cmoddivnode:=tcgmoddivnode; cunaryminusnode:=tcgunaryminusnode; cshlshrnode:=tcgshlshrnode; cnotnode:=tcgnotnode; end.