{ Yacc parse table construction. Copyright (c) 1990-92 Albert Graef Copyright (C) 1996 Berend de Boer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. $Revision: 1.2 $ $Modtime: 96-07-31 14:09 $ $History: YACCPARS.PAS $ * * ***************** Version 2 ***************** * User: Berend Date: 96-10-10 Time: 21:16 * Updated in $/Lex and Yacc/tply * Updated for protected mode, windows and Delphi 1.X and 2.X. } unit YaccPars; interface procedure parse_table; (* Constructs the parse table from the information in the state, transition and reduction table, and writes parse and rule table information to the output file. Rules never reduced are detected, and parsing conflicts resolved according to the usual disambiguting rules: - by default, shift/reduce conflicts are resolved in favour of shift, and reduce/reduce conflicts are resolved in favour of the rule appearing first in the grammar - in the presence of precedence information, shift/reduce conflicts are resolved as follows: - if the rule has higher precedence than the input symbol, reduce - if the input symbol has higher precedence than the rule, shift - if rule and input symbol have the same precedence, use associativity to resolve the conflict: if the symbol is left-associative, reduce; if right-associative, shift; if nonassociative, error. The default action for any state is error, unless the state only has a single reduce action, and no shift (or nonassoc-induced error) actions, in which case the default action is the reduction. An accept action is generated for the shift-endmarker action. If the verbose option is enabled, the parse_table routine also writes a readable listing of the generated parser to the .LST file, including descriptions of parse conflicts and rules never reduced. Parse table actions are encoded as follows: - positive: next state (shift or goto action) - negative: rule to reduce (reduce action) - 0: error (in default action table) or accept (in shift/reduce action table) The tables are written out as a collection of typed array constants: type YYARec = record { action record } sym, act : Integer; { symbol and action } end; YYRRec = record { rule record } len, sym : Integer; { length and lhs symbol } end; const yynacts = ...; { number of parse table (shift and reduce) actions } yyngotos = ...; { number of goto actions } yynstates = ...; { number of states } yynrules = ...; { number of rules } yya : array [1..yynacts] of YYARec = ...; { shift and reduce actions } yyg : array [1..yyngotos] of YYARec = ...; { goto actions } yyd : array [0..yynstates-1] of Integer = ...; { default actions } yyal, yyah, yygl, yygh : array [0..yynstates-1] of Integer = ...; { offsets into action and goto table } yyr : array [1..yynrules] of YYRRec = ...; *) var shift_reduce, reduce_reduce, never_reduced : Integer; (* number of parsing conflicts and unreduced rules detected during parse table generation *) implementation uses YaccBase, YaccTabl; var reduced : array [1..max_rules] of Boolean; var yynacts, yyngotos, yynstates : Integer; yyd : array [0..max_states-1] of Integer; yyal, yyah, yygl, yygh : array [0..max_states-1] of Integer; function ruleStr ( i : Integer ) : String; (* returns print representation of rule number i *) var str : String; j : Integer; begin with rule_table^[i]^ do begin str := pname(lhs_sym)+' :'; for j := 1 to rhs_len do str := str+' '+pname(rhs_sym[j]); end; ruleStr := str; end(*ruleStr*); function itemStr ( var item_set : ItemSet; i : Integer ) : String; (* returns print representation of item number i in item_set *) var str : String; j : Integer; begin with item_set, item[i], rule_table^[rule_no]^ do begin str := pname(lhs_sym)+' :'; for j := 1 to pos_no-1 do str := str+' '+pname(rhs_sym[j]); str := str+' _'; for j := pos_no to rhs_len do str := str+' '+pname(rhs_sym[j]); end; itemStr := str; end(*itemStr*); procedure build; (* build the parse table, resolve conflicts *) var i, j, k, s, n_errors, n_shifts, n_gotos, n_reductions, n_conflicts : Integer; item_set : ItemSet; begin (* initialize: *) shift_reduce := 0; reduce_reduce := 0; never_reduced := 0; for i := 1 to n_rules do reduced[i] := false; (* traverse the state table: *) for s := 0 to n_states-1 do with state_table^[s] do begin if verbose then begin writeln(yylst); writeln(yylst, 'state ', s, ':'); end; (* Check shift and reduce actions, resolve conflicts. The number of error actions generated by nonassoc's is counted in n_errors, the number of conflicts reported in n_conflicts. Shift actions ruled out by disambiguating rules are flagged by setting the corresponding next_state to -1. *) n_errors := 0; n_conflicts := 0; for i := trans_lo to trans_hi do with trans_table^[i] do if sym>=0 then for j := redns_lo to redns_hi do with redn_table^[j] do if member(sym, symset^) then if (sym_prec^[sym]>0) and (rule_prec^[rule_no]>0) then (* resolve conflict using precedence: *) if rule_prec^[rule_no]=sym_prec^[sym] then case prec_table^[sym_prec^[sym]] of left : (* reduce *) next_state := -1; right : (* shift *) exclude(symset^, sym); nonassoc : (* error *) begin inc(n_errors); next_state := -1; exclude(symset^, sym); end; end else if rule_prec^[rule_no]>sym_prec^[sym] then (* reduce *) next_state := -1 else (* shift *) exclude(symset^, sym) else (* shift/reduce conflict: *) begin if verbose then begin if n_conflicts=0 then begin writeln(yylst); writeln(yylst, tab, '*** conflicts:'); writeln(yylst); end; writeln(yylst, tab, 'shift ', next_state, ', ', 'reduce ', rule_no-1, ' on ', pname(sym)); end; inc(n_conflicts); inc(shift_reduce); exclude(symset^, sym); end; for i := redns_lo to redns_hi do for j := i+1 to redns_hi do with redn_table^[j] do begin for k := 1 to size(symset^) do if member(symset^[k], redn_table^[i].symset^) then (* reduce/reduce conflict: *) begin if verbose then begin if n_conflicts=0 then begin writeln(yylst); writeln(yylst, tab, '*** conflicts:'); writeln(yylst); end; writeln(yylst, tab, 'reduce ', redn_table^[i].rule_no-1, ', ', 'reduce ', rule_no-1, ' on ', pname(symset^[k])); end; inc(n_conflicts); inc(reduce_reduce); end; setminus(symset^, redn_table^[i].symset^); end; (* Count goto, shift and reduce actions to generate. *) n_gotos := 0; n_shifts := 0; n_reductions := 0; for i := trans_lo to trans_hi do with trans_table^[i] do if next_state<>-1 then if sym<0 then inc(n_gotos) else inc(n_shifts); for i := redns_lo to redns_hi do with redn_table^[i] do if size(symset^)>0 then inc(n_reductions); (* Determine default action. *) if (n_shifts+n_errors=0) and (n_reductions=1) then (* default action is the reduction *) with redn_table^[redns_lo] do yyd[s] := -(rule_no-1) else (* default action is error *) yyd[s] := 0; (* Flag reduced rules. *) for i := redns_lo to redns_hi do with redn_table^[i] do reduced[rule_no] := true; if verbose then begin (* List kernel items. *) writeln(yylst); get_item_set(s, item_set); closure(item_set); sort_item_set(item_set); with item_set do begin for i := 1 to n_items do with item[i], rule_table^[rule_no]^ do if (rule_no=1) or (pos_no>1) or (rhs_len=0) then if pos_no>rhs_len then writeln(yylst, tab, itemStr(item_set, i), tab, '(', rule_no-1, ')') else writeln(yylst, tab, itemStr(item_set, i)); end; (* List parse actions. *) (* shift, reduce and default actions: *) if (n_shifts+n_errors=0) and (n_reductions=1) then (* default action is the reduction *) with redn_table^[redns_lo] do begin writeln(yylst); writeln(yylst, tab, '.', tab, 'reduce ', rule_no-1 ); end else (* default action is error *) begin writeln(yylst); for i := trans_lo to trans_hi do with trans_table^[i] do if next_state<>-1 then if sym=0 then (* accept action *) writeln(yylst, tab, pname(sym), tab, 'accept') else if sym>0 then (* shift action *) writeln(yylst, tab, pname(sym), tab, 'shift ', next_state); for i := redns_lo to redns_hi do with redn_table^[i] do for j := 1 to size(symset^) do (* reduce action *) writeln(yylst, tab, pname(symset^[j]), tab, 'reduce ', rule_no-1); (* error action *) writeln(yylst, tab, '.', tab, 'error'); end; (* goto actions: *) if n_gotos>0 then begin writeln(yylst); for i := trans_lo to trans_hi do with trans_table^[i] do if sym<0 then writeln(yylst, tab, pname(sym), tab, 'goto ', next_state); end; end; end; for i := 2 to n_rules do if not reduced[i] then inc(never_reduced); if verbose then begin writeln(yylst); if shift_reduce>0 then writeln(yylst, shift_reduce, ' shift/reduce conflicts.'); if reduce_reduce>0 then writeln(yylst, reduce_reduce, ' reduce/reduce conflicts.'); if never_reduced>0 then writeln(yylst, never_reduced, ' rules never reduced.'); end; (* report rules never reduced: *) if (never_reduced>0) and verbose then begin writeln(yylst); writeln(yylst, '*** rules never reduced:'); for i := 2 to n_rules do if not reduced[i] then begin writeln(yylst); writeln(yylst, ruleStr(i), tab, '(', i-1, ')'); end; end; end(*build*); procedure counters; (* initialize counters and offsets *) var s, i : Integer; begin yynstates := n_states; yynacts := 0; yyngotos := 0; for s := 0 to n_states-1 do with state_table^[s] do begin yyal[s] := yynacts+1; yygl[s] := yyngotos+1; if yyd[s]=0 then begin for i := trans_lo to trans_hi do with trans_table^[i] do if (sym>=0) and (next_state<>-1) then inc(yynacts); for i := redns_lo to redns_hi do with redn_table^[i] do inc(yynacts, size(symset^)); end; for i := trans_lo to trans_hi do with trans_table^[i] do if sym<0 then inc(yyngotos); yyah[s] := yynacts; yygh[s] := yyngotos; end; end(*counters*); procedure tables; (* write tables to output file *) var s, i, j, count : Integer; begin writeln(yyout); writeln(yyout, 'type YYARec = record'); writeln(yyout, ' sym, act : Integer;'); writeln(yyout, ' end;'); writeln(yyout, ' YYRRec = record'); writeln(yyout, ' len, sym : Integer;'); writeln(yyout, ' end;'); writeln(yyout); writeln(yyout, 'const'); (* counters: *) writeln(yyout); writeln(yyout, 'yynacts = ', yynacts, ';'); writeln(yyout, 'yyngotos = ', yyngotos, ';'); writeln(yyout, 'yynstates = ', yynstates, ';'); writeln(yyout, 'yynrules = ', n_rules-1, ';'); (* shift/reduce table: *) writeln(yyout); writeln(yyout, 'yya : array [1..yynacts] of YYARec = ('); count := 0; for s := 0 to n_states-1 do with state_table^[s] do begin writeln(yyout, '{ ', s, ': }'); if yyd[s]=0 then begin for i := trans_lo to trans_hi do with trans_table^[i] do if (next_state<>-1) and (sym>=0) then begin inc(count); if sym=0 then write(yyout, ' ( sym: 0; act: 0 )') else write(yyout, ' ( sym: ', sym, '; act: ', next_state, ' )'); if count