{ Copyright (c) 1998-2002 by Florian Klaempfl Contains the base types for the SPARC This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit cpubase; {$i fpcdefs.inc} {$ModeSwitch advancedrecords} interface uses globtype,strings,cutils,cclasses,aasmbase,cpuinfo,cgbase; {***************************************************************************** Assembler Opcodes *****************************************************************************} type { TODO: CPU32 opcodes do not fully include the Ultra SPRAC instruction set.} { don't change the order of these opcodes! } TAsmOp=({$i opcode.inc}); {# This should define the array of instructions as string } op2strtable=array[tasmop] of string[11]; Const {# First value of opcode enumeration } firstop = low(tasmop); {# Last value of opcode enumeration } lastop = high(tasmop); std_op2str:op2strtable=({$i strinst.inc}); {***************************************************************************** Registers *****************************************************************************} {$ifdef SPARC} type { Number of registers used for indexing in tables } tregisterindex=0..{$i rspnor.inc}-1; const { Available Superregisters } {$i rspsup.inc} { No Subregisters } R_SUBWHOLE = R_SUBNONE; { Available Registers } {$i rspcon.inc} first_int_imreg = $20; first_fpu_imreg = $20; { MM Super register first and last } first_mm_supreg = 0; first_mm_imreg = 1; { TODO: Calculate bsstart} regnumber_count_bsstart = 128; regnumber_table : array[tregisterindex] of tregister = ( {$i rspnum.inc} ); regstabs_table : array[tregisterindex] of ShortInt = ( {$i rspstab.inc} ); regdwarf_table : array[tregisterindex] of ShortInt = ( {$i rspdwrf.inc} ); { Aliases for full register LoadStore instructions } A_ST_R = A_ST; A_LD_R = A_LD; {$endif SPARC} {$ifdef SPARC64} type { Number of registers used for indexing in tables } tregisterindex=0..{$i rsp64nor.inc}-1; const { Available Superregisters } {$i rsp64sup.inc} { No Subregisters } R_SUBWHOLE = R_SUBNONE; { Available Registers } {$i rsp64con.inc} first_int_imreg = $20; first_fpu_imreg = $20; { MM Super register first and last } first_mm_supreg = 0; first_mm_imreg = 1; { TODO: Calculate bsstart} regnumber_count_bsstart = 128; regnumber_table : array[tregisterindex] of tregister = ( {$i rsp64num.inc} ); regstabs_table : array[tregisterindex] of ShortInt = ( {$i rsp64stab.inc} ); regdwarf_table : array[tregisterindex] of ShortInt = ( {$i rsp64dwrf.inc} ); { Aliases for full register LoadStore instructions } A_ST_R = A_STX; A_LD_R = A_LDX; {$endif SPARC64} {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_A,C_AE,C_B,C_BE, C_G,C_GE,C_L,C_LE, C_E,C_NE, C_POS,C_NEG,C_VC,C_VS, C_FE,C_FG,C_FL,C_FGE,C_FLE,C_FNE, C_FU,C_FUG,C_FUL,C_FUGE,C_FULE,C_FO,C_FUE,C_FLG ); const firstIntCond=C_A; lastIntCond=C_VS; firstFloatCond=C_FE; lastFloatCond=C_FNE; floatAsmConds=[C_FE..C_FLG]; cond2str:array[TAsmCond] of string[3]=('', 'gu','cc','cs','leu', 'g','ge','l','le', 'e','ne', 'pos','neg','vc','vs', 'e','g','l','ge','le','ne', 'u','ug','ul','uge','ule','o','ue','lg' ); {***************************************************************************** Flags *****************************************************************************} type TSparcFlags = ( { Integer results } F_E, {Equal} F_NE, {Not Equal} F_G, {Greater} F_L, {Less} F_GE, {Greater or Equal} F_LE, {Less or Equal} F_A, {Above} F_AE, {Above or Equal, synonym: Carry Clear} F_B, {Below, synonym: Carry Set} F_BE, {Below or Equal} { Floating point results } F_FE, {Equal} F_FNE, {Not Equal} F_FG, {Greater} F_FL, {Less} F_FGE, {Greater or Equal} F_FLE {Less or Equal} ); TResFlags = record { either icc or xcc (64 bit } FlagReg : TRegister; Flags : TSparcFlags; procedure Init(r : TRegister;f : TSparcFlags); end; {***************************************************************************** Operand Sizes *****************************************************************************} {***************************************************************************** Constants *****************************************************************************} const max_operands = 3; maxintregs = 8; maxfpuregs = 8; maxaddrregs = 0; maxvarregs = 8; varregs : Array [1..maxvarregs] of Tsuperregister = (RS_L0,RS_L1,RS_L2,RS_L3,RS_L4,RS_L5,RS_L6,RS_L7); maxfpuvarregs = 1; fpuvarregs : Array [1..maxfpuvarregs] of TsuperRegister = (RS_F2); {***************************************************************************** Default generic sizes *****************************************************************************} {$ifdef SPARC64} {# Defines the default address size for a processor, } OS_ADDR = OS_64; {# the natural int size for a processor, has to match osuinttype/ossinttype as initialized in psystem } OS_INT = OS_64; OS_SINT = OS_S64; {$else SPARC64} {# Defines the default address size for a processor, } OS_ADDR = OS_32; {# the natural int size for a processor, has to match osuinttype/ossinttype as initialized in psystem } OS_INT = OS_32; OS_SINT = OS_S32; {$endif SPARC64} {# the maximum float size for a processor, } OS_FLOAT = OS_F64; {# the size of a vector register for a processor } OS_VECTOR = OS_M64; {***************************************************************************** Generic Register names *****************************************************************************} {# Stack pointer register } NR_STACK_POINTER_REG = NR_O6; RS_STACK_POINTER_REG = RS_O6; {# Frame pointer register } NR_FRAME_POINTER_REG = NR_I6; RS_FRAME_POINTER_REG = RS_I6; {# Register for addressing absolute data in a position independant way, such as in PIC code. The exact meaning is ABI specific. For further information look at GCC source : PIC_OFFSET_TABLE_REGNUM Taken from GCC rs6000.h } { TODO: As indicated in rs6000.h, but can't find it anywhere else!} {PIC_OFFSET_REG = R_30;} { Return address for DWARF } NR_RETURN_ADDRESS_REG = NR_I7; { the return_result_reg, is used inside the called function to store its return value when that is a scalar value otherwise a pointer to the address of the result is placed inside it } { Results are returned in this register (32-bit values) } NR_FUNCTION_RETURN_REG = NR_I0; RS_FUNCTION_RETURN_REG = RS_I0; { Low part of 64bit return value } NR_FUNCTION_RETURN64_LOW_REG = NR_I1; RS_FUNCTION_RETURN64_LOW_REG = RS_I1; { High part of 64bit return value } NR_FUNCTION_RETURN64_HIGH_REG = NR_I0; RS_FUNCTION_RETURN64_HIGH_REG = RS_I0; { The value returned from a function is available in this register } NR_FUNCTION_RESULT_REG = NR_O0; RS_FUNCTION_RESULT_REG = RS_O0; { The lowh part of 64bit value returned from a function } NR_FUNCTION_RESULT64_LOW_REG = NR_O1; RS_FUNCTION_RESULT64_LOW_REG = RS_O1; { The high part of 64bit value returned from a function } NR_FUNCTION_RESULT64_HIGH_REG = NR_O0; RS_FUNCTION_RESULT64_HIGH_REG = RS_O0; NR_FPU_RESULT_REG = NR_F0; NR_MM_RESULT_REG = NR_NO; PARENT_FRAMEPOINTER_OFFSET = 68; { o0 } NR_DEFAULTFLAGS = NR_PSR; RS_DEFAULTFLAGS = RS_PSR; {***************************************************************************** GCC /ABI linking information *****************************************************************************} {# Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = sizeof(AWord); {$ifdef SPARC64} STACK_BIAS = 2047; {$endif SPARC64} {***************************************************************************** CPU Dependent Constants *****************************************************************************} const simm13lo=-4096; simm13hi=4095; {***************************************************************************** Helpers *****************************************************************************} function is_calljmp(o:tasmop):boolean; procedure inverse_flags(var f: TResFlags); function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; function flags_to_cond(const f: TResFlags) : TAsmCond; function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; function reg_cgsize(const reg: tregister): tcgsize; function std_regname(r:Tregister):string; function std_regnum_search(const s:string):Tregister; function findreg_by_number(r:Tregister):tregisterindex; function dwarf_reg(r:tregister):shortint; function dwarf_reg_no_error(r:tregister):shortint; function eh_return_data_regno(nr: longint): longint; implementation uses rgBase,verbose; {$ifdef SPARC} const std_regname_table : TRegNameTAble = ( {$i rspstd.inc} ); regnumber_index : TRegisterIndexTable = ( {$i rsprni.inc} ); std_regname_index : TRegisterIndexTable = ( {$i rspsri.inc} ); {$endif SPARC} {$ifdef SPARC64} const std_regname_table : TRegNameTAble = ( {$i rsp64std.inc} ); regnumber_index : TRegisterIndexTable = ( {$i rsp64rni.inc} ); std_regname_index : TRegisterIndexTable = ( {$i rsp64sri.inc} ); {$endif SPARC64} {***************************************************************************** Helpers *****************************************************************************} function is_calljmp(o:tasmop):boolean; const CallJmpOp=[A_JMPL..A_CBccc]; begin is_calljmp:=(o in CallJmpOp); end; procedure inverse_flags(var f: TResFlags); const inv_flags: array[TSparcFlags] of TSparcFlags = (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_BE,F_B,F_AE,F_A, F_FNE,F_FE,F_FLE,F_FGE,F_FL,F_FG); begin f.Flags:=inv_flags[f.Flags]; end; function flags_to_cond(const f:TResFlags):TAsmCond; const flags_2_cond:array[TSparcFlags] of TAsmCond= (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_A,C_AE,C_B,C_BE, C_FE,C_FNE,C_FG,C_FL,C_FGE,C_FLE); begin result:=flags_2_cond[f.Flags]; end; function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; begin case regtype of R_FPUREGISTER: case s of OS_F32: cgsize2subreg:=R_SUBFS; OS_F64: cgsize2subreg:=R_SUBFD; OS_F128: cgsize2subreg:=R_SUBFQ; else internalerror(2009071903); end; else begin {$ifdef SPARC32} if s in [OS_64,OS_S64] then cgsize2subreg:=R_SUBQ else {$endif SPARC32} cgsize2subreg:=R_SUBWHOLE; end; end; end; function reg_cgsize(const reg: tregister): tcgsize; begin case getregtype(reg) of R_INTREGISTER : result:=OS_INT; R_FPUREGISTER : begin if getsubreg(reg)=R_SUBFD then result:=OS_F64 else result:=OS_F32; end; else internalerror(200303181); end; end; function findreg_by_number(r:Tregister):tregisterindex; begin result:=findreg_by_number_table(r,regnumber_index); end; function std_regname(r:Tregister):string; var p : tregisterindex; begin { For double floats show a pair like %f0:%f1 } if (getsubreg(r)=R_SUBFD) and (getsupreg(r)0 then result:=std_regname_table[p] else result:=generic_regname(r); setsupreg(r,getsupreg(r)+1); p:=findreg_by_number(r); if p<>0 then result:=result+':'+std_regname_table[p] else result:=result+':'+generic_regname(r); end else begin p:=findreg_by_number(r); if p<>0 then result:=std_regname_table[p] else result:=generic_regname(r); end; end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_BE,C_B,C_AE,C_A, C_LE,C_L,C_GE,C_G, C_NE,C_E, C_NEG,C_POS,C_VS,C_VC, C_FNE,C_FULE,C_FUGE,C_FUL,C_FUG,C_FE, C_FO,C_FLE,C_FGE,C_FL,C_FG,C_FU,C_FLG,C_FUE ); begin result := inverse[c]; end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; begin Result := (c = C_None) or conditions_equal(Subset, c); { TODO: Can a SparcGEN programmer please update this procedure to detect all subsets? Thanks. [Kit] } if not Result then case Subset of C_A: Result := (c in [C_A, C_AE]); C_B: Result := (c in [C_B, C_BE]); C_E: Result := (c in [C_AE, C_BE]); C_FE: Result := (c in [C_FLE,C_FGE]); C_FL: Result := (c in [C_FLE]); C_FG: Result := (c in [C_FGE]); else Result := False; end; end; function dwarf_reg(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; if result=-1 then internalerror(200603251); end; function dwarf_reg_no_error(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; end; function eh_return_data_regno(nr: longint): longint; begin if (nr>=0) and (nr<2) then result:=nr+24 else result:=-1; end; procedure TResFlags.Init(r : TRegister; f : TSparcFlags); begin FlagReg:=r; Flags:=f; end; end.