{ Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman Contains the base types for the ARM This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {# Base unit for processor information. This unit contains enumerations of registers, opcodes, sizes, and other such things which are processor specific. } unit cpubase; {$define USEINLINE} {$i fpcdefs.inc} interface uses globtype,globals, cpuinfo, cgbase ; {***************************************************************************** Assembler Opcodes *****************************************************************************} type TAsmOp= {$i armop.inc} { This should define the array of instructions as string } op2strtable=array[tasmop] of string[11]; const { First value of opcode enumeration } firstop = low(tasmop); { Last value of opcode enumeration } lastop = high(tasmop); { Last value of opcode for TCommonAsmOps set below } LastCommonAsmOp = A_UADD16; type {This is a bit of a hack, because there are more than 256 ARM Assembly Ops But FPC currently can't handle more than 256 elements in a set.} TCommonAsmOps = Set of A_None .. LastCommonAsmOp; {***************************************************************************** Registers *****************************************************************************} type { Number of registers used for indexing in tables } tregisterindex=0..{$i rarmnor.inc}-1; const { Available Superregisters } {$i rarmsup.inc} RS_PC = RS_R15; { No Subregisters } R_SUBWHOLE = R_SUBNONE; { Available Registers } {$i rarmcon.inc} { aliases } NR_PC = NR_R15; { Integer Super registers first and last } first_int_supreg = RS_R0; first_int_imreg = $10; { Float Super register first and last } first_fpu_supreg = RS_F0; first_fpu_imreg = $08; { MM Super register first and last } first_mm_supreg = RS_S0; first_mm_imreg = $30; { TODO: Calculate bsstart} regnumber_count_bsstart = 128; regnumber_table : array[tregisterindex] of tregister = ( {$i rarmnum.inc} ); regstabs_table : array[tregisterindex] of shortint = ( {$i rarmsta.inc} ); regdwarf_table : array[tregisterindex] of shortint = ( {$i rarmdwa.inc} ); { registers which may be destroyed by calls } VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R14]; VOLATILE_FPUREGISTERS = [RS_F0..RS_F3]; VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31]; VOLATILE_INTREGISTERS_DARWIN = [RS_R0..RS_R3,RS_R9,RS_R12..RS_R14]; {***************************************************************************** Instruction post fixes *****************************************************************************} type { ARM instructions load/store and arithmetic instructions can have several instruction post fixes which are collected in this enumeration } TOpPostfix = (PF_None, { update condition flags or floating point single } PF_S, { floating point size } PF_D,PF_E,PF_P,PF_EP, { exchange } PF_X, { rounding } PF_R, { load/store } PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T, { multiple load/store address modes } PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA, { multiple load/store vfp address modes } PF_IAD,PF_DBD,PF_FDD,PF_EAD, PF_IAS,PF_DBS,PF_FDS,PF_EAS, PF_IAX,PF_DBX,PF_FDX,PF_EAX, { VFP postfixes } PF_8,PF_16,PF_32,PF_64, PF_I8,PF_I16,PF_I32,PF_I64, PF_S8,PF_S16,PF_S32,PF_S64, PF_U8,PF_U16,PF_U32,PF_U64, PF_P8, // polynomial PF_F32,PF_F64, PF_F32F64,PF_F64F32, PF_F32S16,PF_F32U16,PF_S16F32,PF_U16F32, PF_F64S16,PF_F64U16,PF_S16F64,PF_U16F64, PF_F32S32,PF_F32U32,PF_S32F32,PF_U32F32, PF_F64S32,PF_F64U32,PF_S32F64,PF_U32F64 ); TOpPostfixes = set of TOpPostfix; TRoundingMode = (RM_None,RM_P,RM_M,RM_Z); const cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = ( PF_None, PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None, PF_S,PF_D,PF_E,PF_None,PF_None); oppostfix2str : array[TOpPostfix] of string[8] = ('', 's', 'd','e','p','ep', 'x', 'r', 'b','sb','bt','h','sh','t', 'ia','ib','da','db','fd','fa','ed','ea', 'iad','dbd','fdd','ead', 'ias','dbs','fds','eas', 'iax','dbx','fdx','eax', '.8','.16','.32','.64', '.i8','.i16','.i32','.i64', '.s8','.s16','.s32','.s64', '.u8','.u16','.u32','.u64', '.p8', '.f32','.f64', '.f32.f64','.f64.f32', '.f32.s16','.f32.u16','.s16.f32','.u16.f32', '.f64.s16','.f64.u16','.s16.f64','.u16.f64', '.f32.s32','.f32.u32','.s32.f32','.u32.f32', '.f64.s32','.f64.u32','.s32.f64','.u32.f64'); roundingmode2str : array[TRoundingMode] of string[1] = ('', 'p','m','z'); {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE,C_AL,C_NV ); TAsmConds = set of TAsmCond; const cond2str : array[TAsmCond] of string[2]=('', 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls', 'ge','lt','gt','le','al','nv' ); uppercond2str : array[TAsmCond] of string[2]=('', 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS', 'GE','LT','GT','LE','AL','NV' ); {***************************************************************************** Flags *****************************************************************************} type TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS, F_GE,F_LT,F_GT,F_LE); {***************************************************************************** Operands *****************************************************************************} taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED); tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX); tupdatereg = (UR_None,UR_Update); pshifterop = ^tshifterop; tshifterop = record shiftmode : tshiftmode; rs : tregister; shiftimm : byte; end; tcpumodeflag = (mfA, mfI, mfF); tcpumodeflags = set of tcpumodeflag; tspecialregflag = (srC, srX, srS, srF); tspecialregflags = set of tspecialregflag; {***************************************************************************** Constants *****************************************************************************} const max_operands = 6; maxintregs = 15; maxfpuregs = 8; maxaddrregs = 0; {***************************************************************************** Operand Sizes *****************************************************************************} type topsize = (S_NO, S_B,S_W,S_L,S_BW,S_BL,S_WL, S_IS,S_IL,S_IQ, S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX ); {***************************************************************************** Constants *****************************************************************************} const maxvarregs = 7; varregs : Array [1..maxvarregs] of tsuperregister = (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10); maxfpuvarregs = 4; fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister = (RS_F4,RS_F5,RS_F6,RS_F7); {***************************************************************************** Default generic sizes *****************************************************************************} { Defines the default address size for a processor, } OS_ADDR = OS_32; { the natural int size for a processor, has to match osuinttype/ossinttype as initialized in psystem } OS_INT = OS_32; OS_SINT = OS_S32; { the maximum float size for a processor, } OS_FLOAT = OS_F64; { the size of a vector register for a processor } OS_VECTOR = OS_M32; {***************************************************************************** Generic Register names *****************************************************************************} { Stack pointer register } NR_STACK_POINTER_REG = NR_R13; RS_STACK_POINTER_REG = RS_R13; { Frame pointer register (initialized in tcpuprocinfo.init_framepointer) } RS_FRAME_POINTER_REG: tsuperregister = RS_NO; NR_FRAME_POINTER_REG: tregister = NR_NO; { Register for addressing absolute data in a position independant way, such as in PIC code. The exact meaning is ABI specific. For further information look at GCC source : PIC_OFFSET_TABLE_REGNUM } NR_PIC_OFFSET_REG = NR_R9; { Results are returned in this register (32-bit values) } NR_FUNCTION_RETURN_REG = NR_R0; RS_FUNCTION_RETURN_REG = RS_R0; { The value returned from a function is available in this register } NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG; RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG; NR_FPU_RESULT_REG = NR_F0; NR_MM_RESULT_REG = NR_D0; NR_RETURN_ADDRESS_REG = NR_R14; { Offset where the parent framepointer is pushed } PARENT_FRAMEPOINTER_OFFSET = 0; NR_DEFAULTFLAGS = NR_CPSR; RS_DEFAULTFLAGS = RS_CPSR; { Low part of 64bit return value } function NR_FUNCTION_RESULT64_LOW_REG: tregister;{$ifdef USEINLINE}inline;{$endif USEINLINE} function RS_FUNCTION_RESULT64_LOW_REG: shortint;{$ifdef USEINLINE}inline;{$endif USEINLINE} { High part of 64bit return value } function NR_FUNCTION_RESULT64_HIGH_REG: tregister;{$ifdef USEINLINE}inline;{$endif USEINLINE} function RS_FUNCTION_RESULT64_HIGH_REG: shortint;{$ifdef USEINLINE}inline;{$endif USEINLINE} {***************************************************************************** GCC /ABI linking information *****************************************************************************} const { Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = 4; {***************************************************************************** Helpers *****************************************************************************} { Returns the tcgsize corresponding with the size of reg.} function reg_cgsize(const reg: tregister) : tcgsize; function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE} procedure inverse_flags(var f: TResFlags); function flags_to_cond(const f: TResFlags) : TAsmCond; function findreg_by_number(r:Tregister):tregisterindex; function std_regnum_search(const s:string):Tregister; function std_regname(r:Tregister):string; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; procedure shifterop_reset(var so : tshifterop); {$ifdef USEINLINE}inline;{$endif USEINLINE} function is_pc(const r : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} function is_shifter_const(d : aint;var imm_shift : byte) : boolean; function is_thumb_imm(d: aint): boolean; { Returns true if d is a valid constant for thumb 32 bit, doesn't handle ROR_C detection } function is_thumb32_imm(d : aint) : boolean; function split_into_shifter_const(value : aint;var imm1: dword; var imm2: dword):boolean; function is_continuous_mask(d : aword;var lsb, width: byte) : boolean; function dwarf_reg(r:tregister):shortint; function dwarf_reg_no_error(r:tregister):shortint; function eh_return_data_regno(nr: longint): longint; function IsIT(op: TAsmOp) : boolean; function GetITLevels(op: TAsmOp) : longint; function GenerateARMCode : boolean; function GenerateThumbCode : boolean; function GenerateThumb2Code : boolean; function IsVFPFloatImmediate(ft : tfloattype;value : bestreal) : boolean; implementation uses systems,rgBase,verbose; const std_regname_table : TRegNameTable = ( {$i rarmstd.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i rarmrni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i rarmsri.inc} ); function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; begin case regtype of R_MMREGISTER: begin case s of { records passed in MM registers } OS_32, OS_F32: cgsize2subreg:=R_SUBFS; OS_64, OS_F64: cgsize2subreg:=R_SUBFD; else internalerror(2009112701); end; end; else cgsize2subreg:=R_SUBWHOLE; end; end; function reg_cgsize(const reg: tregister): tcgsize; begin case getregtype(reg) of R_INTREGISTER : reg_cgsize:=OS_32; R_FPUREGISTER : reg_cgsize:=OS_F80; R_MMREGISTER : begin case getsubreg(reg) of R_SUBFD, R_SUBMMWHOLE: result:=OS_F64; R_SUBFS: result:=OS_F32; else internalerror(2009112903); end; end; else internalerror(200303181); end; end; function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE} begin { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15. To overcome this problem we simply forbid that FPC generates jumps by loading R15 } is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX]; end; procedure inverse_flags(var f: TResFlags); const inv_flags: array[TResFlags] of TResFlags = (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI, F_LT,F_GE,F_LE,F_GT); begin f:=inv_flags[f]; end; function flags_to_cond(const f: TResFlags) : TAsmCond; const flag_2_cond: array[F_EQ..F_LE] of TAsmCond = (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE); begin if f>high(flag_2_cond) then internalerror(200112301); result:=flag_2_cond[f]; end; function findreg_by_number(r:Tregister):tregisterindex; begin result:=rgBase.findreg_by_number_table(r,regnumber_index); end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function std_regname(r:Tregister):string; var p : tregisterindex; begin p:=findreg_by_number_table(r,regnumber_index); if p<>0 then result:=std_regname_table[p] else result:=generic_regname(r); end; procedure shifterop_reset(var so : tshifterop);{$ifdef USEINLINE}inline;{$endif USEINLINE} begin FillChar(so,sizeof(so),0); end; function is_pc(const r : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin is_pc:=(r=NR_R15); end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI, C_LT,C_GE,C_LE,C_GT,C_None,C_None ); begin result := inverse[c]; end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; begin Result := (c = C_None) or conditions_equal(Subset, c); { Please update as necessary. [Kit] } if not Result then case Subset of C_EQ: Result := (c in [C_GE, C_LE]); C_LT: Result := (c in [C_LE]); C_GT: Result := (c in [C_GE]); else Result := False; end; end; function is_shifter_const(d : aint;var imm_shift : byte) : boolean; var i : longint; begin if GenerateThumb2Code then begin for i:=0 to 24 do begin if (dword(d) and not($ff shl i))=0 then begin imm_shift:=i; result:=true; exit; end; end; end else begin for i:=0 to 15 do begin if (dword(d) and not(roldword($ff,i*2)))=0 then begin imm_shift:=i*2; result:=true; exit; end; end; end; result:=false; end; function is_thumb_imm(d: aint): boolean; begin result:=(d and $FF) = d; end; {$push} { Disable range and overflow checking here } {$R-}{$Q-} function is_thumb32_imm(d: aint): boolean; var t : aint; i : longint; begin {Loading 0-255 is simple} if (d and $FF) = d then result:=true { If top and bottom are equal, check if either all 4 bytes are equal or byte 0 and 2 or byte 1 and 3 are equal } else if ((d shr 16)=(d and $FFFF)) and ( ((d and $FF00FF00) = 0) or ((d and $00FF00FF) = 0) or ((d shr 8)=(d and $FF)) ) then result:=true {Can an 8-bit value be shifted accordingly?} else begin result:=false; for i:=8 to 31 do begin t:=RolDWord(d,i); if ((t and $FF)=t) and ((t and $80)=$80) then begin result:=true; exit; end; end; end; end; function is_continuous_mask(d : aword;var lsb, width: byte) : boolean; var msb : byte; begin lsb:=BsfDword(d); msb:=BsrDword(d); width:=msb-lsb+1; result:=(lsb<>255) and (msb<>255) and (aword(((1 shl (msb-lsb+1))-1) shl lsb) = d); end; {$pop} function split_into_shifter_const(value : aint;var imm1: dword; var imm2: dword) : boolean; var d, i, i2: Dword; begin Result:=false; {Thumb2 is not supported (YET?)} if GenerateThumb2Code then exit; d:=DWord(value); for i:=0 to 15 do begin imm1:=d and rordword($FF, I*2); imm2:=d and not (imm1); {remove already found bits} {is the remainder a shifterconst? YAY! we've done it!} {Could we start from i instead of 0?} for i2:=0 to 15 do begin if (imm2 and not(rordword($FF,i2*2)))=0 then begin result:=true; exit; end; end; end; end; function dwarf_reg(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; if result=-1 then internalerror(200603251); end; function dwarf_reg_no_error(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; end; function eh_return_data_regno(nr: longint): longint; begin if (nr>=0) and (nr<2) then result:=nr else result:=-1; end; { Low part of 64bit return value } function NR_FUNCTION_RESULT64_LOW_REG: tregister; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin if target_info.endian=endian_little then result:=NR_R0 else result:=NR_R1; end; function RS_FUNCTION_RESULT64_LOW_REG: shortint; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin if target_info.endian=endian_little then result:=RS_R0 else result:=RS_R1; end; { High part of 64bit return value } function NR_FUNCTION_RESULT64_HIGH_REG: tregister; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin if target_info.endian=endian_little then result:=NR_R1 else result:=NR_R0; end; function RS_FUNCTION_RESULT64_HIGH_REG: shortint; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin if target_info.endian=endian_little then result:=RS_R1 else result:=RS_R0; end; function IsIT(op: TAsmOp) : boolean; begin case op of A_IT, A_ITE, A_ITT, A_ITEE, A_ITTE, A_ITET, A_ITTT, A_ITEEE, A_ITTEE, A_ITETE, A_ITTTE, A_ITEET, A_ITTET, A_ITETT, A_ITTTT: result:=true; else result:=false; end; end; function GetITLevels(op: TAsmOp) : longint; begin case op of A_IT: result:=1; A_ITE, A_ITT: result:=2; A_ITEE, A_ITTE, A_ITET, A_ITTT: result:=3; A_ITEEE, A_ITTEE, A_ITETE, A_ITTTE, A_ITEET, A_ITTET, A_ITETT, A_ITTTT: result:=4; else result:=0; end; end; function GenerateARMCode : boolean; begin Result:=current_settings.instructionset=is_arm; end; function GenerateThumbCode : boolean; begin Result:=(current_settings.instructionset=is_thumb) and not(CPUARM_HAS_THUMB2 in cpu_capabilities[current_settings.cputype]); end; function GenerateThumb2Code : boolean; begin Result:=(current_settings.instructionset=is_thumb) and (CPUARM_HAS_THUMB2 in cpu_capabilities[current_settings.cputype]); end; function IsVFPFloatImmediate(ft : tfloattype;value : bestreal) : boolean; var singlerec : tcompsinglerec; doublerec : tcompdoublerec; begin Result:=false; case ft of s32real: begin singlerec.value:=value; singlerec:=tcompsinglerec(NtoLE(DWord(singlerec))); Result:=(singlerec.bytes[0]=0) and (singlerec.bytes[1]=0) and ((singlerec.bytes[2] and 7)=0) and (((singlerec.bytes[3] and $7e)=$40) or ((singlerec.bytes[3] and $7e)=$3e)); end; s64real: begin doublerec.value:=value; doublerec:=tcompdoublerec(NtoLE(QWord(doublerec))); Result:=(doublerec.bytes[0]=0) and (doublerec.bytes[1]=0) and (doublerec.bytes[2]=0) and (doublerec.bytes[3]=0) and (doublerec.bytes[4]=0) and (doublerec.bytes[5]=0) and ((((doublerec.bytes[6] and $c0)=$0) and ((doublerec.bytes[7] and $7f)=$40)) or (((doublerec.bytes[6] and $c0)=$c0) and ((doublerec.bytes[7] and $7f)=$3f))); end; else ; end; end; end.