{ This file is part of the Free Pascal run time library. Copyright (c) 1999-2000 by Jonas Maebe, member of the Free Pascal development team Include file with set operations called by the compiler See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} {$ifdef FPC_OLD_BIGENDIAN_SETS} {$define FPC_SYSTEM_HAS_FPC_SET_LOAD_SMALL} function fpc_set_load_small(l: fpc_small_set): fpc_normal_set;assembler;[public,alias:'FPC_SET_LOAD_SMALL']; compilerproc; { load a normal set p from a smallset l on entry: p in r3, l in r4 } asm stw r4,0(r3) li r0,0 stw r0,4(r3) stw r0,8(r3) stw r0,12(r3) stw r0,16(r3) stw r0,20(r3) stw r0,24(r3) stw r0,28(r3) end; {$define FPC_SYSTEM_HAS_FPC_SET_CREATE_ELEMENT} { checked 2001/09/28 (JM) } function fpc_set_create_element(b : byte): fpc_normal_set;assembler;[public,alias:'FPC_SET_CREATE_ELEMENT']; compilerproc; { create a new set in p from an element b on entry: pointer to result in r3, b in r4 } asm li r0,0 stw r0,0(r3) stw r0,4(r3) stw r0,8(r3) stw r0,12(r3) stw r0,16(r3) stw r0,20(r3) stw r0,24(r3) stw r0,28(r3) // r0 := 1 shl r4[27-31] -> bit index in dword (rotate instructions // with count in register only consider lower 5 bits of this register) li r0,1 rlwnm r0,r0,r4,0,31 // get the index of the correct *dword* in the set // (((b div 8) div 4)*4= (b div 8) and not(3)) // r5 := (r4 rotl(32-3)) and (0x01ffffff8) rlwinm r4,r4,31-3+1,3,31-2 // store the result stwx r0,r3,r4 end; {$define FPC_SYSTEM_HAS_FPC_SET_SET_BYTE} function fpc_set_set_byte(const source: fpc_normal_set; b : byte): fpc_normal_set;assembler; compilerproc; { add the element b to the set pointed by p on entry: result in r3, source in r4, b in r5 } asm // copy source to result lfd f0,0(r4) lfd f1,8(r4) lfd f2,16(r4) lfd f3,24(r4) stfd f0,0(r3) stfd f1,8(r3) stfd f2,16(r3) stfd f3,24(r3) // get the index of the correct *dword* in the set // r0 := (r5 rotl(32-3)) and (0x0fffffff8) rlwinm r0,r5,31-3+1,3,31-2 // load dword in which the bit has to be set (and update r3 to this address) lwzux r4,r3,r0 li r0,1 // generate bit which has to be inserted // (can't use rlwimi, since that one only works for constants) rlwnm r5,r0,r5,0,31 // insert it or r5,r4,r5 // store result stw r5,0(r3) end; {$define FPC_SYSTEM_HAS_FPC_SET_UNSET_BYTE} function fpc_set_unset_byte(const source: fpc_normal_set; b : byte): fpc_normal_set;assembler; compilerproc; { suppresses the element b to the set pointed by p used for exclude(set,element) on entry: p in r3, b in r4 } asm // copy source to result lfd f0,0(r4) lfd f1,8(r4) lfd f2,16(r4) lfd f3,24(r4) stfd f0,0(r3) stfd f1,8(r3) stfd f2,16(r3) stfd f3,24(r3) // get the index of the correct *dword* in the set // r0 := (r4 rotl(32-3)) and (0x0fffffff8) rlwinm r0,r5,31-3+1,3,31-2 // load dword in which the bit has to be set (and update r3 to this address) lwzux r4,r3,r0 li r0,1 // generate bit which has to be removed rlwnm r5,r0,r5,0,31 // remove it andc r5,r4,r5 // store result stw r4,0(r3) end; {$define FPC_SYSTEM_HAS_FPC_SET_SET_RANGE} function fpc_set_set_range(const orgset: fpc_normal_set; l,h : byte): fpc_normal_set;assembler; compilerproc; { on entry: result in r3, l in r4, h in r5 on entry: result in r3, ptr to orgset in r4, l in r5, h in r6 } asm // copy source to result lfd f0,0(r4) lfd f1,8(r4) lfd f2,16(r4) lfd f3,24(r4) stfd f0,0(r3) stfd f1,8(r3) stfd f2,16(r3) stfd f3,24(r3) cmplw cr0,r5,r6 bgt cr0,.Lset_range_exit rlwinm r4,r5,31-3+1,3,31-2 // divide by 8 to get starting and ending byte- { load the set the data cache } dcbtst r3,r4 rlwinm r9,r6,31-3+1,3,31-2 // address and clear two lowest bits to get // start/end longint address sub. r9,r9,r4 // are bit lo and hi in the same longint? rlwinm r6,r6,0,31-5+1,31 // hi := hi mod 32 (= "hi and 31", but the andi // instr. only exists in flags modifying form) rlwinm r5,r5,0,31-5+1,31 // lo := lo mod 32 (= "lo and 31", but the andi // instr. only exists in flags modifying form) li r10,-1 // r10 = $0x0ffffffff = bitmask to be inserted subfic r6,r6,31 // hi := 31 - (hi mod 32) = shift count for later slw r10,r10,r5 // shift bitmask to clear bits below lo lwzux r5,r3,r4 // go to starting pos in set and load value // (lo is not necessary anymore) beq .Lset_range_hi // if bit lo and hi in same longint, keep // current mask and adjust for hi bit subic. r9,r9,4 // bit hi in next longint? or r5,r5,r10 // merge and stw r5,0(r3) // store current mask li r10,-1 // new mask lwzu r5,4(r3) // load next longint of set beq .Lset_range_hi // bit hi in this longint -> go to adjust for hi subi r3,r3,4 .Lset_range_loop: subic. r9,r9,4 stwu r10,4(r3) // fill longints in between with full mask bne .Lset_range_loop lwzu r5,4(r3) // load next value from set .Lset_range_hi: // in all cases, r3 here contains the address of // the longint which contains the hi bit and r4 // contains this longint srw r9,r10,r6 // r9 := bitmask shl (31 - (hi mod 32)) = // bitmask with bits higher than hi cleared // (r8 = $0xffffffff unless the first beq was // taken) and r10,r9,r10 // combine lo and hi bitmasks for this longint or r5,r5,r10 // and combine with existing set stw r5,0(r3) // store to set .Lset_range_exit: end; {$define FPC_SYSTEM_HAS_FPC_SET_ADD_SETS} function fpc_set_add_sets(const set1,set2: fpc_normal_set): fpc_normal_set;assembler;[public,alias:'FPC_SET_ADD_SETS']; compilerproc; { adds set1 and set2 into set dest on entry: result in r3, set1 in r4, set2 in r5 } asm { load the begin of the result set in the data cache } dcbtst 0,r3 li r0,8 mtctr r0 subi r5,r5,4 subi r4,r4,4 subi r3,r3,4 .LMADDSETS1: lwzu r0,4(r4) lwzu r10,4(r5) or r0,r0,r10 stwu r0,4(r3) bdnz .LMADDSETS1 end; {$define FPC_SYSTEM_HAS_FPC_SET_MUL_SETS} function fpc_set_mul_sets(const set1,set2: fpc_normal_set): fpc_normal_set;assembler;[public,alias:'FPC_SET_MUL_SETS']; compilerproc; { multiplies (takes common elements of) set1 and set2 result put in dest on entry: result in r3, set1 in r4, set2 in r5 } asm { load the begin of the result set in the data cache } dcbtst 0,r3 li r0,8 mtctr r0 subi r5,r5,4 subi r4,r4,4 subi r3,r3,4 .LMMULSETS1: lwzu r0,4(r4) lwzu r10,4(r5) and r0,r0,r10 stwu r0,4(r3) bdnz .LMMULSETS1 end; {$define FPC_SYSTEM_HAS_FPC_SET_SUB_SETS} function fpc_set_sub_sets(const set1,set2: fpc_normal_set): fpc_normal_set;assembler;[public,alias:'FPC_SET_SUB_SETS']; compilerproc; { computes the diff from set1 to set2 result in dest on entry: result in r3, set1 in r4, set2 in r5 } asm { load the begin of the result set in the data cache } dcbtst 0,r3 li r0,8 mtctr r0 subi r5,r5,4 subi r4,r4,4 subi r3,r3,4 .LMSUBSETS1: lwzu r0,4(r4) lwzu r10,4(r5) andc r0,r0,r10 stwu r0,4(r3) bdnz .LMSUBSETS1 end; {$define FPC_SYSTEM_HAS_FPC_SET_SYMDIF_SETS} function fpc_set_symdif_sets(const set1,set2: fpc_normal_set): fpc_normal_set;assembler;[public,alias:'FPC_SET_SYMDIF_SETS']; compilerproc; { computes the symetric diff from set1 to set2 result in dest on entry: result in r3, set1 in r4, set2 in r5 } asm { load the begin of the result set in the data cache } dcbtst 0,r3 li r0,8 mtctr r0 subi r5,r5,4 subi r4,r4,4 subi r3,r3,4 .LMSYMDIFSETS1: lwzu r0,4(r4) lwzu r10,4(r5) xor r0,r0,r10 stwu r0,4(r3) bdnz .LMSYMDIFSETS1 end; {$define FPC_SYSTEM_HAS_FPC_SET_COMP_SETS} function fpc_set_comp_sets(const set1,set2: fpc_normal_set): boolean;assembler;[public,alias:'FPC_SET_COMP_SETS']; compilerproc; { compares set1 and set2 zeroflag is set if they are equal on entry: set1 in r3, set2 in r4 } asm li r0,8 mtctr r0 subi r3,r3,4 subi r4,r4,4 .LMCOMPSETS1: lwzu r0,4(r3) lwzu r10,4(r4) sub. r0,r0,r10 bdnzt cr0*4+eq,.LMCOMPSETS1 cntlzw r3,r0 srwi. r3,r3,5 end; {$define FPC_SYSTEM_HAS_FPC_SET_CONTAINS_SET} function fpc_set_contains_sets(const set1,set2: fpc_normal_set): boolean;assembler;[public,alias:'FPC_SET_CONTAINS_SETS']; compilerproc; { on exit, zero flag is set if set1 <= set2 (set2 contains set1) on entry: set1 in r3, set2 in r4 } asm li r0,8 mtctr r0 subi r3,r3,4 subi r4,r4,4 .LMCONTAINSSETS1: lwzu r0,4(r3) lwzu r10,4(r4) { set1 and not(set2) = 0? } andc. r0,r0,r10 bdnzt cr0*4+eq,.LMCONTAINSSETS1 cntlzw r3,r0 srwi. r3,r3,5 end; {$endif FPC_OLD_BIGENDIAN_SETS}