{ Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman Contains the base types for MIPS This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {# Base unit for processor information. This unit contains enumerations of registers, opcodes, sizes, and other such things which are processor specific. } unit cpubase; {$i fpcdefs.inc} interface uses cutils,cclasses, globtype,globals, cpuinfo, aasmbase, cgbase ; {***************************************************************************** Assembler Opcodes *****************************************************************************} type TAsmOp=({$i opcode.inc}); { This should define the array of instructions as string } op2strtable=array[tasmop] of string[11]; const { First value of opcode enumeration } firstop = low(tasmop); { Last value of opcode enumeration } lastop = high(tasmop); {***************************************************************************** Registers *****************************************************************************} type { Number of registers used for indexing in tables } tregisterindex=0..{$i rmipsnor.inc}-1; const { Available Superregisters } {$i rmipssup.inc} { No Subregisters } R_SUBWHOLE = R_SUBD; { Available Registers } {$i rmipscon.inc} { Integer Super registers first and last } first_int_supreg = RS_R0; first_int_imreg = $20; { Float Super register first and last } first_fpu_supreg = RS_F0; first_fpu_imreg = $20; { MM Super register first and last } first_mm_supreg = 0; first_mm_imreg = 1; { TODO: Calculate bsstart} regnumber_count_bsstart = 64; regnumber_table : array[tregisterindex] of tregister = ( {$i rmipsnum.inc} ); regstabs_table : array[tregisterindex] of shortint = ( {$i rmipssta.inc} ); regdwarf_table : array[tregisterindex] of shortint = ( {$i rmipsdwf.inc} ); { registers which may be destroyed by calls } VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R15]; VOLATILE_FPUREGISTERS = [RS_F0..RS_F3]; {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_EQ, C_NE, C_LT, C_LE, C_GT, C_GE, C_LTU, C_LEU, C_GTU, C_GEU, C_LTZ, C_LEZ, C_GTZ, C_GEZ, C_COP1TRUE, C_COP1FALSE ); const cond2str : array[TAsmCond] of string[3]=('', 'eq','ne','lt','le','gt','ge','ltu','leu','gtu','geu', 'ltz','lez','gtz','gez', 'c1t','c1f' ); type TResFlags=record reg1: TRegister; cond: TOpCmp; case use_const: boolean of False: (reg2: TRegister); True: (value: aint); end; {***************************************************************************** Constants *****************************************************************************} const max_operands = 4; maxintregs = 31; maxfpuregs = 8; maxaddrregs = 0; {***************************************************************************** Constants *****************************************************************************} const maxvarregs = 7; varregs : Array [1..maxvarregs] of tsuperregister = (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10); maxfpuvarregs = 4; fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister = (RS_F4,RS_F5,RS_F6,RS_F7); {***************************************************************************** Default generic sizes *****************************************************************************} { Defines the default address size for a processor, } OS_ADDR = OS_32; {# the natural int size for a processor, has to match osuinttype/ossinttype as initialized in psystem } OS_INT = OS_32; OS_SINT = OS_S32; { the maximum float size for a processor, } OS_FLOAT = OS_F64; { the size of a vector register for a processor } OS_VECTOR = OS_M32; {***************************************************************************** Generic Register names *****************************************************************************} { PIC Code } NR_GP = NR_R28; NR_PIC_FUNC = NR_R25; RS_GP = RS_R28; RS_PIC_FUNC = RS_R25; { VMT code } NR_VMT = NR_R24; RS_VMT = RS_R24; NR_SP = NR_R29; NR_S8 = NR_R30; NR_FP = NR_R30; NR_RA = NR_R31; RS_SP = RS_R29; RS_S8 = RS_R30; RS_FP = RS_R30; RS_RA = RS_R31; {# Stack pointer register } NR_STACK_POINTER_REG = NR_SP; RS_STACK_POINTER_REG = RS_SP; {# Frame pointer register } NR_FRAME_POINTER_REG = NR_FP; RS_FRAME_POINTER_REG = RS_FP; NR_RETURN_ADDRESS_REG = NR_R7; { the return_result_reg, is used inside the called function to store its return value when that is a scalar value otherwise a pointer to the address of the result is placed inside it } { Results are returned in this register (32-bit values) } NR_FUNCTION_RETURN_REG = NR_R2; RS_FUNCTION_RETURN_REG = RS_R2; { Low part of 64bit return value } NR_FUNCTION_RETURN64_LOW_REG = NR_R2; RS_FUNCTION_RETURN64_LOW_REG = RS_R2; { High part of 64bit return value } NR_FUNCTION_RETURN64_HIGH_REG = NR_R3; RS_FUNCTION_RETURN64_HIGH_REG = RS_R3; { The value returned from a function is available in this register } NR_FUNCTION_RESULT_REG = NR_R2; RS_FUNCTION_RESULT_REG = RS_R2; { The lowh part of 64bit value returned from a function } NR_FUNCTION_RESULT64_LOW_REG = NR_R2; RS_FUNCTION_RESULT64_LOW_REG = RS_R2; { The high part of 64bit value returned from a function } NR_FUNCTION_RESULT64_HIGH_REG = NR_R3; RS_FUNCTION_RESULT64_HIGH_REG = RS_R3; NR_FPU_RESULT_REG = NR_F0; NR_MM_RESULT_REG = NR_NO; NR_DEFAULTFLAGS = NR_NO; {***************************************************************************** GCC /ABI linking information *****************************************************************************} const { Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = 4; {***************************************************************************** CPU Dependent Constants *****************************************************************************} const simm16lo = -32768; simm16hi = 32767; {***************************************************************************** Helpers *****************************************************************************} function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; { Returns the tcgsize corresponding with the size of reg.} function reg_cgsize(const reg: tregister) : tcgsize; function cgsize2subreg(regtype: tregistertype; s:tcgsize):tsubregister; function is_calljmp(o:tasmop):boolean; function findreg_by_number(r:Tregister):tregisterindex; function std_regnum_search(const s:string):Tregister; function std_regname(r:Tregister):string; function dwarf_reg(r:tregister):shortint; function dwarf_reg_no_error(r:tregister):shortint; function eh_return_data_regno(nr: longint): longint; implementation uses rgBase,verbose; const std_regname_table : TRegNameTable = ( {$i rmipsstd.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i rmipsrni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i rmipssri.inc} ); function cgsize2subreg(regtype: tregistertype; s:tcgsize):tsubregister; begin case regtype of R_FPUREGISTER: if s=OS_F32 then result:=R_SUBFS else if s=OS_F64 then result:=R_SUBFD else internalerror(2013021301); else result:=R_SUBWHOLE; end; end; function reg_cgsize(const reg: tregister): tcgsize; begin case getregtype(reg) of R_INTREGISTER : reg_cgsize:=OS_32; R_FPUREGISTER : begin if getsubreg(reg)=R_SUBFD then result:=OS_F64 else result:=OS_F32; end; else internalerror(200303181); end; end; function is_calljmp(o:tasmop):boolean; begin is_calljmp:= o in [A_J,A_JAL,A_JALR,{ A_JALX, }A_JR, A_BA, A_BC]; end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_NE, C_EQ, C_GE, C_GT, C_LE, C_LT, C_GEU, C_GTU, C_LEU, C_LTU, C_GEZ, C_GTZ, C_LEZ, C_LTZ, C_COP1FALSE, C_COP1TRUE ); begin result := inverse[c]; end; function findreg_by_number(r:Tregister):tregisterindex; begin { the register table for MIPS cpu only contains R_SUBFS and R_SUBD register types. This function is called by dbgstabs unit, here were are only interested in register, not its subtype, thus we change subreg to R_SUBFS or R_SUBD. } case getsubreg(r) of R_SUBFD: setsubreg(r, R_SUBFS); R_SUBL, R_SUBW, R_SUBD, R_SUBQ: setsubreg(r, R_SUBD); else ; end; result:=rgBase.findreg_by_number_table(r,regnumber_index); end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; begin Result := (c = C_None) or conditions_equal(Subset, c); { Please update as necessary. [Kit] } if not Result then case Subset of C_EQ: Result := (c in [C_GE, C_LE, C_GEU, C_LEU]); C_LT: Result := (c in [C_LE]); C_LTU: Result := (c in [C_LEU]); C_GT: Result := (c in [C_GE]); C_GTU: Result := (c in [C_GEU]); else Result := False; end; end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function std_regname(r:Tregister):string; var p : tregisterindex; hr : tregister; begin hr:=r; case getsubreg(hr) of R_SUBFD: setsubreg(hr, R_SUBFS); R_SUBL, R_SUBW, R_SUBD, R_SUBQ: setsubreg(hr, R_SUBD); else ; end; p:=findreg_by_number_table(hr,regnumber_index); if p<>0 then result:=std_regname_table[p] else if getregtype(r)=R_SPECIALREGISTER then result:=tostr(getsupreg(r)) else result:=generic_regname(r); end; function dwarf_reg(r:tregister):shortint; begin case getsubreg(r) of R_SUBFD: setsubreg(r, R_SUBFS); R_SUBL, R_SUBW, R_SUBD, R_SUBQ: setsubreg(r, R_SUBD); else ; end; result:=regdwarf_table[findreg_by_number(r)]; if result=-1 then internalerror(200603251); end; function dwarf_reg_no_error(r:tregister):shortint; begin case getsubreg(r) of R_SUBFD: setsubreg(r, R_SUBFS); R_SUBL, R_SUBW, R_SUBD, R_SUBQ: setsubreg(r, R_SUBD); else ; end; result:=regdwarf_table[findreg_by_number(r)]; end; function eh_return_data_regno(nr: longint): longint; begin if (nr>=0) and (nr<2) then result:=nr+4 else result:=-1; end; begin end.