{ This file is part of the Free Pascal run time library. Copyright (c) 2003 by the Free Pascal development team. Implementation of mathematical Routines (for extended type) See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} {**************************************************************************** FPU Control word ****************************************************************************} procedure Set8087CW(cw:word); begin { pic-safe ; cw will not be a regvar because it's accessed from } { assembler } default8087cw:=cw; asm fnclex fldcw cw end; end; function Get8087CW:word;assembler; asm push ax mov bx, sp fnstcw word ptr ss:[bx] pop ax end; procedure Handle_I8086_Error(InterruptNumber : dword); public name 'FPC_HANDLE_I8086_ERROR'; var FpuStatus : word; OutError : byte; begin OutError:=InterruptNumber; case byte(InterruptNumber) of 0 : OutError:=200; {'Division by Zero'} 5 : OutError:=201; {'Bounds Check', not caught yet } 12 : OutError:=202; {'Stack Fault', not caught yet } 7, {'Coprocessor not available', not caught yet } 9, {'Coprocessor overrun', not caught yet } 16,$75 : begin { This needs special handling } { to discriminate between 205,206 and 207 } asm fnstsw fpustatus { This for is available for 8086 already } fnclex end; if (FpuStatus and FPU_Invalid)<>0 then OutError:=216 else if (FpuStatus and FPU_Denormal)<>0 then OutError:=216 else if (FpuStatus and FPU_DivisionByZero)<>0 then OutError:=208 else if (FpuStatus and FPU_Overflow)<>0 then OutError:=205 else if (FpuStatus and FPU_Underflow)<>0 then OutError:=206 else OutError:=207; {'Coprocessor Error'} { if exceptions then Reset FPU and reload control word } if (FPUStatus and FPU_ExceptionMask)<>0 then SysResetFPU; end; end; HandleError(OutError); end; {**************************************************************************** EXTENDED data type routines ****************************************************************************} {$define FPC_SYSTEM_HAS_ABS} function fpc_abs_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_SQR} function fpc_sqr_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_SQRT} function fpc_sqrt_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_LN} function fpc_ln_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; const { the exact binary representation of pi (as generated by the fldpi instruction), and then divided by 2 and 4. I've tested the following FPUs and they produce the exact same values: i8087 Pentium III (Coppermine) Athlon 64 (K8) } Extended_PIO2: array [0..4] of word=($C235,$2168,$DAA2,$C90F,$3FFF); { pi/2 } Extended_PIO4: array [0..4] of word=($C235,$2168,$DAA2,$C90F,$3FFE); { pi/4 } {$define FPC_SYSTEM_HAS_ARCTAN} function fpc_arctan_real(d : ValReal) : ValReal;assembler;compilerproc; var sw: word; asm { the fpatan instruction on the 8087 and 80287 has the following restrictions: 0 <= ST(1) < ST(0) < +inf which makes it useful only for calculating arctan in the range: 0 <= d < 1 so in order to cover the full range, we use the following properties of arctan: arctan(1) = pi/4 arctan(-d) = -arctan(d) arctan(d) = pi/2 - arctan(1/d), if d>0 } fld tbyte [d] ftst fstsw sw mov ah, byte [sw + 1] sahf jb @@negative { d >= 0 } fld1 // 1 d fcom fstsw sw mov ah, byte [sw + 1] sahf jb @@greater_than_one jz @@equal_to_one { 0 <= d < 1 } fpatan jmp @@done @@greater_than_one: { d > 1 } fxch st(1) // d 1 fpatan // arctan(1/d) fld tbyte [Extended_PIO2] // pi/2 arctan(1/d) fsubrp st(1), st // pi/2-arctan(1/d) jmp @@done @@equal_to_one: { d = 1, return pi/4 } fstp st fstp st fld tbyte [Extended_PIO4] jmp @@done @@negative: { d < 0; -d > 0 } fchs // -d fld1 // 1 -d fcom fstsw sw mov ah, byte [sw + 1] sahf jb @@less_than_minus_one jz @@equal_to_minus_one { -1 < d < 0; 0 < -d < 1 } fpatan // arctan(-d) fchs // -arctan(-d) jmp @@done @@equal_to_minus_one: { d = -1, return -pi/4 } fstp st fstp st fld tbyte [Extended_PIO4] fchs jmp @@done @@less_than_minus_one: { d < -1; -d > 1 } fxch st(1) // -d 1 fpatan // arctan(-1/d) fld tbyte [Extended_PIO2] // pi/2 arctan(-1/d) fsubp st(1), st // arctan(-1/d)-pi/2 @@done: end; {$define FPC_SYSTEM_HAS_EXP} function fpc_exp_real(d : ValReal) : ValReal;assembler;compilerproc; var sw1: word; asm // comes from DJ GPP { fixed for 8087 and 80287 by nickysn notable differences between 8087/80287 and 80387: f2xm1 on 8087/80287 requires that 0<=st(0)<=0.5 f2xm1 on 80387+ requires that -1<=st(0)<=1 fscale on 8087/80287 requires that -2**15<=st(1)<=0 or 1<=st(1)<2**15 fscale on 80387+ has no restrictions } fld tbyte[d] // d fldl2e // l2e d fmulp st(1), st // l2e*d fld st(0) // l2e*d l2e*d frndint // round(l2e*d) l2e*d fxch st(1) // l2e*d round(l2e*d) fsub st, st(1) // l2e*d-round(l2e*d) round(l2e*d) ftst // l2e*d-round(l2e*d)<0? fstsw sw1 mov ah, byte [sw1 + 1] sahf jb @@negative f2xm1 // 2**(l2e*d-round(l2e*d))-1 round(l2e*d) fld1 // 1 2**(l2e*d-round(l2e*d))-1 round(l2e*d) faddp st(1), st // 2**(l2e*d-round(l2e*d)) round(l2e*d) jmp @@common @@negative: fchs // -l2e*d+round(l2e*d) round(l2e*d) f2xm1 // 2**(-l2e*d+round(l2e*d))-1 round(l2e*d) fld1 // 1 2**(-l2e*d+round(l2e*d))-1 round(l2e*d) fadd st(1), st // 1 2**(-l2e*d+round(l2e*d)) round(l2e*d) fdivrp st(1), st // 2**(l2e*d-round(l2e*d)) round(l2e*d) @@common: fscale // (2**(l2e*d-round(l2e*d)))*(2**round(l2e*d)) round(l2e*d) fstp st(1) // (2**(l2e*d-round(l2e*d)))*(2**round(l2e*d)) end; {$define FPC_SYSTEM_HAS_FRAC} function fpc_frac_real(d : ValReal) : ValReal;assembler;compilerproc; asm sub sp, 2 mov bx, sp fnstcw ss:[bx] fwait mov cl, ss:[bx+1] or byte ss:[bx+1], $0f fldcw ss:[bx] fld tbyte [d] frndint fld tbyte [d] fsub st, st(1) fstp st(1) mov ss:[bx+1], cl fldcw ss:[bx] add sp, 2 end; {$define FPC_SYSTEM_HAS_INT} function fpc_int_real(d : ValReal) : ValReal;assembler;compilerproc; asm sub sp, 2 mov bx, sp fnstcw ss:[bx] fwait mov cl, byte ss:[bx+1] or byte ss:[bx+1], $0f fldcw ss:[bx] fwait fld tbyte [d] frndint fwait mov byte ss:[bx+1], cl fldcw ss:[bx] add sp, 2 end; {$define FPC_SYSTEM_HAS_TRUNC} function fpc_trunc_real(d : ValReal) : int64;assembler;compilerproc; asm sub sp, 10 mov bx, sp fld tbyte [d] fnstcw ss:[bx] mov cl, ss:[bx+1] or byte ss:[bx+1], $0f fldcw ss:[bx] mov ss:[bx+1], cl fistp qword ss:[bx+2] fldcw ss:[bx] fwait mov dx, ss:[bx+2] mov cx, ss:[bx+4] mov ax, ss:[bx+8] { store bx as last } mov bx, ss:[bx+6] add sp, 10 end; {$define FPC_SYSTEM_HAS_ROUND} function fpc_round_real(d : ValReal) : int64;assembler;compilerproc; var tmp: int64; asm fld tbyte [d] fistp qword [tmp] fwait mov dx, [tmp] mov cx, [tmp+2] mov bx, [tmp+4] mov ax, [tmp+6] end;