{ $Id$ Copyright (c) 1998-2002 by Florian Klaempfl Contains the base types for the m68k This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } { This Unit contains the base types for the m68k } unit cpubase; {$i fpcdefs.inc} interface uses strings,cutils,cclasses,aasmbase,cpuinfo,cginfo; {***************************************************************************** Assembler Opcodes *****************************************************************************} type { warning: CPU32 opcodes are not fully compatible with the MC68020. } { 68000 only opcodes } tasmop = (a_abcd, a_add,a_adda,a_addi,a_addq,a_addx,a_and,a_andi, a_asl,a_asr,a_bcc,a_bcs,a_beq,a_bge,a_bgt,a_bhi, a_ble,a_bls,a_blt,a_bmi,a_bne,a_bpl,a_bvc,a_bvs, a_bchg,a_bclr,a_bra,a_bset,a_bsr,a_btst,a_chk, a_clr,a_cmp,a_cmpa,a_cmpi,a_cmpm,a_dbcc,a_dbcs,a_dbeq,a_dbge, a_dbgt,a_dbhi,a_dble,a_dbls,a_dblt,a_dbmi,a_dbne,a_dbra, a_dbpl,a_dbt,a_dbvc,a_dbvs,a_dbf,a_divs,a_divu, a_eor,a_eori,a_exg,a_illegal,a_ext,a_jmp,a_jsr, a_lea,a_link,a_lsl,a_lsr,a_move,a_movea,a_movei,a_moveq, a_movem,a_movep,a_muls,a_mulu,a_nbcd,a_neg,a_negx, a_nop,a_not,a_or,a_ori,a_pea,a_rol,a_ror,a_roxl, a_roxr,a_rtr,a_rts,a_sbcd,a_scc,a_scs,a_seq,a_sge, a_sgt,a_shi,a_sle,a_sls,a_slt,a_smi,a_sne, a_spl,a_st,a_svc,a_svs,a_sf,a_sub,a_suba,a_subi,a_subq, a_subx,a_swap,a_tas,a_trap,a_trapv,a_tst,a_unlk, a_rte,a_reset,a_stop, { mc68010 instructions } a_bkpt,a_movec,a_moves,a_rtd, { mc68020 instructions } a_bfchg,a_bfclr,a_bfexts,a_bfextu,a_bfffo, a_bfins,a_bfset,a_bftst,a_callm,a_cas,a_cas2, a_chk2,a_cmp2,a_divsl,a_divul,a_extb,a_pack,a_rtm, a_trapcc,a_tracs,a_trapeq,a_trapf,a_trapge,a_trapgt, a_traphi,a_traple,a_trapls,a_traplt,a_trapmi,a_trapne, a_trappl,a_trapt,a_trapvc,a_trapvs,a_unpk, { fpu processor instructions - directly supported only. } { ieee aware and misc. condition codes not supported } a_fabs,a_fadd, a_fbeq,a_fbne,a_fbngt,a_fbgt,a_fbge,a_fbnge, a_fblt,a_fbnlt,a_fble,a_fbgl,a_fbngl,a_fbgle,a_fbngle, a_fdbeq,a_fdbne,a_fdbgt,a_fdbngt,a_fdbge,a_fdbnge, a_fdblt,a_fdbnlt,a_fdble,a_fdbgl,a_fdbngl,a_fdbgle,a_fdbngle, a_fseq,a_fsne,a_fsgt,a_fsngt,a_fsge,a_fsnge, a_fslt,a_fsnlt,a_fsle,a_fsgl,a_fsngl,a_fsgle,a_fsngle, a_fcmp,a_fdiv,a_fmove,a_fmovem, a_fmul,a_fneg,a_fnop,a_fsqrt,a_fsub,a_fsgldiv, a_fsflmul,a_ftst, a_ftrapeq,a_ftrapne,a_ftrapgt,a_ftrapngt,a_ftrapge,a_ftrapnge, a_ftraplt,a_ftrapnlt,a_ftraple,a_ftrapgl,a_ftrapngl,a_ftrapgle,a_ftrapngle, { protected instructions } a_cprestore,a_cpsave, { fpu unit protected instructions } { and 68030/68851 common mmu instructions } { (this may include 68040 mmu instructions) } a_frestore,a_fsave,a_pflush,a_pflusha,a_pload,a_pmove,a_ptest, { useful for assembly language output } a_label,a_none,a_dbxx,a_sxx,a_bxx,a_fbxx); {# This should define the array of instructions as string } op2strtable=array[tasmop] of string[11]; Const {# First value of opcode enumeration } firstop = low(tasmop); {# Last value of opcode enumeration } lastop = high(tasmop); {***************************************************************************** Registers *****************************************************************************} {$packenum 1} type Toldregister = ( R_NO,R_D0,R_D1,R_D2,R_D3,R_D4,R_D5,R_D6,R_D7, R_A0,R_A1,R_A2,R_A3,R_A4,R_A5,R_A6,R_SP, { PUSH/PULL- quick and dirty hack } R_SPPUSH,R_SPPULL, { misc. } R_CCR,R_FP0,R_FP1,R_FP2,R_FP3,R_FP4,R_FP5,R_FP6, R_FP7,R_FPCR,R_SR,R_SSP,R_DFC,R_SFC,R_VBR,R_FPSR, R_INTREGISTER,R_FLOATREGISTER); Tnewregister=word; Tregister=record enum:Toldregister; number:word; end; Tsuperregister=byte; Tsubregister=byte; {# Set type definition for registers } tregisterset = set of Toldregister; Tsupregset = set of Tsuperregister; {$packenum normal} { A type to store register locations for 64 Bit values. } tregister64 = packed record reglo,reghi : tregister; end; { alias for compact code } treg64 = tregister64; {New register coding:} {Special registers:} const NR_NO = $0000; {Invalid register} {Normal registers:} {General purpose registers:} NR_D0 = $0100; NR_D1 = $0200; NR_D2 = $0300; NR_D3 = $0400; NR_D4 = $0500; NR_D5 = $0600; NR_D6 = $0700; NR_D7 = $0800; NR_A0 = $0900; NR_A1 = $0A00; NR_A2 = $0B00; NR_A3 = $0C00; NR_A4 = $0D00; NR_A5 = $0E00; NR_A6 = $0F00; NR_A7 = $1000; {Super registers.} RS_D0 = $01; RS_D1 = $02; RS_D2 = $03; RS_D3 = $04; RS_D4 = $05; RS_D5 = $06; RS_D6 = $07; RS_D7 = $08; RS_A0 = $09; RS_A1 = $0A; RS_A2 = $0B; RS_A3 = $0C; RS_A4 = $0D; RS_A5 = $0E; RS_A6 = $0F; RS_A7 = $10; {Sub register numbers:} R_SUBL = $00; {8 bits} R_SUBW = $01; {16 bits} R_SUBD = $02; {32 bits} {The subregister that specifies the entire register.} R_SUBWHOLE = R_SUBD; {i386} {R_SUBWHOLE = R_SUBQ;} {Hammer} {Number of first and last superregister.} first_supreg = $01; last_supreg = $10; {# First register in the tregister enumeration } firstreg = low(Toldregister); {# Last register in the tregister enumeration } lastreg = R_FPSR; type {# Type definition for the array of string of register nnames } reg2strtable = array[firstreg..lastreg] of string[7]; regname2regnumrec = record name:string[6]; number:Tnewregister; end; const std_reg2str : reg2strtable = ('', 'd0','d1','d2','d3','d4','d5','d6','d7', 'a0','a1','a2','a3','a4','a5','a6','sp', '-(sp)','(sp)+', 'ccr','fp0','fp1','fp2','fp3','fp4','fp5', 'fp6','fp7','fpcr','sr','ssp','dfc', 'sfc','vbr','fpsr'); {***************************************************************************** Conditions *****************************************************************************} {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_CC,C_LS,C_CS,C_LT,C_EQ,C_MI,C_F,C_NE, C_GE,C_PL,C_GT,C_T,C_HI,C_VC,C_LE,C_VS ); const cond2str:array[TAsmCond] of string[3]=('', 'cc','ls','cs','lt','eq','mi','f','ne', 'ge','pl','gt','t','hi','vc','le','vs' ); {***************************************************************************** Flags *****************************************************************************} type TResFlags = ( F_E,F_NE, F_G,F_L,F_GE,F_LE,F_C,F_NC,F_A,F_AE,F_B,F_BE); {***************************************************************************** Reference *****************************************************************************} type trefoptions=(ref_none,ref_parafixup,ref_localfixup,ref_selffixup); { direction of address register : } { (An) (An)+ -(An) } tdirection = (dir_none,dir_inc,dir_dec); { reference record } preference = ^treference; treference = packed record base, index : tregister; scalefactor : byte; offset : longint; symbol : tasmsymbol; offsetfixup : longint; options : trefoptions; { indexed increment and decrement mode } { (An)+ and -(An) } direction : tdirection; end; { reference record } pparareference = ^tparareference; tparareference = packed record index : tregister; offset : longint; end; {***************************************************************************** Operands *****************************************************************************} { Types of operand } toptype=(top_none,top_reg,top_ref,top_const,top_symbol,top_reglist); tregisterlist = set of Toldregister; toper=record ot : longint; case typ : toptype of top_none : (); top_reg : (reg:tregister); top_ref : (ref:preference); top_const : (val:aword); top_symbol : (sym:tasmsymbol;symofs:longint); { used for pushing/popping multiple registers } top_reglist : (registerlist:Tsupregset); end; {***************************************************************************** Generic Location *****************************************************************************} type { tparamlocation describes where a parameter for a procedure is stored. References are given from the caller's point of view. The usual TLocation isn't used, because contains a lot of unnessary fields. } tparalocation = packed record size : TCGSize; loc : TCGLoc; sp_fixup : longint; case TCGLoc of LOC_REFERENCE : (reference : tparareference); { segment in reference at the same place as in loc_register } LOC_REGISTER,LOC_CREGISTER : ( case longint of 1 : (register,registerhigh : tregister); { overlay a registerlow } 2 : (registerlow : tregister); { overlay a 64 Bit register type } 3 : (reg64 : tregister64); 4 : (register64 : tregister64); ); end; tlocation = packed record loc : TCGLoc; size : TCGSize; case TCGLoc of LOC_FLAGS : (resflags : tresflags); LOC_CONSTANT : ( case longint of 1 : (value : AWord); { can't do this, this layout depends on the host cpu. Use } { lo(valueqword)/hi(valueqword) instead (JM) } { 2 : (valuelow, valuehigh:AWord); } { overlay a complete 64 Bit value } 3 : (valueqword : qword); ); LOC_CREFERENCE, LOC_REFERENCE : (reference : treference); { segment in reference at the same place as in loc_register } LOC_REGISTER,LOC_CREGISTER : ( case longint of 1 : (register,registerhigh,segment : tregister); { overlay a registerlow } 2 : (registerlow : tregister); { overlay a 64 Bit register type } 3 : (reg64 : tregister64); 4 : (register64 : tregister64); ); end; {***************************************************************************** Operand Sizes *****************************************************************************} { S_NO = No Size of operand } { S_B = 8-bit size operand } { S_W = 16-bit size operand } { S_L = 32-bit size operand } { Floating point types } { S_FS = single type (32 bit) } { S_FD = double/64bit integer } { S_FX = Extended type } topsize = (S_NO,S_B,S_W,S_L,S_FS,S_FD,S_FX,S_IQ); {***************************************************************************** Constants *****************************************************************************} const {# maximum number of operands in assembler instruction } max_operands = 4; lvaluelocations = [LOC_REFERENCE,LOC_CFPUREGISTER,LOC_CREGISTER]; {# Constant defining possibly all registers which might require saving } ALL_REGISTERS = [R_D1..R_FPCR]; ALL_INTREGISTERS = [1..255]; general_registers = [R_D0..R_D7]; general_superregisters = [RS_D0..RS_D7]; {# low and high of the available maximum width integer general purpose } { registers } LoGPReg = R_D0; HiGPReg = R_D7; {# low and high of every possible width general purpose register (same as } { above on most architctures apart from the 80x86) } LoReg = LoGPReg; HiReg = HiGPReg; { Table of registers which can be allocated by the code generator internally, when generating the code. legend: xxxregs = set of all possibly used registers of that type in the code generator usableregsxxx = set of all 32bit components of registers that can be possible allocated to a regvar or using getregisterxxx (this excludes registers which can be only used for parameter passing on ABI's that define this) c_countusableregsxxx = amount of registers in the usableregsxxx set } maxintregs = 8; intregs = [R_D0..R_D7]; usableregsint = [RS_D2..RS_D7]; c_countusableregsint = 6; maxfpuregs = 8; fpuregs = [R_FP0..R_FP7]; usableregsfpu = [R_FP2..R_FP7]; c_countusableregsfpu = 6; mmregs = []; usableregsmm = []; c_countusableregsmm = 0; maxaddrregs = 8; addrregs = [R_A0..R_SP]; usableregsaddr = [RS_A2..RS_A4]; c_countusableregsaddr = 3; { The first register in the usableregsint array } firstsaveintreg = RS_D2; { The last register in the usableregsint array } lastsaveintreg = RS_D7; { The first register in the usableregsfpu array } firstsavefpureg = R_FP2; { The last register in the usableregsfpu array } lastsavefpureg = R_FP7; { these constants are m68k specific } { The first register in the usableregsaddr array } firstsaveaddrreg = RS_A2; { The last register in the usableregsaddr array } lastsaveaddrreg = RS_A4; firstsavemmreg = R_NO; lastsavemmreg = R_NO; { Defines the maxinum number of integer registers which can be used as variable registers } maxvarregs = 6; { Array of integer registers which can be used as variable registers } varregs : Array [1..maxvarregs] of Toldregister = (R_D2,R_D3,R_D4,R_D5,R_D6,R_D7); { Defines the maxinum number of float registers which can be used as variable registers } maxfpuvarregs = 6; { Array of float registers which can be used as variable registers } fpuvarregs : Array [1..maxfpuvarregs] of Toldregister = (R_FP2,R_FP3,R_FP4,R_FP5,R_FP6,R_FP7); { Defines the number of integer registers which are used in the ABI to pass parameters (might be empty on systems which use the stack to pass parameters) } max_param_regs_int = 0; {param_regs_int: Array[1..max_param_regs_int] of tregister = (R_3,R_4,R_5,R_6,R_7,R_8,R_9,R_10);} { Defines the number of float registers which are used in the ABI to pass parameters (might be empty on systems which use the stack to pass parameters) } max_param_regs_fpu = 0; {param_regs_fpu: Array[1..max_param_regs_fpu] of tregister = (R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13);} { Defines the number of mmx registers which are used in the ABI to pass parameters (might be empty on systems which use the stack to pass parameters) } max_param_regs_mm = 0; {param_regs_mm: Array[1..max_param_regs_mm] of tregister = (R_M1,R_M2,R_M3,R_M4,R_M5,R_M6,R_M7,R_M8,R_M9,R_M10,R_M11,R_M12,R_M13);} {# Registers which are defined as scratch integer and no need to save across routine calls or in assembler blocks. } max_scratch_regs = 4; scratch_regs: Array[1..max_scratch_regs] of Tsuperregister = (RS_D0,RS_D1,RS_A0,RS_A1); {***************************************************************************** Default generic sizes *****************************************************************************} {# Defines the default address size for a processor, } OS_ADDR = OS_32; {# the natural int size for a processor, } OS_INT = OS_32; {# the maximum float size for a processor, } OS_FLOAT = OS_F64; {# the size of a vector register for a processor } OS_VECTOR = OS_M128; {***************************************************************************** GDB Information *****************************************************************************} {# Register indexes for stabs information, when some parameters or variables are stored in registers. Taken from m68kelf.h (DBX_REGISTER_NUMBER) from GCC 3.x source code. This is not compatible with the m68k-sun implementation. } stab_regindex : array[firstreg..lastreg] of shortint = (-1, { R_NO } 0,1,2,3,4,5,6,7, { R_D0..R_D7 } 8,9,10,11,12,13,14,15, { R_A0..R_A7 } -1,-1,-1, { R_SPPUSH, R_SPPULL, R_CCR } 18,19,20,21,22,23,24,25, { R_FP0..R_FP7 } -1,-1,-1,-1,-1,-1,-1); {***************************************************************************** Generic Register names *****************************************************************************} {# Stack pointer register } stack_pointer_reg = R_SP; NR_STACK_POINTER_REG = NR_A7; RS_STACK_POINTER_REG = RS_A7; {# Frame pointer register } frame_pointer_reg = R_A6; NR_FRAME_POINTER_REG = NR_A6; RS_FRAME_POINTER_REG = RS_A6; {# Self pointer register : contains the instance address of an object or class. } self_pointer_reg = R_A5; NR_SELF_POINTER_REG = NR_A5; RS_SELF_POINTER_REG = RS_A5; {# Register for addressing absolute data in a position independant way, such as in PIC code. The exact meaning is ABI specific. For further information look at GCC source : PIC_OFFSET_TABLE_REGNUM } pic_offset_reg = R_A5; {# Results are returned in this register (32-bit values) } accumulator = R_D0; NR_ACCUMULATOR = NR_D0; RS_ACCUMULATOR = RS_D0; {the return_result_reg, is used inside the called function to store its return value when that is a scalar value otherwise a pointer to the address of the result is placed inside it} return_result_reg = accumulator; NR_RETURN_RESULT_REG = NR_ACCUMULATOR; RS_RETURN_RESULT_REG = RS_ACCUMULATOR; {the function_result_reg contains the function result after a call to a scalar function othewise it contains a pointer to the returned result} function_result_reg = accumulator; {# Hi-Results are returned in this register (64-bit value high register) } accumulatorhigh = R_D1; NR_ACCUMULATORHIGH = NR_D1; RS_ACCUMULATORHIGH = RS_D1; {# Floating point results will be placed into this register } FPU_RESULT_REG = R_FP0; mmresultreg = R_NO; {***************************************************************************** GCC /ABI linking information *****************************************************************************} {# Registers which must be saved when calling a routine declared as cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers saved should be the ones as defined in the target ABI and / or GCC. This value can be deduced from CALLED_USED_REGISTERS array in the GCC source. } std_saved_registers = [RS_D2..RS_D7,RS_A2..RS_A5]; {# Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = 4; { for 32-bit version only } {***************************************************************************** CPU Dependent Constants *****************************************************************************} {***************************************************************************** Helpers *****************************************************************************} function is_calljmp(o:tasmop):boolean; procedure inverse_flags(var r : TResFlags); function flags_to_cond(const f: TResFlags) : TAsmCond; procedure convert_register_to_enum(var r:Tregister); function cgsize2subreg(s:Tcgsize):Tsubregister; function supreg_name(r:Tsuperregister):string; implementation uses verbose; {***************************************************************************** Helpers *****************************************************************************} function is_calljmp(o:tasmop):boolean; begin is_calljmp := false; if o in [A_BXX,A_FBXX,A_DBXX,A_BCC..A_BVS,A_DBCC..A_DBVS,A_FBEQ..A_FSNGLE, A_JSR,A_BSR,A_JMP] then is_calljmp := true; end; procedure inverse_flags(var r: TResFlags); const flagsinvers : array[F_E..F_BE] of tresflags = (F_NE,F_E, F_LE,F_GE, F_L,F_G, F_NC,F_C, F_BE,F_B, F_AE,F_A); begin r:=flagsinvers[r]; end; function flags_to_cond(const f: TResFlags) : TAsmCond; const flags2cond: array[tresflags] of tasmcond = ( C_EQ,{F_E equal} C_NE,{F_NE not equal} C_GT,{F_G gt signed} C_LT,{F_L lt signed} C_GE,{F_GE ge signed} C_LE,{F_LE le signed} C_CS,{F_C carry set} C_CC,{F_NC carry clear} C_HI,{F_A gt unsigned} C_CC,{F_AE ge unsigned} C_CS,{F_B lt unsigned} C_LS);{F_BE le unsigned} begin flags_to_cond := flags2cond[f]; end; procedure convert_register_to_enum(var r:Tregister); begin if r.enum = R_INTREGISTER then case r.number of NR_NO: r.enum:= R_NO; NR_D0: r.enum:= R_D0; NR_D1: r.enum:= R_D1; NR_D2: r.enum:= R_D2; NR_D3: r.enum:= R_D3; NR_D4: r.enum:= R_D4; NR_D5: r.enum:= R_D5; NR_D6: r.enum:= R_D6; NR_D7: r.enum:= R_D7; NR_A0: r.enum:= R_A0; NR_A1: r.enum:= R_A1; NR_A2: r.enum:= R_A2; NR_A3: r.enum:= R_A3; NR_A4: r.enum:= R_A4; NR_A5: r.enum:= R_A5; NR_A6: r.enum:= R_A6; NR_A7: r.enum:= R_SP; else internalerror(200301082); end; end; function cgsize2subreg(s:Tcgsize):Tsubregister; begin case s of OS_8,OS_S8: cgsize2subreg:=R_SUBL; OS_16,OS_S16: cgsize2subreg:=R_SUBW; OS_32,OS_S32: cgsize2subreg:=R_SUBD; else internalerror(200301231); end; end; function supreg_name(r:Tsuperregister):string; var s:string[4]; const supreg_names:array[0..last_supreg] of string[4]= ('INV', 'd0','d1','d2','d3','d4','d5','d6','d7', 'a0','a1','a2','a3','a4','a5','a6','sp'); begin if r in [0..last_supreg] then supreg_name:=supreg_names[r] else begin str(r,s); supreg_name:='reg'+s; end; end; end. { $Log$ Revision 1.19 2003-04-23 12:35:35 florian * fixed several issues with powerpc + applied a patch from Jonas for nested function calls (PowerPC only) * ... Revision 1.18 2003/02/19 22:00:16 daniel * Code generator converted to new register notation - Horribily outdated todo.txt removed Revision 1.17 2003/02/02 19:25:54 carl * Several bugfixes for m68k target (register alloc., opcode emission) + VIS target + Generic add more complete (still not verified) Revision 1.16 2003/01/09 15:49:56 daniel * Added register conversion Revision 1.15 2003/01/08 18:43:57 daniel * Tregister changed into a record Revision 1.14 2002/11/30 23:33:03 carl * merges from Pierre's fixes in m68k fixes branch Revision 1.13 2002/11/17 18:26:16 mazen * fixed a compilation bug accmulator-->accumulator, in definition of return_result_reg Revision 1.12 2002/11/17 17:49:09 mazen + return_result_reg and function_result_reg are now used, in all plateforms, to pass functions result between called function and its caller. See the explanation of each one Revision 1.11 2002/10/14 16:32:36 carl + flag_2_cond implemented Revision 1.10 2002/08/18 09:02:12 florian * fixed compilation problems Revision 1.9 2002/08/15 08:13:54 carl - a_load_sym_ofs_reg removed * loadvmt now calls loadaddr_ref_reg instead Revision 1.8 2002/08/14 18:41:47 jonas - remove valuelow/valuehigh fields from tlocation, because they depend on the endianess of the host operating system -> difficult to get right. Use lo/hi(location.valueqword) instead (remember to use valueqword and not value!!) Revision 1.7 2002/08/13 21:40:58 florian * more fixes for ppc calling conventions Revision 1.6 2002/08/13 18:58:54 carl + m68k problems with cvs fixed?()! Revision 1.4 2002/08/12 15:08:44 carl + stab register indexes for powerpc (moved from gdb to cpubase) + tprocessor enumeration moved to cpuinfo + linker in target_info is now a class * many many updates for m68k (will soon start to compile) - removed some ifdef or correct them for correct cpu Revision 1.3 2002/07/29 17:51:32 carl + restart m68k support }