{ $Id$ This file is part of the Free Pascal run time library. Copyright (c) 1999-2001 by Several contributors Generic mathemtical routines (on type real) See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} {*************************************************************************} { Credits } {*************************************************************************} { Copyright Abandoned, 1987, Fred Fish } { } { This previously copyrighted work has been placed into the } { public domain by the author (Fred Fish) and may be freely used } { for any purpose, private or commercial. I would appreciate } { it, as a courtesy, if this notice is left in all copies and } { derivative works. Thank you, and enjoy... } { } { The author makes no warranty of any kind with respect to this } { product and explicitly disclaims any implied warranties of } { merchantability or fitness for any particular purpose. } {-------------------------------------------------------------------------} { Copyright (c) 1992 Odent Jean Philippe } { } { The source can be modified as long as my name appears and some } { notes explaining the modifications done are included in the file. } {-------------------------------------------------------------------------} { Copyright (c) 1997 Carl Eric Codere } {-------------------------------------------------------------------------} {$goto on} type TabCoef = array[0..6] of Real; const PIO2 = 1.57079632679489661923; { pi/2 } PIO4 = 7.85398163397448309616E-1; { pi/4 } SQRT2 = 1.41421356237309504880; { sqrt(2) } SQRTH = 7.07106781186547524401E-1; { sqrt(2)/2 } LOG2E = 1.4426950408889634073599; { 1/log(2) } SQ2OPI = 7.9788456080286535587989E-1; { sqrt( 2/pi )} LOGE2 = 6.93147180559945309417E-1; { log(2) } LOGSQ2 = 3.46573590279972654709E-1; { log(2)/2 } THPIO4 = 2.35619449019234492885; { 3*pi/4 } TWOOPI = 6.36619772367581343075535E-1; { 2/pi } lossth = 1.073741824e9; MAXLOG = 8.8029691931113054295988E1; { log(2**127) } MINLOG = -8.872283911167299960540E1; { log(2**-128) } DP1 = 7.85398125648498535156E-1; DP2 = 3.77489470793079817668E-8; DP3 = 2.69515142907905952645E-15; const sincof : TabCoef = ( 1.58962301576546568060E-10, -2.50507477628578072866E-8, 2.75573136213857245213E-6, -1.98412698295895385996E-4, 8.33333333332211858878E-3, -1.66666666666666307295E-1, 0); coscof : TabCoef = ( -1.13585365213876817300E-11, 2.08757008419747316778E-9, -2.75573141792967388112E-7, 2.48015872888517045348E-5, -1.38888888888730564116E-3, 4.16666666666665929218E-2, 0); { also necessary for Int() on systems with 64bit floats (JM) } type {$ifdef ENDIAN_LITTLE} float64 = packed record low: longint; high: longint; end; {$else} float64 = packed record high: longint; low: longint; end; {$endif} {$ifndef FPC_SYSTEM_HAS_TRUNC} type float32 = longint; flag = byte; Function extractFloat64Frac0(const a: float64): longint; Begin extractFloat64Frac0 := a.high and $000FFFFF; End; Function extractFloat64Frac1(const a: float64): longint; Begin extractFloat64Frac1 := a.low; End; Function extractFloat64Exp(const a: float64): smallint; Begin extractFloat64Exp:= ( a.high shr 20 ) AND $7FF; End; Function extractFloat64Sign(const a: float64) : flag; Begin extractFloat64Sign := a.high shr 31; End; Procedure shortShift64Left( a0:longint; a1:longint; count:smallint; VAR z0Ptr:longint; VAR z1Ptr:longint ); Begin z1Ptr := a1 shl count; if count = 0 then z0Ptr := a0 else z0Ptr := ( a0 shl count ) OR ( a1 shr ( ( - count ) AND 31 ) ); End; function float64_to_int32_round_to_zero(a: float64 ): longint; Var aSign: flag; aExp, shiftCount: smallint; aSig0, aSig1, absZ, aSigExtra: longint; z: longint; Begin aSig1 := extractFloat64Frac1( a ); aSig0 := extractFloat64Frac0( a ); aExp := extractFloat64Exp( a ); aSign := extractFloat64Sign( a ); shiftCount := aExp - $413; if ( 0 <= shiftCount ) then Begin if (aExp=$7FF) and ((aSig0 or aSig1)<>0) then HandleError(207); shortShift64Left( aSig0 OR $00100000, aSig1, shiftCount, absZ, aSigExtra ); End else Begin if ( aExp < $3FF ) then begin float64_to_int32_round_to_zero := 0; exit; end; aSig0 := aSig0 or $00100000; aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR aSig1; absZ := aSig0 shr ( - shiftCount ); End; if aSign<>0 then z:=-absZ else z:=absZ; if ((aSign<>0) xor (z<0)) AND (z<>0) then HandleError(207); float64_to_int32_round_to_zero := z; End; Function ExtractFloat32Frac(a : Float32) : longint; Begin ExtractFloat32Frac := A AND $007FFFFF; End; Function extractFloat32Exp( a: float32 ): smallint; Begin extractFloat32Exp := (a shr 23) AND $FF; End; Function extractFloat32Sign( a: float32 ): Flag; Begin extractFloat32Sign := a shr 31; End; Function float32_to_int32_round_to_zero( a: Float32 ): longint; Var aSign : flag; aExp, shiftCount : smallint; aSig : longint; z : longint; Begin aSig := extractFloat32Frac( a ); aExp := extractFloat32Exp( a ); aSign := extractFloat32Sign( a ); shiftCount := aExp - $9E; if ( 0 <= shiftCount ) then Begin if ( a <> $CF000000 ) then Begin if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then Begin HandleError(207); exit; end; End; HandleError(207); exit; End else if ( aExp <= $7E ) then Begin float32_to_int32_round_to_zero := 0; exit; End; aSig := ( aSig or $00800000 ) shl 8; z := aSig shr ( - shiftCount ); if ( aSign<>0 ) then z := - z; float32_to_int32_round_to_zero := z; End; function trunc(d : real) : int64;[internconst:in_const_trunc]; var l: longint; f32 : float32; f64 : float64; Begin { in emulation mode the real is equal to a single } { otherwise in fpu mode, it is equal to a double } { extended is not supported yet. } if sizeof(D) > 8 then HandleError(255); if sizeof(D)=8 then begin move(d,f64,sizeof(f64)); {$ifdef cpuarm} { the arm fpu has a strange opinion how a double has to be stored } l:=f64.low; f64.low:=f64.high; f64.high:=l; {$endif cpuarm} trunc:=float64_to_int32_round_to_zero(f64); end else begin move(d,f32,sizeof(f32)); trunc:=float32_to_int32_round_to_zero(f32); end; end; {$endif} {$ifndef FPC_SYSTEM_HAS_INT} {$ifdef SUPPORT_DOUBLE} { straight Pascal translation of the code for __trunc() in } { the file sysdeps/libm-ieee754/s_trunc.c of glibc (JM) } function int(d: double): double;[internconst:in_const_int]; var i0, j0: longint; i1: cardinal; sx: longint; f64 : float64; begin f64:=float64(d); {$ifdef cpuarm} { the arm fpu has a strange opinion how a double has to be stored } i0:=f64.low; f64.low:=f64.high; f64.high:=i0; {$endif cpuarm} i0 := f64.high; i1 := cardinal(f64.low); sx := i0 and $80000000; j0 := ((i0 shr 20) and $7ff) - $3ff; if (j0 < 20) then begin if (j0 < 0) then begin { the magnitude of the number is < 1 so the result is +-0. } f64.high := sx; f64.low := 0; end else begin f64.high := sx or (i0 and not($fffff shr j0)); f64.low := 0; end end else if (j0 > 51) then begin if (j0 = $400) then { d is inf or NaN } exit(d + d); { don't know why they do this (JM) } end else begin f64.high := i0; f64.low := longint(i1 and not(cardinal($ffffffff) shr (j0 - 20))); end; {$ifdef cpuarm} { the arm fpu has a strange opinion how a double has to be stored } i0:=f64.low; f64.low:=f64.high; f64.high:=i0; {$endif cpuarm} result:=double(f64); end; {$else SUPPORT_DOUBLE} function int(d : real) : real;[internconst:in_const_int]; begin { this will be correct since real = single in the case of } { the motorola version of the compiler... } int:=real(trunc(d)); end; {$endif SUPPORT_DOUBLE} {$endif} {$ifndef FPC_SYSTEM_HAS_ABS} {$ifdef SUPPORT_DOUBLE} function abs(d : Double) : Double;[public,alias:'FPC_ABS_REAL']; begin if (d<0.0) then abs := -d else abs := d ; end; {$else} function abs(d : Real) : Real;[public,alias:'FPC_ABS_REAL']; begin if (d<0.0) then abs := -d else abs := d ; end; {$endif} {$ifdef hascompilerproc} function fpc_abs_real(d:Real):Real;compilerproc; external name 'FPC_ABS_REAL'; {$endif hascompilerproc} {$endif not FPC_SYSTEM_HAS_ABS} function frexp(x:Real; var e:Integer ):Real; {* frexp() extracts the exponent from x. It returns an integer *} {* power of two to expnt and the significand between 0.5 and 1 *} {* to y. Thus x = y * 2**expn. *} begin e :=0; if (abs(x)<0.5) then While (abs(x)<0.5) do begin x := x*2; Dec(e); end else While (abs(x)>1) do begin x := x/2; Inc(e); end; frexp := x; end; function ldexp( x: Real; N: Integer):Real; {* ldexp() multiplies x by 2**n. *} var r : Real; begin R := 1; if N>0 then while N>0 do begin R:=R*2; Dec(N); end else while N<0 do begin R:=R/2; Inc(N); end; ldexp := x * R; end; function polevl(var x:Real; var Coef:TabCoef; N:Integer):Real; {*****************************************************************} { Evaluate polynomial } {*****************************************************************} { } { SYNOPSIS: } { } { int N; } { double x, y, coef[N+1], polevl[]; } { } { y = polevl( x, coef, N ); } { } { DESCRIPTION: } { } { Evaluates polynomial of degree N: } { } { 2 N } { y = C + C x + C x +...+ C x } { 0 1 2 N } { } { Coefficients are stored in reverse order: } { } { coef[0] = C , ..., coef[N] = C . } { N 0 } { } { The function p1evl() assumes that coef[N] = 1.0 and is } { omitted from the array. Its calling arguments are } { otherwise the same as polevl(). } { } { SPEED: } { } { In the interest of speed, there are no checks for out } { of bounds arithmetic. This routine is used by most of } { the functions in the library. Depending on available } { equipment features, the user may wish to rewrite the } { program in microcode or assembly language. } {*****************************************************************} var ans : Real; i : Integer; begin ans := Coef[0]; for i:=1 to N do ans := ans * x + Coef[i]; polevl:=ans; end; function p1evl(var x:Real; var Coef:TabCoef; N:Integer):Real; { } { Evaluate polynomial when coefficient of x is 1.0. } { Otherwise same as polevl. } { } var ans : Real; i : Integer; begin ans := x + Coef[0]; for i:=1 to N-1 do ans := ans * x + Coef[i]; p1evl := ans; end; {$ifndef FPC_SYSTEM_HAS_SQR} function sqr(d : Real) : Real;[internconst:in_const_sqr]; begin sqr := d*d; end; {$endif} {$ifndef FPC_SYSTEM_HAS_PI} function pi : Real;[internconst:in_const_pi]; begin pi := 3.1415926535897932385; end; {$endif} {$ifndef FPC_SYSTEM_HAS_SQRT} function sqrt(d:Real):Real;[internconst:in_const_sqrt]; [public, alias: 'FPC_SQRT_REAL']; {*****************************************************************} { Square root } {*****************************************************************} { } { SYNOPSIS: } { } { double x, y, sqrt(); } { } { y = sqrt( x ); } { } { DESCRIPTION: } { } { Returns the square root of x. } { } { Range reduction involves isolating the power of two of the } { argument and using a polynomial approximation to obtain } { a rough value for the square root. Then Heron's iteration } { is used three times to converge to an accurate value. } {*****************************************************************} var e : Integer; w,z : Real; begin if( d <= 0.0 ) then begin if( d < 0.0 ) then HandleError(207); sqrt := 0.0; end else begin w := d; { separate exponent and significand } z := frexp( d, e ); { approximate square root of number between 0.5 and 1 } { relative error of approximation = 7.47e-3 } d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z; { adjust for odd powers of 2 } if odd(e) then d := d*SQRT2; { re-insert exponent } d := ldexp( d, (e div 2) ); { Newton iterations: } d := 0.5*(d + w/d); d := 0.5*(d + w/d); d := 0.5*(d + w/d); d := 0.5*(d + w/d); d := 0.5*(d + w/d); d := 0.5*(d + w/d); sqrt := d; end; end; {$ifdef hascompilerproc} function fpc_sqrt_real(d:Real):Real;compilerproc; external name 'FPC_SQRT_REAL'; {$endif hascompilerproc} {$endif} {$ifndef FPC_SYSTEM_HAS_EXP} function Exp(d:Real):Real;[internconst:in_const_exp]; {*****************************************************************} { Exponential Function } {*****************************************************************} { } { SYNOPSIS: } { } { double x, y, exp(); } { } { y = exp( x ); } { } { DESCRIPTION: } { } { Returns e (2.71828...) raised to the x power. } { } { Range reduction is accomplished by separating the argument } { into an integer k and fraction f such that } { } { x k f } { e = 2 e. } { } { A Pade' form of degree 2/3 is used to approximate exp(f)- 1 } { in the basic range [-0.5 ln 2, 0.5 ln 2]. } {*****************************************************************} const P : TabCoef = ( 1.26183092834458542160E-4, 3.02996887658430129200E-2, 1.00000000000000000000E0, 0, 0, 0, 0); Q : TabCoef = ( 3.00227947279887615146E-6, 2.52453653553222894311E-3, 2.27266044198352679519E-1, 2.00000000000000000005E0, 0 ,0 ,0); C1 = 6.9335937500000000000E-1; C2 = 2.1219444005469058277E-4; var n : Integer; px, qx, xx : Real; begin if( d > MAXLOG) then HandleError(205) else if( d < MINLOG ) then begin HandleError(205); end else begin { Express e**x = e**g 2**n } { = e**g e**( n loge(2) ) } { = e**( g + n loge(2) ) } px := d * LOG2E; qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. } n := Trunc(qx); d := d - qx * C1; d := d + qx * C2; { rational approximation for exponential } { of the fractional part: } { e**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) ) } xx := d * d; px := d * polevl( xx, P, 2 ); d := px/( polevl( xx, Q, 3 ) - px ); d := ldexp( d, 1 ); d := d + 1.0; d := ldexp( d, n ); Exp := d; end; end; {$endif} {$ifndef FPC_SYSTEM_HAS_ROUND} {$ifdef hascompilerproc} function round(d : Real) : int64;[internconst:in_const_round, external name 'FPC_ROUND']; function fpc_round(d : Real) : int64;[public, alias:'FPC_ROUND'];{$ifdef hascompilerproc}compilerproc;{$endif hascompilerproc} {$else} function round(d : Real) : int64;[internconst:in_const_round]; {$endif hascompilerproc} var fr: Real; tr: Real; Begin fr := abs(Frac(d)); tr := Trunc(d); if fr > 0.5 then if d >= 0 then result:=Trunc(d)+1 else result:=Trunc(d)-1 else if fr < 0.5 then result:=Trunc(d) else { fr = 0.5 } { check sign to decide ... } { as in Turbo Pascal... } if d >= 0.0 then result:=Trunc(d)+1 else result:=Trunc(d); end; {$endif} {$ifdef FPC_CURRENCY_IS_INT64} function trunc(c : currency) : int64; type tmyrec = record i: int64; end; begin result := int64(tmyrec(c)) div 10000 end; function trunc(c : comp) : int64; begin result := c end; function round(c : currency) : int64; type tmyrec = record i: int64; end; var rem, absrem: longint; begin { (int64(tmyrec(c))(+/-)5000) div 10000 can overflow } result := int64(tmyrec(c)) div 10000; rem := int64(tmyrec(c)) - result * 10000; absrem := abs(rem); if (absrem > 5000) or ((absrem = 5000) and (rem > 0)) then if (rem > 0) then inc(result) else dec(result); end; function round(c : comp) : int64; begin result := c end; {$endif FPC_CURRENCY_IS_INT64} {$ifndef FPC_SYSTEM_HAS_LN} function Ln(d:Real):Real;[internconst:in_const_ln]; {*****************************************************************} { Natural Logarithm } {*****************************************************************} { } { SYNOPSIS: } { } { double x, y, log(); } { } { y = ln( x ); } { } { DESCRIPTION: } { } { Returns the base e (2.718...) logarithm of x. } { } { The argument is separated into its exponent and fractional } { parts. If the exponent is between -1 and +1, the logarithm } { of the fraction is approximated by } { } { log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). } { } { Otherwise, setting z = 2(x-1)/x+1), } { } { log(x) = z + z**3 P(z)/Q(z). } { } {*****************************************************************} const P : TabCoef = ( { Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) 1/sqrt(2) <= x < sqrt(2) } 4.58482948458143443514E-5, 4.98531067254050724270E-1, 6.56312093769992875930E0, 2.97877425097986925891E1, 6.06127134467767258030E1, 5.67349287391754285487E1, 1.98892446572874072159E1); Q : TabCoef = ( 1.50314182634250003249E1, 8.27410449222435217021E1, 2.20664384982121929218E2, 3.07254189979530058263E2, 2.14955586696422947765E2, 5.96677339718622216300E1, 0); { Coefficients for log(x) = z + z**3 P(z)/Q(z), where z = 2(x-1)/(x+1) 1/sqrt(2) <= x < sqrt(2) } R : TabCoef = ( -7.89580278884799154124E-1, 1.63866645699558079767E1, -6.41409952958715622951E1, 0, 0, 0, 0); S : TabCoef = ( -3.56722798256324312549E1, 3.12093766372244180303E2, -7.69691943550460008604E2, 0, 0, 0, 0); var e : Integer; z, y : Real; Label Ldone; begin if( d <= 0.0 ) then HandleError(207); d := frexp( d, e ); { logarithm using log(x) = z + z**3 P(z)/Q(z), where z = 2(x-1)/x+1) } if( (e > 2) or (e < -2) ) then begin if( d < SQRTH ) then begin { 2( 2x-1 )/( 2x+1 ) } Dec(e, 1); z := d - 0.5; y := 0.5 * z + 0.5; end else begin { 2 (x-1)/(x+1) } z := d - 0.5; z := z - 0.5; y := 0.5 * d + 0.5; end; d := z / y; { /* rational form */ } z := d*d; z := d + d * ( z * polevl( z, R, 2 ) / p1evl( z, S, 3 ) ); goto ldone; end; { logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) } if( d < SQRTH ) then begin Dec(e, 1); d := ldexp( d, 1 ) - 1.0; { 2x - 1 } end else d := d - 1.0; { rational form } z := d*d; y := d * ( z * polevl( d, P, 6 ) / p1evl( d, Q, 6 ) ); y := y - ldexp( z, -1 ); { y - 0.5 * z } z := d + y; ldone: { recombine with exponent term } if( e <> 0 ) then begin y := e; z := z - y * 2.121944400546905827679e-4; z := z + y * 0.693359375; end; Ln:= z; end; {$endif} {$ifndef FPC_SYSTEM_HAS_SIN} function Sin(d:Real):Real;[internconst:in_const_sin]; {*****************************************************************} { Circular Sine } {*****************************************************************} { } { SYNOPSIS: } { } { double x, y, sin(); } { } { y = sin( x ); } { } { DESCRIPTION: } { } { Range reduction is into intervals of pi/4. The reduction } { error is nearly eliminated by contriving an extended } { precision modular arithmetic. } { } { Two polynomial approximating functions are employed. } { Between 0 and pi/4 the sine is approximated by } { x + x**3 P(x**2). } { Between pi/4 and pi/2 the cosine is represented as } { 1 - x**2 Q(x**2). } {*****************************************************************} var y, z, zz : Real; j, sign : Integer; begin { make argument positive but save the sign } sign := 1; if( d < 0 ) then begin d := -d; sign := -1; end; { above this value, approximate towards 0 } if( d > lossth ) then begin sin := 0.0; exit; end; y := Trunc( d/PIO4 ); { integer part of x/PIO4 } { strip high bits of integer part to prevent integer overflow } z := ldexp( y, -4 ); z := Trunc(z); { integer part of y/8 } z := y - ldexp( z, 4 ); { y - 16 * (y/16) } j := Trunc(z); { convert to integer for tests on the phase angle } { map zeros to origin } { typecast is to avoid "can't determine which overloaded function } { to call" } if odd( longint(j) ) then begin inc(j); y := y + 1.0; end; j := j and 7; { octant modulo 360 degrees } { reflect in x axis } if( j > 3) then begin sign := -sign; dec(j, 4); end; { Extended precision modular arithmetic } z := ((d - y * DP1) - y * DP2) - y * DP3; zz := z * z; if( (j=1) or (j=2) ) then y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 ) else { y = z + z * (zz * polevl( zz, sincof, 5 )); } y := z + z * z * z * polevl( zz, sincof, 5 ); if(sign < 0) then y := -y; sin := y; end; {$endif} {$ifndef FPC_SYSTEM_HAS_COS} function Cos(d:Real):Real;[internconst:in_const_cos]; {*****************************************************************} { Circular cosine } {*****************************************************************} { } { Circular cosine } { } { SYNOPSIS: } { } { double x, y, cos(); } { } { y = cos( x ); } { } { DESCRIPTION: } { } { Range reduction is into intervals of pi/4. The reduction } { error is nearly eliminated by contriving an extended } { precision modular arithmetic. } { } { Two polynomial approximating functions are employed. } { Between 0 and pi/4 the cosine is approximated by } { 1 - x**2 Q(x**2). } { Between pi/4 and pi/2 the sine is represented as } { x + x**3 P(x**2). } {*****************************************************************} var y, z, zz : Real; j, sign : Integer; i : LongInt; begin { make argument positive } sign := 1; if( d < 0 ) then d := -d; { above this value, round towards zero } if( d > lossth ) then begin cos := 0.0; exit; end; y := Trunc( d/PIO4 ); z := ldexp( y, -4 ); z := Trunc(z); { integer part of y/8 } z := y - ldexp( z, 4 ); { y - 16 * (y/16) } { integer and fractional part modulo one octant } i := Trunc(z); if odd( i ) then { map zeros to origin } begin inc(i); y := y + 1.0; end; j := i and 07; if( j > 3) then begin dec(j,4); sign := -sign; end; if( j > 1 ) then sign := -sign; { Extended precision modular arithmetic } z := ((d - y * DP1) - y * DP2) - y * DP3; zz := z * z; if( (j=1) or (j=2) ) then { y = z + z * (zz * polevl( zz, sincof, 5 )); } y := z + z * z * z * polevl( zz, sincof, 5 ) else y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 ); if(sign < 0) then y := -y; cos := y ; end; {$endif} {$ifndef FPC_SYSTEM_HAS_ARCTAN} function ArcTan(d:Real):Real;[internconst:in_const_arctan]; {*****************************************************************} { Inverse circular tangent (arctangent) } {*****************************************************************} { } { SYNOPSIS: } { } { double x, y, atan(); } { } { y = atan( x ); } { } { DESCRIPTION: } { } { Returns radian angle between -pi/2 and +pi/2 whose tangent } { is x. } { } { Range reduction is from four intervals into the interval } { from zero to tan( pi/8 ). The approximant uses a rational } { function of degree 3/4 of the form x + x**3 P(x)/Q(x). } {*****************************************************************} const P : TabCoef = ( -8.40980878064499716001E-1, -8.83860837023772394279E0, -2.18476213081316705724E1, -1.48307050340438946993E1, 0, 0, 0); Q : TabCoef = ( 1.54974124675307267552E1, 6.27906555762653017263E1, 9.22381329856214406485E1, 4.44921151021319438465E1, 0, 0, 0); { tan( 3*pi/8 ) } T3P8 = 2.41421356237309504880; { tan( pi/8 ) } TP8 = 0.41421356237309504880; var y,z : Real; Sign : Integer; begin { make argument positive and save the sign } sign := 1; if( d < 0.0 ) then begin sign := -1; d := -d; end; { range reduction } if( d > T3P8 ) then begin y := PIO2; d := -( 1.0/d ); end else if( d > TP8 ) then begin y := PIO4; d := (d-1.0)/(d+1.0); end else y := 0.0; { rational form in x**2 } z := d * d; y := y + ( polevl( z, P, 3 ) / p1evl( z, Q, 4 ) ) * z * d + d; if( sign < 0 ) then y := -y; Arctan := y; end; {$endif} {$ifndef FPC_SYSTEM_HAS_FRAC} function frac(d : Real) : Real;[internconst:in_const_frac]; begin frac := d - Int(d); end; {$endif} {$ifndef FPC_SYSTEM_HAS_POWER} function power(bas,expo : real) : real; begin if bas=0.0 then begin if expo<>0.0 then power:=0.0 else HandleError(207); end else if expo=0.0 then power:=1 else { bas < 0 is not allowed } if bas<0.0 then handleerror(207) else power:=exp(ln(bas)*expo); end; {$endif} {$ifndef FPC_SYSTEM_HAS_POWER_INT64} function power(bas,expo : int64) : int64; begin if bas=0 then begin if expo<>0 then power:=0 else HandleError(207); end else if expo=0 then power:=1 else begin if bas<0 then begin if odd(expo) then power:=-round(exp(ln(-bas)*expo)) else power:=round(exp(ln(-bas)*expo)); end else power:=round(exp(ln(bas)*expo)); end; end; {$endif} {$ifdef FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE} {$ifndef FPC_SYSTEM_HAS_QWORD_TO_DOUBLE} function fpc_qword_to_double(q : qword): double; compilerproc; begin result:=dword(q and $ffffffff)+dword(q shr 32)*4294967296.0; end; {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE} {$ifndef FPC_SYSTEM_HAS_INT64_TO_DOUBLE} function fpc_int64_to_double(i : int64): double; compilerproc; begin if i<0 then result:=-double(qword(-i)) else result:=qword(i); end; {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE} {$endif FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE} {$ifdef SUPPORT_DOUBLE} {**************************************************************************** Helper routines to support old TP styled reals ****************************************************************************} {$ifndef FPC_SYSTEM_HAS_REAL2DOUBLE} function real2double(r : real48) : double; var res : array[0..7] of byte; exponent : word; begin { copy mantissa } res[0]:=0; res[1]:=r[1] shl 5; res[2]:=(r[1] shr 3) or (r[2] shl 5); res[3]:=(r[2] shr 3) or (r[3] shl 5); res[4]:=(r[3] shr 3) or (r[4] shl 5); res[5]:=(r[4] shr 3) or (r[5] and $7f) shl 5; res[6]:=(r[5] and $7f) shr 3; { copy exponent } { correct exponent: } exponent:=(word(r[0])+(1023-129)); res[6]:=res[6] or ((exponent and $f) shl 4); res[7]:=exponent shr 4; { set sign } res[7]:=res[7] or (r[5] and $80); real2double:=double(res); end; {$endif FPC_SYSTEM_HAS_REAL2DOUBLE} {$endif SUPPORT_DOUBLE} { $Log$ Revision 1.23 2004-03-13 18:33:52 florian * fixed some arm related real stuff Revision 1.22 2004/03/11 22:39:53 florian * arm startup code fixed * made some generic math code more readable Revision 1.21 2004/02/04 14:15:57 florian * fixed generic system.int(...) Revision 1.20 2004/01/24 18:15:58 florian * fixed small bugs * fixed some arm issues Revision 1.18 2004/01/06 21:34:07 peter * abs(double) added * abs() alias Revision 1.17 2004/01/02 17:19:04 jonas * if currency = int64, FPC_CURRENCY_IS_INT64 is defined + round and trunc for currency and comp if FPC_CURRENCY_IS_INT64 is defined * if currency = orddef, prefer currency -> int64/qword conversion over currency -> float conversions * optimized currency/currency if currency = orddef * TODO: write FPC_DIV_CURRENCY and FPC_MUL_CURRENCY routines to prevent precision loss if currency=int64 and bestreal = double Revision 1.16 2003/12/08 19:44:11 jonas * use HandleError instead of RunError so exception catching works Revision 1.15 2003/09/03 14:09:37 florian * arm fixes to the common rtl code * some generic math code fixed * ... Revision 1.14 2003/05/24 13:39:32 jonas * fsqrt is an optional instruction in the ppc architecture and isn't implemented by any current ppc afaik, so use the generic sqrt routine instead (adapted so it works with compilerproc) Revision 1.13 2003/05/23 22:58:31 jonas * added longint typecase to odd(smallint_var) call to avoid overload problem Revision 1.12 2003/05/02 15:12:19 jonas - removed empty ppc-specific frac() + added correct generic frac() implementation for doubles (translated from glibc code) Revision 1.11 2003/04/23 21:28:21 peter * fpc_round added, needed for int64 currency Revision 1.10 2003/01/15 00:45:17 peter * use generic int64 power Revision 1.9 2002/10/12 20:28:49 carl * round returns int64 Revision 1.8 2002/10/07 15:15:02 florian * fixed wrong commit Revision 1.7 2002/10/07 15:10:45 florian + variant wrappers for cmp operators added Revision 1.6 2002/09/07 15:07:45 peter * old logs removed and tabs fixed Revision 1.5 2002/07/28 21:39:29 florian * made abs a compiler proc if it is generic Revision 1.4 2002/07/28 20:43:48 florian * several fixes for linux/powerpc * several fixes to MT }