{ Copyright (c) 1998-2007 by Florian Klaempfl Type checking and register allocation for inline nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ninl; {$i fpcdefs.inc} interface uses node,htypechk,cpuinfo,symtype; {$i compinnr.inc} type tinlinenode = class(tunarynode) inlinenumber : byte; constructor create(number : byte;is_const:boolean;l : tnode);virtual; constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override; procedure ppuwrite(ppufile:tcompilerppufile);override; function dogetcopy : tnode;override; function pass_1 : tnode;override; function pass_typecheck:tnode;override; function simplify: tnode;override; function docompare(p: tnode): boolean; override; { pack and unpack are changed into for-loops by the compiler } function first_pack_unpack: tnode; virtual; { All the following routines currently call compilerprocs, unless they are overriden in which case, the code generator handles them. } function first_pi: tnode ; virtual; function first_arctan_real: tnode; virtual; function first_abs_real: tnode; virtual; function first_sqr_real: tnode; virtual; function first_sqrt_real: tnode; virtual; function first_ln_real: tnode; virtual; function first_cos_real: tnode; virtual; function first_sin_real: tnode; virtual; function first_exp_real: tnode; virtual; function first_frac_real: tnode; virtual; function first_round_real: tnode; virtual; function first_trunc_real: tnode; virtual; function first_int_real: tnode; virtual; function first_abs_long: tnode; virtual; private function handle_str: tnode; function handle_reset_rewrite_typed: tnode; function handle_text_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; function handle_typed_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; function handle_read_write: tnode; function handle_val: tnode; end; tinlinenodeclass = class of tinlinenode; var cinlinenode : tinlinenodeclass; function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode; implementation uses verbose,globals,systems,constexp, globtype, cutils, symconst,symdef,symsym,symtable,paramgr,defutil, pass_1, ncal,ncon,ncnv,nadd,nld,nbas,nflw,nmem,nmat,nutils, nobjc,objcdef, cgbase,procinfo ; function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode; begin geninlinenode:=cinlinenode.create(number,is_const,l); end; {***************************************************************************** TINLINENODE *****************************************************************************} constructor tinlinenode.create(number : byte;is_const:boolean;l : tnode); begin inherited create(inlinen,l); if is_const then include(flags,nf_inlineconst); inlinenumber:=number; end; constructor tinlinenode.ppuload(t:tnodetype;ppufile:tcompilerppufile); begin inherited ppuload(t,ppufile); inlinenumber:=ppufile.getbyte; end; procedure tinlinenode.ppuwrite(ppufile:tcompilerppufile); begin inherited ppuwrite(ppufile); ppufile.putbyte(inlinenumber); end; function tinlinenode.dogetcopy : tnode; var n : tinlinenode; begin n:=tinlinenode(inherited dogetcopy); n.inlinenumber:=inlinenumber; result:=n; end; function tinlinenode.handle_str : tnode; var lenpara, fracpara, newparas, tmppara, dest, source : tcallparanode; procname: string; is_real,is_enum : boolean; rt : aint; begin result := cerrornode.create; { make sure we got at least two parameters (if we got only one, } { this parameter may not be encapsulated in a callparan) } if not assigned(left) or (left.nodetype <> callparan) then begin CGMessage1(parser_e_wrong_parameter_size,'Str'); exit; end; { get destination string } dest := tcallparanode(left); { get source para (number) } source := dest; while assigned(source.right) do source := tcallparanode(source.right); { destination parameter must be a normal (not a colon) parameter, this check is needed because str(v:len) also has 2 parameters } if (source=dest) or (cpf_is_colon_para in tcallparanode(dest).callparaflags) then begin CGMessage1(parser_e_wrong_parameter_size,'Str'); exit; end; is_real:=(source.resultdef.typ = floatdef) or is_currency(source.resultdef); is_enum:=source.left.resultdef.typ=enumdef; if ((dest.left.resultdef.typ<>stringdef) and not(is_chararray(dest.left.resultdef))) or not(is_real or is_enum or (source.left.resultdef.typ=orddef)) then begin CGMessagePos(fileinfo,parser_e_illegal_expression); exit; end; { get len/frac parameters } lenpara := nil; fracpara := nil; if (cpf_is_colon_para in tcallparanode(dest.right).callparaflags) then begin lenpara := tcallparanode(dest.right); { we can let the callnode do the type checking of these parameters too, } { but then the error messages aren't as nice } if not is_integer(lenpara.resultdef) then begin CGMessagePos1(lenpara.fileinfo, type_e_integer_expr_expected,lenpara.resultdef.typename); exit; end; if (cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then begin { parameters are in reverse order! } fracpara := lenpara; lenpara := tcallparanode(lenpara.right); if not is_real then begin CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier); exit end; if not is_integer(lenpara.resultdef) then begin CGMessagePos1(lenpara.fileinfo, type_e_integer_expr_expected,lenpara.resultdef.typename); exit; end; end; end; { generate the parameter list for the compilerproc } newparas := dest; { if we have a float parameter, insert the realtype, len and fracpara parameters } if is_real then begin { insert realtype parameter } if not is_currency(source.resultdef) then begin rt:=ord(tfloatdef(source.left.resultdef).floattype); newparas.right := ccallparanode.create(cordconstnode.create( rt,s32inttype,true),newparas.right); tmppara:=tcallparanode(newparas.right); end else tmppara:=newparas; { if necessary, insert a fraction parameter } if not assigned(fracpara) then begin tmppara.right := ccallparanode.create( cordconstnode.create(int64(-1),s32inttype,false), tmppara.right); fracpara := tcallparanode(tmppara.right); end; { if necessary, insert a length para } if not assigned(lenpara) then fracpara.right := ccallparanode.create( cordconstnode.create(int64(-32767),s32inttype,false), fracpara.right); end else if is_enum then begin {Insert a reference to the ord2string index.} newparas.right:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(source.left.resultdef),fullrtti,rdt_normal) ), newparas.right); {Insert a reference to the typinfo.} newparas.right:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(source.left.resultdef),fullrtti,rdt_ord2str) ), newparas.right); {Insert a type conversion from the enumeration to longint.} source.left:=Ctypeconvnode.create_internal(source.left,s32inttype); typecheckpass(source.left); { if necessary, insert a length para } if not assigned(lenpara) then Tcallparanode(Tcallparanode(newparas.right).right).right:= Ccallparanode.create( cordconstnode.create(int64(-1),s32inttype,false), Tcallparanode(Tcallparanode(newparas.right).right).right ); end else { for a normal parameter, insert a only length parameter if one is missing } if not assigned(lenpara) then newparas.right := ccallparanode.create(cordconstnode.create(int64(-1),s32inttype,false), newparas.right); { remove the parameters from the original node so they won't get disposed, } { since they're reused } left := nil; { create procedure name } if is_chararray(dest.resultdef) then procname:='fpc_chararray_' else procname := 'fpc_' + tstringdef(dest.resultdef).stringtypname+'_'; if is_real then if is_currency(source.resultdef) then procname := procname + 'currency' else procname := procname + 'float' else if is_enum then procname:=procname+'enum' else case torddef(source.resultdef).ordtype of {$ifdef cpu64bitaddr} u64bit: procname := procname + 'uint'; {$else} u32bit: procname := procname + 'uint'; u64bit: procname := procname + 'qword'; scurrency, s64bit: procname := procname + 'int64'; {$endif} else procname := procname + 'sint'; end; { free the errornode we generated in the beginning } result.free; { create the call node, } result := ccallnode.createintern(procname,newparas); end; function tinlinenode.handle_reset_rewrite_typed: tnode; begin { since this is a "in_xxxx_typedfile" node, we can be sure we have } { a typed file as argument and we don't have to check it again (JM) } { add the recsize parameter } { note: for some reason, the parameter of intern procedures with only one } { parameter is gets lifted out of its original tcallparanode (see round } { line 1306 of ncal.pas), so recreate a tcallparanode here (JM) } left := ccallparanode.create(cordconstnode.create( tfiledef(left.resultdef).typedfiledef.size,s32inttype,true), ccallparanode.create(left,nil)); { create the correct call } if inlinenumber=in_reset_typedfile then result := ccallnode.createintern('fpc_reset_typed',left) else result := ccallnode.createintern('fpc_rewrite_typed',left); { make sure left doesn't get disposed, since we use it in the new call } left := nil; end; procedure maybe_convert_to_string(var n: tnode); begin { stringconstnodes are arrays of char. It's much more } { efficient to write a constant string, so convert } { either to shortstring or ansistring depending on } { length } if (n.nodetype=stringconstn) then if is_chararray(n.resultdef) then if (tstringconstnode(n).len<=255) then inserttypeconv(n,cshortstringtype) else inserttypeconv(n,cansistringtype) else if is_widechararray(n.resultdef) then inserttypeconv(n,cwidestringtype); end; function Tinlinenode.handle_text_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; {Read(ln)/write(ln) for text files.} const procprefixes:array[boolean] of string[15]=('fpc_write_text_','fpc_read_text_'); var error_para,is_real,special_handling,found_error,do_read:boolean; p1:Tnode; nextpara, indexpara, lenpara, para, fracpara:Tcallparanode; temp:Ttempcreatenode; readfunctype:Tdef; name:string[31]; begin para:=Tcallparanode(params); found_error:=false; do_read:=inlinenumber in [in_read_x,in_readln_x,in_readstr_x]; while assigned(para) do begin { is this parameter faulty? } error_para:=false; { is this parameter a real? } is_real:=false; { type used for the read(), this is used to check whether a temp is needed for range checking } readfunctype:=nil; { can't read/write types } if (para.left.nodetype=typen) and not(ttypenode(para.left).typedef.typ=undefineddef) then begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end; { support writeln(procvar) } if para.left.resultdef.typ=procvardef then begin p1:=ccallnode.create_procvar(nil,para.left); typecheckpass(p1); para.left:=p1; end; if inlinenumber in [in_write_x,in_writeln_x] then { prefer strings to chararrays } maybe_convert_to_string(para.left); case para.left.resultdef.typ of stringdef : name:=procprefixes[do_read]+tstringdef(para.left.resultdef).stringtypname; pointerdef : begin if (not is_pchar(para.left.resultdef)) or do_read then begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end else name:=procprefixes[do_read]+'pchar_as_pointer'; end; floatdef : begin is_real:=true; if Tfloatdef(para.left.resultdef).floattype=s64currency then name := procprefixes[do_read]+'currency' else begin name := procprefixes[do_read]+'float'; readfunctype:=pbestrealtype^; end; end; enumdef: begin name:=procprefixes[do_read]+'enum'; readfunctype:=s32inttype; end; orddef : begin case Torddef(para.left.resultdef).ordtype of {$ifdef cpu64bitaddr} s64bit, {$endif cpu64bitaddr} s8bit, s16bit, s32bit : begin name := procprefixes[do_read]+'sint'; readfunctype:=sinttype; end; {$ifdef cpu64bitaddr} u64bit, {$endif cpu64bitaddr} u8bit, u16bit, u32bit : begin name := procprefixes[do_read]+'uint'; readfunctype:=uinttype; end; uchar : begin name := procprefixes[do_read]+'char'; readfunctype:=cchartype; end; uwidechar : begin name := procprefixes[do_read]+'widechar'; readfunctype:=cwidechartype; end; {$ifndef cpu64bitaddr} s64bit : begin name := procprefixes[do_read]+'int64'; readfunctype:=s64inttype; end; u64bit : begin name := procprefixes[do_read]+'qword'; readfunctype:=u64inttype; end; {$endif not cpu64bitaddr} scurrency: begin name := procprefixes[do_read]+'currency'; readfunctype:=s64currencytype; is_real:=true; end; pasbool, bool8bit, bool16bit, bool32bit, bool64bit: if do_read then begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end else begin name := procprefixes[do_read]+'boolean'; readfunctype:=booltype; end else begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end; end; end; variantdef : name:=procprefixes[do_read]+'variant'; arraydef : begin if is_chararray(para.left.resultdef) then name := procprefixes[do_read]+'pchar_as_array' else begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end end; { generic parameter } undefineddef: { don't try to generate any code for a writeln on a generic parameter } error_para:=true; else begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end; end; { check for length/fractional colon para's } fracpara:=nil; lenpara:=nil; indexpara:=nil; if assigned(para.right) and (cpf_is_colon_para in tcallparanode(para.right).callparaflags) then begin lenpara := tcallparanode(para.right); if assigned(lenpara.right) and (cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then fracpara:=tcallparanode(lenpara.right); end; { get the next parameter now already, because we're going } { to muck around with the pointers } if assigned(fracpara) then nextpara := tcallparanode(fracpara.right) else if assigned(lenpara) then nextpara := tcallparanode(lenpara.right) else nextpara := tcallparanode(para.right); { check if a fracpara is allowed } if assigned(fracpara) and not is_real then begin CGMessagePos(fracpara.fileinfo,parser_e_illegal_colon_qualifier); error_para := true; end else if assigned(lenpara) and do_read then begin { I think this is already filtered out by parsing, but I'm not sure (JM) } CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier); error_para := true; end; { adjust found_error } found_error := found_error or error_para; if not error_para then begin special_handling:=false; { create dummy frac/len para's if necessary } if not do_read then begin { difference in default value for floats and the rest :( } if not is_real then begin if not assigned(lenpara) then lenpara := ccallparanode.create( cordconstnode.create(0,s32inttype,false),nil) else { make sure we don't pass the successive } { parameters too. We also already have a } { reference to the next parameter in } { nextpara } lenpara.right := nil; end else begin if not assigned(lenpara) then lenpara := ccallparanode.create( cordconstnode.create(int64(-32767),s32inttype,false),nil); { also create a default fracpara if necessary } if not assigned(fracpara) then fracpara := ccallparanode.create( cordconstnode.create(int64(-1),s32inttype,false),nil); { add it to the lenpara } lenpara.right := fracpara; if not is_currency(para.left.resultdef) then begin { and add the realtype para (this also removes the link } { to any parameters coming after it) } fracpara.right := ccallparanode.create( cordconstnode.create(ord(tfloatdef(para.left.resultdef).floattype), s32inttype,true),nil); end else fracpara.right:=nil; end; if para.left.resultdef.typ=enumdef then begin {To write(ln) an enum we need a some extra parameters.} {Insert a reference to the ord2string index.} indexpara:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_normal) ), nil); {Insert a reference to the typinfo.} indexpara:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_ord2str) ), indexpara); {Insert a type conversion to to convert the enum to longint.} para.left:=Ctypeconvnode.create_internal(para.left,s32inttype); typecheckpass(para.left); end; end else begin {To read(ln) an enum we need a an extra parameter.} if para.left.resultdef.typ=enumdef then begin {Insert a reference to the string2ord index.} indexpara:=Ccallparanode.create(Caddrnode.create_internal( Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_str2ord) ),nil); {Insert a type conversion to to convert the enum to longint.} para.left:=Ctypeconvnode.create_internal(para.left,s32inttype); typecheckpass(para.left); end; { special handling of reading small numbers, because the helpers } { expect a longint/card/bestreal var parameter. Use a temp. can't } { use functions because then the call to FPC_IOCHECK destroys } { their result before we can store it } if (readfunctype<>nil) and (para.left.resultdef<>readfunctype) then special_handling:=true; end; if special_handling then begin { since we're not going to pass the parameter as var-parameter } { to the read function, manually check whether the parameter } { can be used as var-parameter (e.g., whether it isn't a } { property) } valid_for_var(para.left,true); { create the parameter list: the temp ... } temp := ctempcreatenode.create(readfunctype,readfunctype.size,tt_persistent,false); addstatement(Tstatementnode(newstatement),temp); { ... and the file } p1 := ccallparanode.create(ctemprefnode.create(temp), filepara.getcopy); Tcallparanode(Tcallparanode(p1).right).right:=indexpara; { create the call to the helper } addstatement(Tstatementnode(newstatement), ccallnode.createintern(name,tcallparanode(p1))); { assign the result to the original var (this automatically } { takes care of range checking) } addstatement(Tstatementnode(newstatement), cassignmentnode.create(para.left, ctemprefnode.create(temp))); { release the temp location } addstatement(Tstatementnode(newstatement),ctempdeletenode.create(temp)); { statement of para is used } para.left := nil; { free the enclosing tcallparanode, but not the } { parameters coming after it } para.right := nil; para.free; end else { read of non s/u-8/16bit, or a write } begin { add the filepara to the current parameter } para.right := filepara.getcopy; {Add the lenpara and the indexpara(s) (fracpara and realtype are already linked with the lenpara if necessary).} if indexpara=nil then Tcallparanode(para.right).right:=lenpara else begin if lenpara=nil then Tcallparanode(para.right).right:=indexpara else begin Tcallparanode(para.right).right:=lenpara; lenpara.right:=indexpara; end; { indexpara.right:=lenpara;} end; { in case of writing a chararray, add whether it's } { zero-based } if para.left.resultdef.typ=arraydef then para := ccallparanode.create(cordconstnode.create( ord(tarraydef(para.left.resultdef).lowrange=0),booltype,false),para); { create the call statement } addstatement(Tstatementnode(newstatement), ccallnode.createintern(name,para)); end end else { error_para = true } begin { free the parameter, since it isn't referenced anywhere anymore } para.right := nil; para.free; if assigned(lenpara) then begin lenpara.right := nil; lenpara.free; end; if assigned(fracpara) then begin fracpara.right := nil; fracpara.free; end; end; { process next parameter } para := nextpara; end; { if no error, add the write(ln)/read(ln) end calls } if not found_error then begin case inlinenumber of in_read_x, in_readstr_x: name:='fpc_read_end'; in_write_x, in_writestr_x: name:='fpc_write_end'; in_readln_x: name:='fpc_readln_end'; in_writeln_x: name:='fpc_writeln_end'; end; addstatement(Tstatementnode(newstatement),ccallnode.createintern(name,filepara)); end; handle_text_read_write:=found_error; end; function Tinlinenode.handle_typed_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; {Read/write for typed files.} const procprefixes:array[boolean] of string[15]=('fpc_typed_write','fpc_typed_read'); procnamesdisplay:array[boolean,boolean] of string[8] = (('Write','Read'),('WriteStr','ReadStr')); var found_error,do_read,is_rwstr:boolean; para,nextpara:Tcallparanode; p1:Tnode; temp:Ttempcreatenode; begin found_error:=false; para:=Tcallparanode(params); do_read:=inlinenumber in [in_read_x,in_readln_x,in_readstr_x]; is_rwstr := inlinenumber in [in_readstr_x,in_writestr_x]; { add the typesize to the filepara } if filepara.resultdef.typ=filedef then filepara.right := ccallparanode.create(cordconstnode.create( tfiledef(filepara.resultdef).typedfiledef.size,s32inttype,true),nil); { check for "no parameters" (you need at least one extra para for typed files) } if not assigned(para) then begin CGMessage1(parser_e_wrong_parameter_size,procnamesdisplay[is_rwstr,do_read]); found_error := true; end; { process all parameters } while assigned(para) do begin { check if valid parameter } if para.left.nodetype=typen then begin CGMessagePos(para.left.fileinfo,type_e_cant_read_write_type); found_error := true; end; { support writeln(procvar) } if (para.left.resultdef.typ=procvardef) then begin p1:=ccallnode.create_procvar(nil,para.left); typecheckpass(p1); para.left:=p1; end; if filepara.resultdef.typ=filedef then inserttypeconv(para.left,tfiledef(filepara.resultdef).typedfiledef); if assigned(para.right) and (cpf_is_colon_para in tcallparanode(para.right).callparaflags) then begin CGMessagePos(para.right.fileinfo,parser_e_illegal_colon_qualifier); { skip all colon para's } nextpara := tcallparanode(tcallparanode(para.right).right); while assigned(nextpara) and (cpf_is_colon_para in nextpara.callparaflags) do nextpara := tcallparanode(nextpara.right); found_error := true; end else { get next parameter } nextpara := tcallparanode(para.right); { When we have a call, we have a problem: you can't pass the } { result of a call as a formal const parameter. Solution: } { assign the result to a temp and pass this temp as parameter } { This is not very efficient, but write(typedfile,x) is } { already slow by itself anyway (no buffering) (JM) } { Actually, thge same goes for every non-simple expression } { (such as an addition, ...) -> put everything but load nodes } { into temps (JM) } { of course, this must only be allowed for writes!!! (JM) } if not(do_read) and (para.left.nodetype <> loadn) then begin { create temp for result } temp := ctempcreatenode.create(para.left.resultdef, para.left.resultdef.size,tt_persistent,false); addstatement(Tstatementnode(newstatement),temp); { assign result to temp } addstatement(Tstatementnode(newstatement), cassignmentnode.create(ctemprefnode.create(temp), para.left)); { replace (reused) paranode with temp } para.left := ctemprefnode.create(temp); end; { add fileparameter } para.right := filepara.getcopy; { create call statment } { since the parameters are in the correct order, we have to insert } { the statements always at the end of the current block } addstatement(Tstatementnode(newstatement), Ccallnode.createintern(procprefixes[do_read],para )); { if we used a temp, free it } if para.left.nodetype = temprefn then addstatement(Tstatementnode(newstatement),ctempdeletenode.create(temp)); { process next parameter } para := nextpara; end; { free the file parameter } filepara.free; handle_typed_read_write:=found_error; end; function tinlinenode.handle_read_write: tnode; var filepara, nextpara, params : tcallparanode; newstatement : tstatementnode; newblock : tblocknode; filetemp : Ttempcreatenode; name : string[31]; textsym : ttypesym; is_typed, do_read, is_rwstr, found_error : boolean; begin filepara := nil; is_typed := false; filetemp := nil; do_read := inlinenumber in [in_read_x,in_readln_x,in_readstr_x]; is_rwstr := inlinenumber in [in_readstr_x,in_writestr_x]; { if we fail, we can quickly exit this way. We must generate something } { instead of the inline node, because firstpass will bomb with an } { internalerror if it encounters a read/write } result := cerrornode.create; { reverse the parameters (needed to get the colon parameters in the } { correct order when processing write(ln) } left := reverseparameters(tcallparanode(left)); if is_rwstr then begin filepara := tcallparanode(left); { needs at least two parameters: source/dest string + min. 1 value } if not(assigned(filepara)) or not(assigned(filepara.right)) then begin CGMessagePos1(fileinfo,parser_e_wrong_parameter_size,'ReadStr/WriteStr'); exit; end else if (filepara.resultdef.typ <> stringdef) then begin { convert chararray to string, or give an appropriate error message } { (if you want to optimize to use shortstring, keep in mind that } { readstr internally always uses ansistring, and to account for } { chararrays with > 255 characters) } inserttypeconv(filepara.left,cansistringtype); filepara.resultdef:=filepara.left.resultdef; if codegenerror then exit; end end else if assigned(left) then begin { check if we have a file parameter and if yes, what kind it is } filepara := tcallparanode(left); if (filepara.resultdef.typ=filedef) then begin if (tfiledef(filepara.resultdef).filetyp=ft_untyped) then begin CGMessagePos(fileinfo,type_e_no_read_write_for_untyped_file); exit; end else begin if (tfiledef(filepara.resultdef).filetyp=ft_typed) then begin if (inlinenumber in [in_readln_x,in_writeln_x]) then begin CGMessagePos(fileinfo,type_e_no_readln_writeln_for_typed_file); exit; end; is_typed := true; end end; end else filepara := nil; end; { create a blocknode in which the successive write/read statements will be } { put, since they belong together. Also create a dummy statement already to } { make inserting of additional statements easier } newblock:=internalstatements(newstatement); { if we don't have a filepara, create one containing the default } if not assigned(filepara) or is_rwstr then begin { since the input/output variables are threadvars loading them into a temp once is faster. Create a temp which will hold a pointer to the file } filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true); addstatement(newstatement,filetemp); { make sure the resultdef of the temp (and as such of the } { temprefs coming after it) is set (necessary because the } { temprefs will be part of the filepara, of which we need } { the resultdef later on and temprefs can only be } { typecheckpassed if the resultdef of the temp is known) } typecheckpass(tnode(filetemp)); if not is_rwstr then begin { assign the address of the file to the temp } if do_read then name := 'input' else name := 'output'; addstatement(newstatement, cassignmentnode.create(ctemprefnode.create(filetemp), ccallnode.createintern('fpc_get_'+name,nil))); end else begin if (do_read) then name := 'fpc_setupreadstr_' else name := 'fpc_setupwritestr_'; name:=name+tstringdef(filepara.resultdef).stringtypname; { remove the source/destination string parameter from the } { parameter chain } left:=filepara.right; filepara.right:=nil; { pass the source/destination string to the setup routine, which } { will store the string's address in the returned textrec } addstatement(newstatement, cassignmentnode.create(ctemprefnode.create(filetemp), ccallnode.createintern(name,filepara))); end; { create a new fileparameter as follows: file_type(temp^) } { (so that we pass the value and not the address of the temp } { to the read/write routine) } textsym:=search_system_type('TEXT'); filepara := ccallparanode.create(ctypeconvnode.create_internal( cderefnode.create(ctemprefnode.create(filetemp)),textsym.typedef),nil); end else { remove filepara from the parameter chain } begin left := filepara.right; filepara.right := nil; { the file para is a var parameter, but it must be valid already } set_varstate(filepara.left,vs_readwritten,[vsf_must_be_valid]); { check if we should make a temp to store the result of a complex } { expression (better heuristics, anyone?) (JM) } if (filepara.left.nodetype <> loadn) then begin { create a temp which will hold a pointer to the file } filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true); { add it to the statements } addstatement(newstatement,filetemp); { make sure the resultdef of the temp (and as such of the } { temprefs coming after it) is set (necessary because the } { temprefs will be part of the filepara, of which we need } { the resultdef later on and temprefs can only be } { typecheckpassed if the resultdef of the temp is known) } typecheckpass(tnode(filetemp)); { assign the address of the file to the temp } addstatement(newstatement, cassignmentnode.create(ctemprefnode.create(filetemp), caddrnode.create_internal(filepara.left))); typecheckpass(newstatement.left); { create a new fileparameter as follows: file_type(temp^) } { (so that we pass the value and not the address of the temp } { to the read/write routine) } nextpara := ccallparanode.create(ctypeconvnode.create_internal( cderefnode.create(ctemprefnode.create(filetemp)),filepara.left.resultdef),nil); { replace the old file para with the new one } filepara.left := nil; filepara.free; filepara := nextpara; end; end; { the resultdef of the filepara must be set since it's } { used below } filepara.get_paratype; { now, filepara is nowhere referenced anymore, so we can safely dispose it } { if something goes wrong or at the end of the procedure } { we're going to reuse the paranodes, so make sure they don't get freed } { twice } params:=Tcallparanode(left); left := nil; if is_typed then found_error:=handle_typed_read_write(filepara,Ttertiarynode(params),tnode(newstatement)) else found_error:=handle_text_read_write(filepara,Ttertiarynode(params),tnode(newstatement)); { if we found an error, simply delete the generated blocknode } if found_error then newblock.free else begin { deallocate the temp for the file para if we used one } if assigned(filetemp) then addstatement(newstatement,ctempdeletenode.create(filetemp)); { otherwise return the newly generated block of instructions, } { but first free the errornode we generated at the beginning } result.free; result := newblock end; end; function tinlinenode.handle_val: tnode; var procname, suffix : string[31]; sourcepara, destpara, codepara, sizepara, newparas : tcallparanode; orgcode,tc : tnode; newstatement : tstatementnode; newblock : tblocknode; tempcode : ttempcreatenode; begin { for easy exiting if something goes wrong } result := cerrornode.create; { check the amount of parameters } if not(assigned(left)) or not(assigned(tcallparanode(left).right)) then begin CGMessage1(parser_e_wrong_parameter_size,'Val'); exit; end; { reverse parameters for easier processing } left := reverseparameters(tcallparanode(left)); { get the parameters } tempcode := nil; orgcode := nil; sizepara := nil; sourcepara := tcallparanode(left); destpara := tcallparanode(sourcepara.right); codepara := tcallparanode(destpara.right); { check if codepara is valid } if assigned(codepara) and ( not is_integer(codepara.resultdef) {$ifndef cpu64bitaddr} or is_64bitint(codepara.resultdef) {$endif not cpu64bitaddr} ) then begin CGMessagePos1(codepara.fileinfo,type_e_integer_expr_expected,codepara.resultdef.typename); exit; end; { check if dest para is valid } if not is_integer(destpara.resultdef) and not is_currency(destpara.resultdef) and not(destpara.resultdef.typ in [floatdef,enumdef]) then begin CGMessagePos(destpara.fileinfo,type_e_integer_or_real_expr_expected); exit; end; { we're going to reuse the exisiting para's, so make sure they } { won't be disposed } left := nil; { create the blocknode which will hold the generated statements + } { an initial dummy statement } newblock:=internalstatements(newstatement); { do we need a temp for code? Yes, if no code specified, or if } { code is not a 32bit parameter (we already checked whether the } { the code para, if specified, was an orddef) } if not assigned(codepara) or (codepara.resultdef.size<>sinttype.size) then begin tempcode := ctempcreatenode.create(sinttype,sinttype.size,tt_persistent,false); addstatement(newstatement,tempcode); { set the resultdef of the temp (needed to be able to get } { the resultdef of the tempref used in the new code para) } typecheckpass(tnode(tempcode)); { create a temp codepara, but save the original code para to } { assign the result to later on } if assigned(codepara) then begin orgcode := codepara.left; codepara.left := ctemprefnode.create(tempcode); end else codepara := ccallparanode.create(ctemprefnode.create(tempcode),nil); { we need its resultdef later on } codepara.get_paratype; end else if (torddef(codepara.resultdef).ordtype = torddef(sinttype).ordtype) then { because code is a var parameter, it must match types exactly } { however, since it will return values in [0..255], both longints } { and cardinals are fine. Since the formal code para type is } { longint, insert a typecoversion to longint for cardinal para's } begin codepara.left := ctypeconvnode.create_internal(codepara.left,sinttype); { make it explicit, oterwise you may get a nonsense range } { check error if the cardinal already contained a value } { > $7fffffff } codepara.get_paratype; end; { create the procedure name } procname := 'fpc_val_'; case destpara.resultdef.typ of orddef: begin case torddef(destpara.resultdef).ordtype of {$ifdef cpu64bitaddr} s64bit, {$endif cpu64bitaddr} s8bit, s16bit, s32bit: begin suffix := 'sint_'; { we also need a destsize para in this case } sizepara := ccallparanode.create(cordconstnode.create (destpara.resultdef.size,s32inttype,true),nil); end; {$ifdef cpu64bitaddr} u64bit, {$endif cpu64bitaddr} u8bit, u16bit, u32bit: suffix := 'uint_'; {$ifndef cpu64bitaddr} s64bit: suffix := 'int64_'; u64bit: suffix := 'qword_'; {$endif not cpu64bitaddr} scurrency: suffix := 'currency_'; else internalerror(200304225); end; end; floatdef: suffix:='real_'; enumdef: begin suffix:='enum_'; sizepara:=Ccallparanode.create(Caddrnode.create_internal( Crttinode.create(Tenumdef(destpara.resultdef),fullrtti,rdt_str2ord) ),nil); end; end; procname := procname + suffix; { play a trick to have tcallnode handle invalid source parameters: } { the shortstring-longint val routine by default } if (sourcepara.resultdef.typ = stringdef) then procname := procname + tstringdef(sourcepara.resultdef).stringtypname { zero-based arrays (of char) can be implicitely converted to ansistring } else if is_zero_based_array(sourcepara.resultdef) then procname := procname + 'ansistr' else procname := procname + 'shortstr'; { set up the correct parameters for the call: the code para... } newparas := codepara; { and the source para } codepara.right := sourcepara; { sizepara either contains nil if none is needed (which is ok, since } { then the next statement severes any possible links with other paras } { that sourcepara may have) or it contains the necessary size para and } { its right field is nil } sourcepara.right := sizepara; { create the call and assign the result to dest (val helpers are functions). Use a trick to prevent a type size mismatch warning to be generated by the assignment node. First convert implicitly to the resultdef. This will insert the range check. The Second conversion is done explicitly to hide the implicit conversion for the assignment node and therefor preventing the warning (PFV) The implicit conversion is avoided for enums because implicit conversion between longint (which is what fpc_val_enum_shortstr returns) and enumerations is not possible. (DM). The implicit conversion is also avoided for COMP type if it is handled by FPU (x86) to prevent warning about automatic type conversion. } if (destpara.resultdef.typ=enumdef) or ((destpara.resultdef.typ=floatdef) and (tfloatdef(destpara.resultdef).floattype=s64comp)) then tc:=ccallnode.createintern(procname,newparas) else tc:=ctypeconvnode.create(ccallnode.createintern(procname,newparas),destpara.left.resultdef); addstatement(newstatement,cassignmentnode.create( destpara.left,ctypeconvnode.create_internal(tc,destpara.left.resultdef))); { dispose of the enclosing paranode of the destination } destpara.left := nil; destpara.right := nil; destpara.free; { check if we used a temp for code and whether we have to store } { it to the real code parameter } if assigned(orgcode) then addstatement(newstatement,cassignmentnode.create( orgcode, ctypeconvnode.create_internal( ctemprefnode.create(tempcode),orgcode.resultdef))); { release the temp if we allocated one } if assigned(tempcode) then addstatement(newstatement,ctempdeletenode.create(tempcode)); { free the errornode } result.free; { and return it } result := newblock; end; {$maxfpuregisters 0} function getpi : bestreal; begin {$ifdef x86} { x86 has pi in hardware } result:=pi; {$else x86} {$ifdef cpuextended} result:=MathPiExtended.Value; {$else cpuextended} result:=MathPi.Value; {$endif cpuextended} {$endif x86} end; function tinlinenode.simplify: tnode; function do_lowhigh(def:tdef) : tnode; var v : tconstexprint; enum : tenumsym; hp : tnode; i : integer; begin case def.typ of orddef: begin set_varstate(left,vs_read,[]); if inlinenumber=in_low_x then v:=torddef(def).low else v:=torddef(def).high; hp:=cordconstnode.create(v,def,true); typecheckpass(hp); do_lowhigh:=hp; end; enumdef: begin set_varstate(left,vs_read,[]); if inlinenumber=in_high_x then v:=tenumdef(def).maxval else v:=tenumdef(def).minval; enum:=nil; for i := 0 to tenumdef(def).symtable.SymList.Count - 1 do if tenumsym(tenumdef(def).symtable.SymList[i]).value=v then begin enum:=tenumsym(tenumdef(def).symtable.SymList[i]); break; end; if not assigned(enum) then internalerror(309993) else hp:=genenumnode(enum); do_lowhigh:=hp; end; else internalerror(87); end; end; function getconstrealvalue : bestreal; begin case left.nodetype of ordconstn: getconstrealvalue:=tordconstnode(left).value; realconstn: getconstrealvalue:=trealconstnode(left).value_real; else internalerror(309992); end; end; procedure setconstrealvalue(r : bestreal); begin result:=crealconstnode.create(r,pbestrealtype^); end; function handle_ln_const(r : bestreal) : tnode; begin if r<=0.0 then if floating_point_range_check_error then begin result:=crealconstnode.create(0,pbestrealtype^); CGMessage(type_e_wrong_math_argument) end else begin if r=0.0 then result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^) else result:=crealconstnode.create(MathNegInf.Value,pbestrealtype^) end else result:=crealconstnode.create(ln(r),pbestrealtype^) end; function handle_sqrt_const(r : bestreal) : tnode; begin if r<0.0 then if floating_point_range_check_error then begin result:=crealconstnode.create(0,pbestrealtype^); CGMessage(type_e_wrong_math_argument) end else result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^) else result:=crealconstnode.create(sqrt(r),pbestrealtype^) end; function handle_const_sar : tnode; var vl,vl2 : TConstExprInt; bits,shift: integer; mask : qword; def : tdef; begin result:=nil; if (left.nodetype=ordconstn) or ((left.nodetype=callparan) and (tcallparanode(left).left.nodetype=ordconstn)) then begin if (left.nodetype=callparan) and assigned(tcallparanode(left).right) then begin if (tcallparanode(tcallparanode(left).right).left.nodetype=ordconstn) then begin def:=tcallparanode(tcallparanode(left).right).left.resultdef; vl:=tordconstnode(tcallparanode(left).left).value; vl2:=tordconstnode(tcallparanode(tcallparanode(left).right).left).value; end else exit; end else begin def:=left.resultdef; vl:=1; vl2:=tordconstnode(left).value; end; bits:=def.size*8; shift:=vl.svalue and (bits-1); case bits of 8: mask:=$ff; 16: mask:=$ffff; 32: mask:=$ffffffff; 64: mask:=qword($ffffffffffffffff); else mask:=qword(1 shl bits)-1; end; {$push} {$r-,q-} if shift=0 then result:=cordconstnode.create(vl2.svalue,def,false) else if vl2.svalue<0 then result:=cordconstnode.create(((vl2.svalue shr shift) or (mask shl (bits-shift))) and mask,def,false) else result:=cordconstnode.create((vl2.svalue shr shift) and mask,def,false); {$pop} end else end; var hp : tnode; vl,vl2 : TConstExprInt; vr : bestreal; begin { simplify } result:=nil; { handle intern constant functions in separate case } if nf_inlineconst in flags then begin { no parameters? } if not assigned(left) then internalerror(200501231) else begin vl:=0; vl2:=0; { second parameter Ex: ptr(vl,vl2) } case left.nodetype of realconstn : begin { Real functions are all handled with internproc below } CGMessage1(type_e_integer_expr_expected,left.resultdef.typename) end; ordconstn : vl:=tordconstnode(left).value; callparan : begin { both exists, else it was not generated } vl:=tordconstnode(tcallparanode(left).left).value; vl2:=tordconstnode(tcallparanode(tcallparanode(left).right).left).value; end; else CGMessage(parser_e_illegal_expression); end; case inlinenumber of in_const_abs : if vl.signed then hp:=genintconstnode(abs(vl.svalue)) else hp:=genintconstnode(vl.uvalue); in_const_sqr: if vl.signed then hp:=genintconstnode(sqr(vl.svalue)) else hp:=genintconstnode(sqr(vl.uvalue)); in_const_odd : hp:=cordconstnode.create(qword(odd(int64(vl))),booltype,true); in_const_swap_word : hp:=cordconstnode.create((vl and $ff) shl 8+(vl shr 8),left.resultdef,true); in_const_swap_long : hp:=cordconstnode.create((vl and $ffff) shl 16+(vl shr 16),left.resultdef,true); in_const_swap_qword : hp:=cordconstnode.create((vl and $ffff) shl 32+(vl shr 32),left.resultdef,true); in_const_ptr: begin {Don't construct pointers from negative values.} if (vl.signed and (vl.svalue<0)) or (vl2.signed and (vl2.svalue<0)) then cgmessage(parser_e_range_check_error); hp:=cpointerconstnode.create((vl2.uvalue shl 4)+vl.uvalue,voidfarpointertype); end else internalerror(88); end; end; if hp=nil then hp:=cerrornode.create; result:=hp; end else begin case inlinenumber of in_lo_long, in_hi_long, in_lo_qword, in_hi_qword, in_lo_word, in_hi_word : begin if left.nodetype=ordconstn then begin case inlinenumber of in_lo_word : result:=cordconstnode.create(tordconstnode(left).value and $ff,u8inttype,true); in_hi_word : result:=cordconstnode.create(tordconstnode(left).value shr 8,u8inttype,true); in_lo_long : result:=cordconstnode.create(tordconstnode(left).value and $ffff,u16inttype,true); in_hi_long : result:=cordconstnode.create(tordconstnode(left).value shr 16,u16inttype,true); in_lo_qword : result:=cordconstnode.create(tordconstnode(left).value and $ffffffff,u32inttype,true); in_hi_qword : result:=cordconstnode.create(tordconstnode(left).value shr 32,u32inttype,true); end; end; end; in_ord_x: begin case left.resultdef.typ of orddef : begin case torddef(left.resultdef).ordtype of pasbool, uchar: begin { change to byte() } result:=ctypeconvnode.create_internal(left,u8inttype); left:=nil; end; uwidechar : begin { change to word() } result:=ctypeconvnode.create_internal(left,u16inttype); left:=nil; end; bool8bit: begin { change to shortint() } result:=ctypeconvnode.create_internal(left,s8inttype); left:=nil; end; bool16bit : begin { change to smallint() } result:=ctypeconvnode.create_internal(left,s16inttype); left:=nil; end; bool32bit : begin { change to longint() } result:=ctypeconvnode.create_internal(left,s32inttype); left:=nil; end; bool64bit : begin { change to int64() } result:=ctypeconvnode.create_internal(left,s64inttype); left:=nil; end; uvoid : CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename); else begin { all other orddef need no transformation } result:=left; left:=nil; end; end; end; enumdef : begin result:=ctypeconvnode.create_internal(left,s32inttype); left:=nil; end; pointerdef : begin if m_mac in current_settings.modeswitches then begin result:=ctypeconvnode.create_internal(left,ptruinttype); left:=nil; end end; end; (* if (left.nodetype=ordconstn) then begin result:=cordconstnode.create( tordconstnode(left).value,sinttype,true); end else if (m_mac in current_settings.modeswitches) and (left.ndoetype=pointerconstn) then result:=cordconstnode.create( tpointerconstnode(left).value,ptruinttype,true); *) end; in_chr_byte: begin { convert to explicit char() } result:=ctypeconvnode.create_internal(left,cchartype); left:=nil; end; in_length_x: begin case left.resultdef.typ of stringdef : begin if (left.nodetype=stringconstn) then begin result:=cordconstnode.create( tstringconstnode(left).len,sinttype,true); end; end; orddef : begin { length of char is always one } if is_char(left.resultdef) or is_widechar(left.resultdef) then begin result:=cordconstnode.create(1,sinttype,false); end end; arraydef : begin if not is_open_array(left.resultdef) and not is_array_of_const(left.resultdef) and not is_dynamic_array(left.resultdef) then result:=cordconstnode.create(tarraydef(left.resultdef).highrange- tarraydef(left.resultdef).lowrange+1, sinttype,true); end; end; end; in_assigned_x: begin if is_constnode(tcallparanode(left).left) or (tcallparanode(left).left.nodetype = pointerconstn) then begin { let an add node figure it out } result:=caddnode.create(unequaln,tcallparanode(left).left,cnilnode.create); tcallparanode(left).left := nil; end; end; in_pred_x, in_succ_x: begin if (left.nodetype=ordconstn) then begin if (inlinenumber=in_succ_x) then vl:=tordconstnode(left).value+1 else vl:=tordconstnode(left).value-1; if is_integer(left.resultdef) then { the type of the original integer constant is irrelevant, it should be automatically adapted to the new value } result:=genintconstnode(vl) else { check the range for enums, chars, booleans } result:=cordconstnode.create(vl,left.resultdef,true) end end; in_low_x, in_high_x: begin case left.resultdef.typ of orddef, enumdef: begin result:=do_lowhigh(left.resultdef); end; setdef: begin result:=do_lowhigh(tsetdef(left.resultdef).elementdef); end; arraydef: begin if (inlinenumber=in_low_x) then begin result:=cordconstnode.create(int64(tarraydef( left.resultdef).lowrange),tarraydef(left.resultdef).rangedef,true); end else if not is_open_array(left.resultdef) and not is_array_of_const(left.resultdef) and not is_dynamic_array(left.resultdef) then result:=cordconstnode.create(int64(tarraydef(left.resultdef).highrange), tarraydef(left.resultdef).rangedef,true); end; stringdef: begin if inlinenumber=in_low_x then begin result:=cordconstnode.create(0,u8inttype,false); end else if not is_ansistring(left.resultdef) and not is_wide_or_unicode_string(left.resultdef) then result:=cordconstnode.create(tstringdef(left.resultdef).len,u8inttype,true) end; end; end; in_exp_real : begin if left.nodetype in [ordconstn,realconstn] then begin result:=crealconstnode.create(exp(getconstrealvalue),pbestrealtype^); if (trealconstnode(result).value_real=MathInf.Value) and floating_point_range_check_error then begin result:=crealconstnode.create(0,pbestrealtype^); CGMessage(parser_e_range_check_error); end; end end; in_trunc_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then begin CGMessage(parser_e_range_check_error); result:=cordconstnode.create(1,s64inttype,false) end else result:=cordconstnode.create(trunc(vr),s64inttype,true) end end; in_round_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then begin CGMessage(parser_e_range_check_error); result:=cordconstnode.create(1,s64inttype,false) end else result:=cordconstnode.create(round(vr),s64inttype,true) end end; in_frac_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(frac(getconstrealvalue)) end; in_int_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(int(getconstrealvalue)); end; in_pi_real : begin if block_type=bt_const then setconstrealvalue(getpi) end; in_cos_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(cos(getconstrealvalue)) end; in_sin_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(sin(getconstrealvalue)) end; in_arctan_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(arctan(getconstrealvalue)) end; in_abs_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(abs(getconstrealvalue)) end; in_abs_long: begin if left.nodetype=ordconstn then begin if tordconstnode(left).value<0 then result:=cordconstnode.create((-tordconstnode(left).value),s32inttype,false) else result:=cordconstnode.create((tordconstnode(left).value),s32inttype,false); end end; in_sqr_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(sqr(getconstrealvalue)) end; in_sqrt_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if vr<0.0 then result:=handle_sqrt_const(vr) else setconstrealvalue(sqrt(vr)); end end; in_ln_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if vr<=0.0 then result:=handle_ln_const(vr) else setconstrealvalue(ln(vr)); end end; in_assert_x_y : begin if not(cs_do_assertion in current_settings.localswitches) then { we need a valid node, so insert a nothingn } result:=cnothingnode.create; end; in_sar_x, in_sar_x_y : begin result:=handle_const_sar; end; end; end; end; function tinlinenode.pass_typecheck:tnode; procedure setfloatresultdef; begin if (left.resultdef.typ=floatdef) and (tfloatdef(left.resultdef).floattype in [s32real,s64real,s80real,sc80real,s128real]) then resultdef:=left.resultdef else begin if (left.nodetype <> ordconstn) then inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; procedure handle_pack_unpack; var source, target, index: tcallparanode; unpackedarraydef, packedarraydef: tarraydef; tempindex: TConstExprInt; begin resultdef:=voidtype; unpackedarraydef := nil; packedarraydef := nil; source := tcallparanode(left); if (inlinenumber = in_unpack_x_y_z) then begin target := tcallparanode(source.right); index := tcallparanode(target.right); { source must be a packed array } if not is_packed_array(source.left.resultdef) then CGMessagePos2(source.left.fileinfo,type_e_got_expected_packed_array,'1',source.left.resultdef.GetTypeName) else packedarraydef := tarraydef(source.left.resultdef); { target can be any kind of array, as long as it's not packed } if (target.left.resultdef.typ <> arraydef) or is_packed_array(target.left.resultdef) then CGMessagePos2(target.left.fileinfo,type_e_got_expected_unpacked_array,'2',target.left.resultdef.GetTypeName) else unpackedarraydef := tarraydef(target.left.resultdef); end else begin index := tcallparanode(source.right); target := tcallparanode(index.right); { source can be any kind of array, as long as it's not packed } if (source.left.resultdef.typ <> arraydef) or is_packed_array(source.left.resultdef) then CGMessagePos2(source.left.fileinfo,type_e_got_expected_unpacked_array,'1',source.left.resultdef.GetTypeName) else unpackedarraydef := tarraydef(source.left.resultdef); { target must be a packed array } if not is_packed_array(target.left.resultdef) then CGMessagePos2(target.left.fileinfo,type_e_got_expected_packed_array,'3',target.left.resultdef.GetTypeName) else packedarraydef := tarraydef(target.left.resultdef); end; if assigned(unpackedarraydef) then begin { index must be compatible with the unpacked array's indextype } inserttypeconv(index.left,unpackedarraydef.rangedef); { range check at compile time if possible } if assigned(packedarraydef) and (index.left.nodetype = ordconstn) and not is_special_array(unpackedarraydef) then begin testrange(unpackedarraydef,tordconstnode(index.left).value,false); tempindex := tordconstnode(index.left).value + packedarraydef.highrange-packedarraydef.lowrange; testrange(unpackedarraydef,tempindex,false); end; end; { source array is read and must be valid } set_varstate(source.left,vs_read,[vsf_must_be_valid]); { target array is written } valid_for_assignment(target.left,true); set_varstate(target.left,vs_written,[]); { index in the unpacked array is read and must be valid } set_varstate(index.left,vs_read,[vsf_must_be_valid]); { if the size of the arrays is 0 (array of empty records), } { do nothing } if (source.resultdef.size = 0) then result:=cnothingnode.create; end; function handle_objc_encode: tnode; var encodedtype: ansistring; errordef: tdef; begin encodedtype:=''; if not objctryencodetype(left.resultdef,encodedtype,errordef) then Message1(type_e_objc_type_unsupported,errordef.typename); result:=cstringconstnode.createpchar(ansistring2pchar(encodedtype),length(encodedtype)); end; var hightree, hp : tnode; begin result:=nil; { when handling writeln "left" contains no valid address } if assigned(left) then begin if left.nodetype=callparan then tcallparanode(left).get_paratype else typecheckpass(left); end; if not(nf_inlineconst in flags) then begin case inlinenumber of in_lo_long, in_hi_long, in_lo_qword, in_hi_qword, in_lo_word, in_hi_word : begin { give warning for incompatibility with tp and delphi } if (inlinenumber in [in_lo_long,in_hi_long,in_lo_qword,in_hi_qword]) and ((m_tp7 in current_settings.modeswitches) or (m_delphi in current_settings.modeswitches)) then CGMessage(type_w_maybe_wrong_hi_lo); set_varstate(left,vs_read,[vsf_must_be_valid]); if not is_integer(left.resultdef) then CGMessage1(type_e_integer_expr_expected,left.resultdef.typename); case inlinenumber of in_lo_word, in_hi_word : resultdef:=u8inttype; in_lo_long, in_hi_long : resultdef:=u16inttype; in_lo_qword, in_hi_qword : resultdef:=u32inttype; end; end; in_sizeof_x: begin { the constant evaluation of in_sizeof_x happens in pexpr where possible } set_varstate(left,vs_read,[]); if paramanager.push_high_param(vs_value,left.resultdef,current_procinfo.procdef.proccalloption) then begin hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)); if assigned(hightree) then begin hp:=caddnode.create(addn,hightree, cordconstnode.create(1,sinttype,false)); if (left.resultdef.typ=arraydef) then if not is_packed_array(tarraydef(left.resultdef)) then begin if (tarraydef(left.resultdef).elesize<>1) then hp:=caddnode.create(muln,hp,cordconstnode.create(tarraydef( left.resultdef).elesize,sinttype,true)); end else if (tarraydef(left.resultdef).elepackedbitsize <> 8) then begin { no packed open array support yet } if (hp.nodetype <> ordconstn) then internalerror(2006081511); hp.free; hp := cordconstnode.create(left.resultdef.size,sinttype,true); { hp:= ctypeconvnode.create_explicit(sinttype, cmoddivnode.create(divn, caddnode.create(addn, caddnode.create(muln,hp,cordconstnode.create(tarraydef( left.resultdef).elepackedbitsize,s64inttype,true)), cordconstnode.create(a,s64inttype,true)), cordconstnode.create(8,s64inttype,true)), sinttype); } end; result:=hp; end; end else resultdef:=sinttype; end; in_typeof_x: begin set_varstate(left,vs_read,[]); resultdef:=voidpointertype; end; in_ord_x: begin set_varstate(left,vs_read,[vsf_must_be_valid]); case left.resultdef.typ of orddef, enumdef : ; pointerdef : begin if not(m_mac in current_settings.modeswitches) then CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename); end else CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename); end; end; in_chr_byte: begin set_varstate(left,vs_read,[vsf_must_be_valid]); end; in_length_x: begin if ((left.resultdef.typ=arraydef) and (not is_special_array(left.resultdef) or is_open_array(left.resultdef))) or (left.resultdef.typ=orddef) then set_varstate(left,vs_read,[]) else set_varstate(left,vs_read,[vsf_must_be_valid]); case left.resultdef.typ of variantdef: begin inserttypeconv(left,cansistringtype); end; stringdef : begin { we don't need string convertions here, } { except if from widestring to ansistring } { and vice versa (that can change the } { length) } if (left.nodetype=typeconvn) and (ttypeconvnode(left).left.resultdef.typ=stringdef) and not(is_wide_or_unicode_string(left.resultdef) xor is_wide_or_unicode_string(ttypeconvnode(left).left.resultdef)) then begin hp:=ttypeconvnode(left).left; ttypeconvnode(left).left:=nil; left.free; left:=hp; end; end; orddef : begin { will be handled in simplify } if not is_char(left.resultdef) and not is_widechar(left.resultdef) then CGMessage(type_e_mismatch); end; pointerdef : begin if is_pchar(left.resultdef) then begin hp := ccallparanode.create(left,nil); result := ccallnode.createintern('fpc_pchar_length',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; exit; end else if is_pwidechar(left.resultdef) then begin hp := ccallparanode.create(left,nil); result := ccallnode.createintern('fpc_pwidechar_length',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; exit; end else CGMessage(type_e_mismatch); end; arraydef : begin if is_open_array(left.resultdef) or is_array_of_const(left.resultdef) then begin hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)); if assigned(hightree) then result:=caddnode.create(addn,hightree, cordconstnode.create(1,sinttype,false)); exit; end else if is_dynamic_array(left.resultdef) then begin hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil); result := ccallnode.createintern('fpc_dynarray_length',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; exit; end else begin { will be handled in simplify } end; end else CGMessage(type_e_mismatch); end; { shortstring return an 8 bit value as the length is the first byte of the string } if is_shortstring(left.resultdef) then resultdef:=u8inttype else resultdef:=sinttype; end; in_typeinfo_x: begin if (left.resultdef.typ=enumdef) and (tenumdef(left.resultdef).has_jumps) then CGMessage(type_e_no_type_info); set_varstate(left,vs_read,[vsf_must_be_valid]); resultdef:=voidpointertype; end; in_assigned_x: begin { the parser has already made sure the expression is valid } { there could be a procvar, which is 2*sizeof(pointer), while we } { must only check the first pointer -> can't just convert to an } { add node in all cases } set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]); resultdef:=booltype; end; in_ofs_x : internalerror(2000101001); in_seg_x : begin set_varstate(left,vs_read,[]); result:=cordconstnode.create(0,s32inttype,false); end; in_pred_x, in_succ_x: begin set_varstate(left,vs_read,[vsf_must_be_valid]); resultdef:=left.resultdef; if not is_ordinal(resultdef) then CGMessage(type_e_ordinal_expr_expected) else begin if (resultdef.typ=enumdef) and (tenumdef(resultdef).has_jumps) and not(m_delphi in current_settings.modeswitches) then CGMessage(type_e_succ_and_pred_enums_with_assign_not_possible); end; end; in_initialize_x, in_finalize_x, in_setlength_x: begin { inlined from pinline } internalerror(200204231); end; in_inc_x, in_dec_x: begin resultdef:=voidtype; if assigned(left) then begin { first param must be var } valid_for_var(tcallparanode(left).left,true); set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]); if (left.resultdef.typ in [enumdef,pointerdef]) or is_ordinal(left.resultdef) or is_currency(left.resultdef) then begin { value of left gets changed -> must be unique } set_unique(tcallparanode(left).left); { two paras ? } if assigned(tcallparanode(left).right) then begin if is_integer(tcallparanode(left).right.resultdef) then begin set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]); { when range/overflow checking is on, we convert this to a regular add, and for proper checking we need the original type } if ([cs_check_range,cs_check_overflow]*current_settings.localswitches=[]) then if is_integer(tcallparanode(left).left.resultdef) then inserttypeconv(tcallparanode(tcallparanode(left).right).left,tcallparanode(left).left.resultdef) else inserttypeconv_internal(tcallparanode(tcallparanode(left).right).left,tcallparanode(left).left.resultdef); if assigned(tcallparanode(tcallparanode(left).right).right) then { should be handled in the parser (JM) } internalerror(2006020901); end else CGMessagePos(tcallparanode(left).right.fileinfo,type_e_ordinal_expr_expected); end; end else CGMessagePos(left.fileinfo,type_e_ordinal_expr_expected); end else CGMessagePos(fileinfo,type_e_mismatch); end; in_read_x, in_readln_x, in_readstr_x, in_write_x, in_writeln_x, in_writestr_x : begin result := handle_read_write; end; in_settextbuf_file_x : begin resultdef:=voidtype; { now we know the type of buffer } hp:=ccallparanode.create(cordconstnode.create( tcallparanode(left).left.resultdef.size,s32inttype,true),left); result:=ccallnode.createintern('SETTEXTBUF',hp); left:=nil; end; { the firstpass of the arg has been done in firstcalln ? } in_reset_typedfile, in_rewrite_typedfile : begin result := handle_reset_rewrite_typed; end; in_str_x_string : begin result:=handle_str; end; in_val_x : begin result:=handle_val; end; in_include_x_y, in_exclude_x_y: begin resultdef:=voidtype; { the parser already checks whether we have two (and exactly two) } { parameters (JM) } { first param must be var } valid_for_var(tcallparanode(left).left,true); set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]); { check type } if (left.resultdef.typ=setdef) then begin { insert a type conversion } { to the type of the set elements } set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]); inserttypeconv(tcallparanode(tcallparanode(left).right).left, tsetdef(left.resultdef).elementdef); end else CGMessage(type_e_mismatch); end; in_pack_x_y_z, in_unpack_x_y_z : begin handle_pack_unpack; end; in_slice_x: begin result:=nil; resultdef:=tcallparanode(left).left.resultdef; if (resultdef.typ <> arraydef) then CGMessagePos(left.fileinfo,type_e_mismatch) else if is_packed_array(resultdef) then CGMessagePos2(left.fileinfo,type_e_got_expected_unpacked_array,'1',resultdef.typename); if not(is_integer(tcallparanode(tcallparanode(left).right).left.resultdef)) then CGMessagePos1(tcallparanode(left).right.fileinfo, type_e_integer_expr_expected, tcallparanode(tcallparanode(left).right).left.resultdef.typename); end; in_low_x, in_high_x: begin case left.resultdef.typ of orddef, enumdef, setdef: ; arraydef: begin if (inlinenumber=in_low_x) then set_varstate(left,vs_read,[]) else begin if is_open_array(left.resultdef) or is_array_of_const(left.resultdef) then begin set_varstate(left,vs_read,[]); result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)); end else if is_dynamic_array(left.resultdef) then begin set_varstate(left,vs_read,[vsf_must_be_valid]); { can't use inserttypeconv because we need } { an explicit type conversion (JM) } hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil); result := ccallnode.createintern('fpc_dynarray_high',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; end else begin set_varstate(left,vs_read,[]); end; end; end; stringdef: begin if inlinenumber=in_low_x then begin set_varstate(left,vs_read,[]); end else begin if is_open_string(left.resultdef) then begin set_varstate(left,vs_read,[]); result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)) end else if is_ansistring(left.resultdef) or is_wide_or_unicode_string(left.resultdef) then CGMessage(type_e_mismatch) end; end; else CGMessage(type_e_mismatch); end; end; in_exp_real, in_frac_real, in_int_real, in_cos_real, in_sin_real, in_arctan_real, in_abs_real, in_ln_real : begin set_varstate(left,vs_read,[vsf_must_be_valid]); { converting an int64 to double on platforms without } { extended can cause precision loss } if not(left.nodetype in [ordconstn,realconstn]) then inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; in_trunc_real, in_round_real : begin set_varstate(left,vs_read,[vsf_must_be_valid]); { for direct float rounding, no best real type cast should be necessary } if not((left.resultdef.typ=floatdef) and (tfloatdef(left.resultdef).floattype in [s32real,s64real,s80real,sc80real,s128real])) and { converting an int64 to double on platforms without } { extended can cause precision loss } not(left.nodetype in [ordconstn,realconstn]) then inserttypeconv(left,pbestrealtype^); resultdef:=s64inttype; end; in_pi_real : begin resultdef:=pbestrealtype^; end; in_abs_long: begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,s32inttype); resultdef:=s32inttype; end; in_sqr_real, in_sqrt_real : begin set_varstate(left,vs_read,[vsf_must_be_valid]); setfloatresultdef; end; {$ifdef SUPPORT_MMX} in_mmx_pcmpeqb..in_mmx_pcmpgtw: begin end; {$endif SUPPORT_MMX} in_unaligned_x: begin resultdef:=left.resultdef; end; in_assert_x_y : begin resultdef:=voidtype; if assigned(left) then begin set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]); { check type } if is_boolean(left.resultdef) then begin set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]); { must always be a string } inserttypeconv(tcallparanode(tcallparanode(left).right).left,cshortstringtype); end else CGMessage1(type_e_boolean_expr_expected,left.resultdef.typename); end else CGMessage(type_e_mismatch); if (cs_do_assertion in current_settings.localswitches) then include(current_procinfo.flags,pi_do_call); end; in_prefetch_var: resultdef:=voidtype; in_get_frame, in_get_caller_frame, in_get_caller_addr: begin resultdef:=voidpointertype; end; in_rol_x, in_ror_x, in_sar_x: begin set_varstate(left,vs_read,[vsf_must_be_valid]); resultdef:=left.resultdef; end; in_rol_x_x, in_ror_x_x, in_sar_x_y: begin set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]); set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]); resultdef:=tcallparanode(tcallparanode(left).right).left.resultdef; end; in_objc_selector_x: begin result:=cobjcselectornode.create(left); { reused } left:=nil; end; in_objc_protocol_x: begin result:=cobjcprotocolnode.create(left); { reused } left:=nil; end; in_objc_encode_x: begin result:=handle_objc_encode; end; else internalerror(8); end; end; if not assigned(result) and not codegenerror then result:=simplify; end; function tinlinenode.pass_1 : tnode; var hp,hpp,resultnode : tnode; shiftconst: longint; tempnode: ttempcreatenode; newstatement: tstatementnode; newblock: tblocknode; begin result:=nil; { if we handle writeln; left contains no valid address } if assigned(left) then begin if left.nodetype=callparan then tcallparanode(left).firstcallparan else firstpass(left); end; { intern const should already be handled } if nf_inlineconst in flags then internalerror(200104044); case inlinenumber of in_lo_qword, in_hi_qword, in_lo_long, in_hi_long, in_lo_word, in_hi_word: begin shiftconst := 0; case inlinenumber of in_hi_qword: shiftconst := 32; in_hi_long: shiftconst := 16; in_hi_word: shiftconst := 8; end; if shiftconst <> 0 then result := ctypeconvnode.create_internal(cshlshrnode.create(shrn,left, cordconstnode.create(shiftconst,u32inttype,false)),resultdef) else result := ctypeconvnode.create_internal(left,resultdef); left := nil; firstpass(result); end; in_sizeof_x: begin expectloc:=LOC_REGISTER; end; in_typeof_x: begin expectloc:=LOC_REGISTER; end; in_length_x: begin if is_shortstring(left.resultdef) then expectloc:=left.expectloc else begin { ansi/wide string } expectloc:=LOC_REGISTER; end; end; in_typeinfo_x: begin expectloc:=LOC_REGISTER; end; in_assigned_x: begin expectloc := LOC_JUMP; end; in_pred_x, in_succ_x: begin expectloc:=LOC_REGISTER; { in case of range/overflow checking, use a regular addnode because it's too complex to handle correctly otherwise } if ([cs_check_overflow,cs_check_range]*current_settings.localswitches)<>[] then begin { create constant 1 } hp:=cordconstnode.create(1,left.resultdef,false); typecheckpass(hp); if not is_integer(hp.resultdef) then inserttypeconv_internal(hp,sinttype); { avoid type errors from the addn/subn } if not is_integer(left.resultdef) then inserttypeconv_internal(left,sinttype); { addition/substraction depending on succ/pred } if inlinenumber=in_succ_x then hp:=caddnode.create(addn,left,hp) else hp:=caddnode.create(subn,left,hp); { assign result of addition } if not(is_integer(resultdef)) then inserttypeconv(hp,torddef.create( {$ifdef cpu64bitaddr} s64bit, {$else cpu64bitaddr} s32bit, {$endif cpu64bitaddr} get_min_value(resultdef), get_max_value(resultdef))) else inserttypeconv(hp,resultdef); { avoid any possible errors/warnings } inserttypeconv_internal(hp,resultdef); { firstpass it } firstpass(hp); { left is reused } left:=nil; { return new node } result:=hp; end; end; in_setlength_x, in_initialize_x, in_finalize_x: begin expectloc:=LOC_VOID; end; in_inc_x, in_dec_x: begin expectloc:=LOC_VOID; { range/overflow checking doesn't work properly } { with the inc/dec code that's generated (JM) } if (current_settings.localswitches * [cs_check_overflow,cs_check_range] <> []) and { No overflow check for pointer operations, because inc(pointer,-1) will always trigger an overflow. For uint32 it works because then the operation is done in 64bit. Range checking is not applicable to pointers either } (tcallparanode(left).left.resultdef.typ<>pointerdef) then { convert to simple add (JM) } begin newblock := internalstatements(newstatement); { extra parameter? } if assigned(tcallparanode(left).right) then begin { Yes, use for add node } hpp := tcallparanode(tcallparanode(left).right).left; tcallparanode(tcallparanode(left).right).left := nil; if assigned(tcallparanode(tcallparanode(left).right).right) then CGMessage(parser_e_illegal_expression); end else begin { no, create constant 1 } hpp := cordconstnode.create(1,tcallparanode(left).left.resultdef,false); end; typecheckpass(hpp); if not((hpp.resultdef.typ=orddef) and {$ifndef cpu64bitaddr} (torddef(hpp.resultdef).ordtype=u32bit)) then {$else not cpu64bitaddr} (torddef(hpp.resultdef).ordtype=u64bit)) then {$endif not cpu64bitaddr} inserttypeconv_internal(hpp,sinttype); { make sure we don't call functions part of the left node twice (and generally } { optimize the code generation) } if node_complexity(tcallparanode(left).left) > 1 then begin tempnode := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true); addstatement(newstatement,tempnode); addstatement(newstatement,cassignmentnode.create(ctemprefnode.create(tempnode), caddrnode.create_internal(tcallparanode(left).left.getcopy))); hp := cderefnode.create(ctemprefnode.create(tempnode)); inserttypeconv_internal(hp,tcallparanode(left).left.resultdef); end else begin hp := tcallparanode(left).left.getcopy; tempnode := nil; end; resultnode := hp.getcopy; { avoid type errors from the addn/subn } if not is_integer(resultnode.resultdef) then begin inserttypeconv_internal(hp,sinttype); inserttypeconv_internal(hpp,sinttype); end; { addition/substraction depending on inc/dec } if inlinenumber = in_inc_x then hpp := caddnode.create(addn,hp,hpp) else hpp := caddnode.create(subn,hp,hpp); { assign result of addition } if not(is_integer(resultnode.resultdef)) then inserttypeconv(hpp,torddef.create( {$ifdef cpu64bitaddr} s64bit, {$else cpu64bitaddr} s32bit, {$endif cpu64bitaddr} get_min_value(resultnode.resultdef), get_max_value(resultnode.resultdef))) else inserttypeconv(hpp,resultnode.resultdef); { avoid any possible warnings } inserttypeconv_internal(hpp,resultnode.resultdef); addstatement(newstatement,cassignmentnode.create(resultnode,hpp)); { deallocate the temp } if assigned(tempnode) then addstatement(newstatement,ctempdeletenode.create(tempnode)); { firstpass it } firstpass(tnode(newblock)); { return new node } result := newblock; end; end; in_include_x_y, in_exclude_x_y: begin expectloc:=LOC_VOID; end; in_pack_x_y_z, in_unpack_x_y_z: begin result:=first_pack_unpack; end; in_exp_real: begin result:= first_exp_real; end; in_round_real: begin result:= first_round_real; end; in_trunc_real: begin result:= first_trunc_real; end; in_int_real: begin result:= first_int_real; end; in_frac_real: begin result:= first_frac_real; end; in_cos_real: begin result:= first_cos_real; end; in_sin_real: begin result := first_sin_real; end; in_arctan_real: begin result := first_arctan_real; end; in_pi_real : begin result := first_pi; end; in_abs_real: begin result := first_abs_real; end; in_abs_long: begin result := first_abs_long; end; in_sqr_real: begin result := first_sqr_real; end; in_sqrt_real: begin result := first_sqrt_real; end; in_ln_real: begin result := first_ln_real; end; {$ifdef SUPPORT_MMX} in_mmx_pcmpeqb..in_mmx_pcmpgtw: begin end; {$endif SUPPORT_MMX} in_assert_x_y : begin expectloc:=LOC_VOID; end; in_low_x, in_high_x: internalerror(200104047); in_slice_x: internalerror(2005101501); in_ord_x, in_chr_byte: begin { should not happend as it's converted to typeconv } internalerror(200104045); end; in_ofs_x : internalerror(2000101001); in_seg_x : internalerror(200104046); in_settextbuf_file_x, in_reset_typedfile, in_rewrite_typedfile, in_str_x_string, in_val_x, in_read_x, in_readln_x, in_write_x, in_writeln_x : begin { should be handled by pass_typecheck } internalerror(200108234); end; in_get_frame: begin include(current_procinfo.flags,pi_needs_stackframe); expectloc:=LOC_CREGISTER; end; in_get_caller_frame: begin expectloc:=LOC_REGISTER; end; in_get_caller_addr: begin expectloc:=LOC_REGISTER; end; in_prefetch_var: begin expectloc:=LOC_VOID; end; in_unaligned_x: begin expectloc:=tcallparanode(left).left.expectloc; end; in_rol_x, in_rol_x_x, in_ror_x, in_ror_x_x, in_sar_x, in_sar_x_y: expectloc:=LOC_REGISTER; else internalerror(89); end; end; {$maxfpuregisters default} function tinlinenode.docompare(p: tnode): boolean; begin docompare := inherited docompare(p) and (inlinenumber = tinlinenode(p).inlinenumber); end; function tinlinenode.first_pi : tnode; begin result:=crealconstnode.create(getpi,pbestrealtype^); end; function tinlinenode.first_arctan_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_arctan_real := ccallnode.createintern('fpc_arctan_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_abs_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_abs_real := ccallnode.createintern('fpc_abs_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_sqr_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_sqr_real := ctypeconvnode.create(ccallnode.createintern('fpc_sqr_real', ccallparanode.create(left,nil)),resultdef); left := nil; end; function tinlinenode.first_sqrt_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_sqrt_real := ctypeconvnode.create(ccallnode.createintern('fpc_sqrt_real', ccallparanode.create(left,nil)),resultdef); left := nil; end; function tinlinenode.first_ln_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_ln_real := ccallnode.createintern('fpc_ln_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_cos_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_cos_real := ccallnode.createintern('fpc_cos_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_sin_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_sin_real := ccallnode.createintern('fpc_sin_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_exp_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_exp_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_int_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_int_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_frac_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_frac_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_round_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_round_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_trunc_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_trunc_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_abs_long : tnode; begin expectloc:=LOC_REGISTER; result:=nil; end; function tinlinenode.first_pack_unpack: tnode; var loopstatement : tstatementnode; loop : tblocknode; loopvar : ttempcreatenode; tempnode, source, target, index, unpackednode, packednode, sourcevecindex, targetvecindex, loopbody : tnode; temprangedef : tdef; ulorange, uhirange, plorange, phirange : TConstExprInt; begin { transform into a for loop which assigns the data of the (un)packed } { array to the other one } source := left; if (inlinenumber = in_unpack_x_y_z) then begin target := tcallparanode(source).right; index := tcallparanode(target).right; packednode := tcallparanode(source).left; unpackednode := tcallparanode(target).left; end else begin index := tcallparanode(source).right; target := tcallparanode(index).right; packednode := tcallparanode(target).left; unpackednode := tcallparanode(source).left; end; source := tcallparanode(source).left; target := tcallparanode(target).left; index := tcallparanode(index).left; loop := internalstatements(loopstatement); loopvar := ctempcreatenode.create( tarraydef(packednode.resultdef).rangedef, tarraydef(packednode.resultdef).rangedef.size, tt_persistent,true); addstatement(loopstatement,loopvar); { For range checking: we have to convert to an integer type (in case the index type } { is an enum), add the index and loop variable together, convert the result } { implicitly to an orddef with range equal to the rangedef to get range checking } { and finally convert it explicitly back to the actual rangedef to avoid type } { errors } temprangedef:=nil; getrange(unpackednode.resultdef,ulorange,uhirange); getrange(packednode.resultdef,plorange,phirange); temprangedef:=torddef.create(torddef(sinttype).ordtype,ulorange,uhirange); sourcevecindex := ctemprefnode.create(loopvar); targetvecindex := ctypeconvnode.create_internal(index.getcopy,sinttype); targetvecindex := caddnode.create(subn,targetvecindex,cordconstnode.create(plorange,sinttype,true)); targetvecindex := caddnode.create(addn,targetvecindex,ctemprefnode.create(loopvar)); targetvecindex := ctypeconvnode.create(targetvecindex,temprangedef); targetvecindex := ctypeconvnode.create_explicit(targetvecindex,tarraydef(unpackednode.resultdef).rangedef); if (inlinenumber = in_pack_x_y_z) then begin { swap source and target vec indices } tempnode := sourcevecindex; sourcevecindex := targetvecindex; targetvecindex := tempnode; end; { create the assignment in the loop body } loopbody := cassignmentnode.create( cvecnode.create(target.getcopy,targetvecindex), cvecnode.create(source.getcopy,sourcevecindex) ); { create the actual for loop } tempnode := cfornode.create( ctemprefnode.create(loopvar), cinlinenode.create(in_low_x,false,packednode.getcopy), cinlinenode.create(in_high_x,false,packednode.getcopy), loopbody, false); addstatement(loopstatement,tempnode); { free the loop counter } addstatement(loopstatement,ctempdeletenode.create(loopvar)); result := loop; end; begin cinlinenode:=tinlinenode; end.