{ $Id$ Copyright (C) 1998-2000 by Florian Klaempfl This unit provides some help routines for type handling This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit types; {$i defines.inc} interface uses cobjects, cpuinfo, node, symtable; type tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit, mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle); const { true if we must never copy this parameter } never_copy_const_param : boolean = false; {***************************************************************************** Basic type functions *****************************************************************************} { returns true, if def defines an ordinal type } function is_ordinal(def : pdef) : boolean; { returns the min. value of the type } function get_min_value(def : pdef) : longint; { returns true, if def defines an ordinal type } function is_integer(def : pdef) : boolean; { true if p is a boolean } function is_boolean(def : pdef) : boolean; { true if p is a char } function is_char(def : pdef) : boolean; { true if p is a void} function is_void(def : pdef) : boolean; { true if p is a smallset def } function is_smallset(p : pdef) : boolean; { returns true, if def defines a signed data type (only for ordinal types) } function is_signed(def : pdef) : boolean; {***************************************************************************** Array helper functions *****************************************************************************} { true, if p points to a zero based (non special like open or dynamic array def, mainly this is used to see if the array is convertable to a pointer } function is_zero_based_array(p : pdef) : boolean; { true if p points to an open array def } function is_open_array(p : pdef) : boolean; { true, if p points to an array of const def } function is_array_constructor(p : pdef) : boolean; { true, if p points to a variant array } function is_variant_array(p : pdef) : boolean; { true, if p points to an array of const } function is_array_of_const(p : pdef) : boolean; { true, if p points any kind of special array } function is_special_array(p : pdef) : boolean; { true if p is a char array def } function is_chararray(p : pdef) : boolean; {***************************************************************************** String helper functions *****************************************************************************} { true if p points to an open string def } function is_open_string(p : pdef) : boolean; { true if p is an ansi string def } function is_ansistring(p : pdef) : boolean; { true if p is a long string def } function is_longstring(p : pdef) : boolean; { true if p is a wide string def } function is_widestring(p : pdef) : boolean; { true if p is a short string def } function is_shortstring(p : pdef) : boolean; { true if p is a pchar def } function is_pchar(p : pdef) : boolean; { true if p is a voidpointer def } function is_voidpointer(p : pdef) : boolean; { returns true, if def uses FPU } function is_fpu(def : pdef) : boolean; { true if the return value is in EAX } function ret_in_acc(def : pdef) : boolean; { true if uses a parameter as return value } function ret_in_param(def : pdef) : boolean; { true, if def is a 64 bit int type } function is_64bitint(def : pdef) : boolean; function push_high_param(def : pdef) : boolean; { true if a parameter is too large to copy and only the address is pushed } function push_addr_param(def : pdef) : boolean; { true, if def1 and def2 are semantical the same } function is_equal(def1,def2 : pdef) : boolean; { checks for type compatibility (subgroups of type) } { used for case statements... probably missing stuff } { to use on other types } function is_subequal(def1, def2: pdef): boolean; type tconverttype = ( tc_equal, tc_not_possible, tc_string_2_string, tc_char_2_string, tc_pchar_2_string, tc_cchar_2_pchar, tc_cstring_2_pchar, tc_ansistring_2_pchar, tc_string_2_chararray, tc_chararray_2_string, tc_array_2_pointer, tc_pointer_2_array, tc_int_2_int, tc_int_2_bool, tc_bool_2_bool, tc_bool_2_int, tc_real_2_real, tc_int_2_real, tc_int_2_fix, tc_real_2_fix, tc_fix_2_real, tc_proc_2_procvar, tc_arrayconstructor_2_set, tc_load_smallset, tc_cord_2_pointer ); function assignment_overloaded(from_def,to_def : pdef) : pprocdef; { Returns: 0 - Not convertable 1 - Convertable 2 - Convertable, but not first choice } function isconvertable(def_from,def_to : pdef; var doconv : tconverttype;fromtreetype : tnodetype; explicit : boolean) : byte; { same as is_equal, but with error message if failed } function CheckTypes(def1,def2 : pdef) : boolean; function equal_constsym(sym1,sym2:pconstsym):boolean; { true, if two parameter lists are equal } { if acp is cp_none, all have to match exactly } { if acp is cp_value_equal_const call by value } { and call by const parameter are assumed as } { equal } { if acp is cp_all the var const or nothing are considered equal } type compare_type = ( cp_none, cp_value_equal_const, cp_all); function equal_paras(paralist1,paralist2 : plinkedlist; acp : compare_type) : boolean; { true if a type can be allowed for another one in a func var } function convertable_paras(paralist1,paralist2 : plinkedlist; acp : compare_type) : boolean; { true if a function can be assigned to a procvar } function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean; { if l isn't in the range of def a range check error is generated and the value is placed within the range } procedure testrange(def : pdef;var l : tconstexprint); { returns the range of def } procedure getrange(def : pdef;var l : longint;var h : longint); { some type helper routines for MMX support } function is_mmx_able_array(p : pdef) : boolean; { returns the mmx type } function mmx_type(p : pdef) : tmmxtype; { returns true, if sym needs an entry in the proplist of a class rtti } function needs_prop_entry(sym : psym) : boolean; { returns true, if p contains data which needs init/final code } function needs_init_final(p : psymtable) : boolean; implementation uses globtype,globals, verbose,symconst,tokens; var b_needs_init_final : boolean; procedure _needs_init_final(p : pnamedindexobject); begin if (psym(p)^.typ=varsym) and assigned(pvarsym(p)^.vartype.def) and not((pvarsym(p)^.vartype.def^.deftype=objectdef) and pobjectdef(pvarsym(p)^.vartype.def)^.is_class) and pvarsym(p)^.vartype.def^.needs_inittable then b_needs_init_final:=true; end; { returns true, if p contains data which needs init/final code } function needs_init_final(p : psymtable) : boolean; begin b_needs_init_final:=false; p^.foreach({$ifdef FPCPROCVAR}@{$endif}_needs_init_final); needs_init_final:=b_needs_init_final; end; function needs_prop_entry(sym : psym) : boolean; begin needs_prop_entry:=(sp_published in psym(sym)^.symoptions) and (sym^.typ in [propertysym,varsym]); end; function equal_constsym(sym1,sym2:pconstsym):boolean; var p1,p2,pend : pchar; begin equal_constsym:=false; if sym1^.consttyp<>sym2^.consttyp then exit; case sym1^.consttyp of constint, constbool, constchar, constpointer, constord : equal_constsym:=(sym1^.value=sym2^.value); conststring,constresourcestring : begin if sym1^.len=sym2^.len then begin p1:=pchar(tpointerord(sym1^.value)); p2:=pchar(tpointerord(sym2^.value)); pend:=p1+sym1^.len; while (p1p2^ then break; inc(p1); inc(p2); end; if (p1=pend) then equal_constsym:=true; end; end; constreal : equal_constsym:=(pbestreal(tpointerord(sym1^.value))^=pbestreal(tpointerord(sym2^.value))^); constset : equal_constsym:=(pnormalset(tpointerord(sym1^.value))^=pnormalset(tpointerord(sym2^.value))^); constnil : equal_constsym:=true; end; end; { compare_type = ( cp_none, cp_value_equal_const, cp_all); } function equal_paras(paralist1,paralist2 : plinkedlist; acp : compare_type) : boolean; var def1,def2 : pparaitem; begin def1:=pparaitem(paralist1^.first); def2:=pparaitem(paralist2^.first); while (assigned(def1)) and (assigned(def2)) do begin case acp of cp_value_equal_const : begin if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or ((def1^.paratyp<>def2^.paratyp) and ((def1^.paratyp in [vs_var,vs_out]) or (def2^.paratyp in [vs_var,vs_out]) ) ) then begin equal_paras:=false; exit; end; end; cp_all : begin if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or (def1^.paratyp<>def2^.paratyp) then begin equal_paras:=false; exit; end; end; cp_none : begin if not(is_equal(def1^.paratype.def,def2^.paratype.def)) then begin equal_paras:=false; exit; end; { also check default value if both have it declared } if assigned(def1^.defaultvalue) and assigned(def2^.defaultvalue) then begin if not equal_constsym(pconstsym(def1^.defaultvalue),pconstsym(def2^.defaultvalue)) then begin equal_paras:=false; exit; end; end; end; end; def1:=pparaitem(def1^.next); def2:=pparaitem(def2^.next); end; if (def1=nil) and (def2=nil) then equal_paras:=true else equal_paras:=false; end; function convertable_paras(paralist1,paralist2 : plinkedlist;acp : compare_type) : boolean; var def1,def2 : pparaitem; doconv : tconverttype; begin def1:=pparaitem(paralist1^.first); def2:=pparaitem(paralist2^.first); while (assigned(def1)) and (assigned(def2)) do begin case acp of cp_value_equal_const : begin if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or ((def1^.paratyp<>def2^.paratyp) and ((def1^.paratyp in [vs_out,vs_var]) or (def2^.paratyp in [vs_out,vs_var]) ) ) then begin convertable_paras:=false; exit; end; end; cp_all : begin if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or (def1^.paratyp<>def2^.paratyp) then begin convertable_paras:=false; exit; end; end; cp_none : begin if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) then begin convertable_paras:=false; exit; end; end; end; def1:=pparaitem(def1^.next); def2:=pparaitem(def2^.next); end; if (def1=nil) and (def2=nil) then convertable_paras:=true else convertable_paras:=false; end; { true if a function can be assigned to a procvar } function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean; const po_comp = po_compatibility_options-[po_methodpointer,po_classmethod]; var ismethod : boolean; begin proc_to_procvar_equal:=false; if not(assigned(def1)) or not(assigned(def2)) then exit; { check for method pointer } ismethod:=assigned(def1^.owner) and (def1^.owner^.symtabletype=objectsymtable); { I think methods of objects are also not compatible } { with procedure variables! (FK) and assigned(def1^.owner^.defowner) and (pobjectdef(def1^.owner^.defowner)^.is_class); } if (ismethod and not (po_methodpointer in def2^.procoptions)) or (not(ismethod) and (po_methodpointer in def2^.procoptions)) then begin Message(type_e_no_method_and_procedure_not_compatible); exit; end; { check return value and para's and options, methodpointer is already checked parameters may also be convertable } if is_equal(def1^.rettype.def,def2^.rettype.def) and (equal_paras(def1^.para,def2^.para,cp_all) or convertable_paras(def1^.para,def2^.para,cp_all)) and ((po_comp * def1^.procoptions)= (po_comp * def2^.procoptions)) then proc_to_procvar_equal:=true else proc_to_procvar_equal:=false; end; { returns true, if def uses FPU } function is_fpu(def : pdef) : boolean; begin is_fpu:=(def^.deftype=floatdef) and (pfloatdef(def)^.typ<>f32bit); end; { true if p is an ordinal } function is_ordinal(def : pdef) : boolean; var dt : tbasetype; begin case def^.deftype of orddef : begin dt:=porddef(def)^.typ; is_ordinal:=dt in [uchar, u8bit,u16bit,u32bit,u64bit, s8bit,s16bit,s32bit,s64bit, bool8bit,bool16bit,bool32bit]; end; enumdef : is_ordinal:=true; else is_ordinal:=false; end; end; { returns the min. value of the type } function get_min_value(def : pdef) : longint; begin case def^.deftype of orddef: get_min_value:=porddef(def)^.low; enumdef: get_min_value:=penumdef(def)^.min; else get_min_value:=0; end; end; { true if p is an integer } function is_integer(def : pdef) : boolean; begin is_integer:=(def^.deftype=orddef) and (porddef(def)^.typ in [uauto,u8bit,u16bit,u32bit,u64bit, s8bit,s16bit,s32bit,s64bit]); end; { true if p is a boolean } function is_boolean(def : pdef) : boolean; begin is_boolean:=(def^.deftype=orddef) and (porddef(def)^.typ in [bool8bit,bool16bit,bool32bit]); end; { true if p is a void } function is_void(def : pdef) : boolean; begin is_void:=(def^.deftype=orddef) and (porddef(def)^.typ=uvoid); end; { true if p is a char } function is_char(def : pdef) : boolean; begin is_char:=(def^.deftype=orddef) and (porddef(def)^.typ=uchar); end; { true if p is signed (integer) } function is_signed(def : pdef) : boolean; var dt : tbasetype; begin case def^.deftype of orddef : begin dt:=porddef(def)^.typ; is_signed:=(dt in [s8bit,s16bit,s32bit,s64bit]); end; enumdef : is_signed:=false; else is_signed:=false; end; end; { true, if p points to an open array def } function is_open_string(p : pdef) : boolean; begin is_open_string:=(p^.deftype=stringdef) and (pstringdef(p)^.string_typ=st_shortstring) and (pstringdef(p)^.len=0); end; { true, if p points to a zero based array def } function is_zero_based_array(p : pdef) : boolean; begin is_zero_based_array:=(p^.deftype=arraydef) and (parraydef(p)^.lowrange=0) and not(is_special_array(p)); end; { true, if p points to an open array def } function is_open_array(p : pdef) : boolean; begin { check for s32bitdef is needed, because for u32bit the high range is also -1 ! (PFV) } is_open_array:=(p^.deftype=arraydef) and (parraydef(p)^.rangetype.def=pdef(s32bitdef)) and (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=-1) and not(parraydef(p)^.IsConstructor) and not(parraydef(p)^.IsVariant) and not(parraydef(p)^.IsArrayOfConst); end; { true, if p points to an array of const def } function is_array_constructor(p : pdef) : boolean; begin is_array_constructor:=(p^.deftype=arraydef) and (parraydef(p)^.IsConstructor); end; { true, if p points to a variant array } function is_variant_array(p : pdef) : boolean; begin is_variant_array:=(p^.deftype=arraydef) and (parraydef(p)^.IsVariant); end; { true, if p points to an array of const } function is_array_of_const(p : pdef) : boolean; begin is_array_of_const:=(p^.deftype=arraydef) and (parraydef(p)^.IsArrayOfConst); end; { true, if p points to a special array } function is_special_array(p : pdef) : boolean; begin is_special_array:=(p^.deftype=arraydef) and ((parraydef(p)^.IsVariant) or (parraydef(p)^.IsArrayOfConst) or (parraydef(p)^.IsConstructor) or is_open_array(p) ); end; { true if p is an ansi string def } function is_ansistring(p : pdef) : boolean; begin is_ansistring:=(p^.deftype=stringdef) and (pstringdef(p)^.string_typ=st_ansistring); end; { true if p is an long string def } function is_longstring(p : pdef) : boolean; begin is_longstring:=(p^.deftype=stringdef) and (pstringdef(p)^.string_typ=st_longstring); end; { true if p is an wide string def } function is_widestring(p : pdef) : boolean; begin is_widestring:=(p^.deftype=stringdef) and (pstringdef(p)^.string_typ=st_widestring); end; { true if p is an short string def } function is_shortstring(p : pdef) : boolean; begin is_shortstring:=(p^.deftype=stringdef) and (pstringdef(p)^.string_typ=st_shortstring); end; { true if p is a char array def } function is_chararray(p : pdef) : boolean; begin is_chararray:=(p^.deftype=arraydef) and is_equal(parraydef(p)^.elementtype.def,cchardef) and not(is_special_array(p)); end; { true if p is a pchar def } function is_pchar(p : pdef) : boolean; begin is_pchar:=(p^.deftype=pointerdef) and is_equal(Ppointerdef(p)^.pointertype.def,cchardef); end; { true if p is a voidpointer def } function is_voidpointer(p : pdef) : boolean; begin is_voidpointer:=(p^.deftype=pointerdef) and is_equal(Ppointerdef(p)^.pointertype.def,voiddef); end; { true if p is a smallset def } function is_smallset(p : pdef) : boolean; begin is_smallset:=(p^.deftype=setdef) and (psetdef(p)^.settype=smallset); end; { true if the return value is in accumulator (EAX for i386), D0 for 68k } function ret_in_acc(def : pdef) : boolean; begin ret_in_acc:=(def^.deftype in [orddef,pointerdef,enumdef,classrefdef]) or ((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_ansistring,st_widestring])) or ((def^.deftype=procvardef) and not(po_methodpointer in pprocvardef(def)^.procoptions)) or ((def^.deftype=objectdef) and pobjectdef(def)^.is_class) or ((def^.deftype=setdef) and (psetdef(def)^.settype=smallset)) or ((def^.deftype=floatdef) and (pfloatdef(def)^.typ=f32bit)); end; { true, if def is a 64 bit int type } function is_64bitint(def : pdef) : boolean; begin is_64bitint:=(def^.deftype=orddef) and (porddef(def)^.typ in [u64bit,s64bit]) end; { true if uses a parameter as return value } function ret_in_param(def : pdef) : boolean; begin ret_in_param:=(def^.deftype in [arraydef,recorddef]) or ((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_shortstring,st_longstring])) or ((def^.deftype=procvardef) and (po_methodpointer in pprocvardef(def)^.procoptions)) or ((def^.deftype=objectdef) and not(pobjectdef(def)^.is_class)) or ((def^.deftype=setdef) and (psetdef(def)^.settype<>smallset)); end; function push_high_param(def : pdef) : boolean; begin push_high_param:=is_open_array(def) or is_open_string(def) or is_array_of_const(def); end; { true if a parameter is too large to copy and only the address is pushed } function push_addr_param(def : pdef) : boolean; begin push_addr_param:=false; if never_copy_const_param then push_addr_param:=true else begin case def^.deftype of formaldef : push_addr_param:=true; recorddef : push_addr_param:=(def^.size>4); arraydef : push_addr_param:=((Parraydef(def)^.highrange>=Parraydef(def)^.lowrange) and (def^.size>4)) or is_open_array(def) or is_array_of_const(def) or is_array_constructor(def); objectdef : push_addr_param:=not(pobjectdef(def)^.is_class); stringdef : push_addr_param:=pstringdef(def)^.string_typ in [st_shortstring,st_longstring]; procvardef : push_addr_param:=(po_methodpointer in pprocvardef(def)^.procoptions); setdef : push_addr_param:=(psetdef(def)^.settype<>smallset); end; end; end; { test if l is in the range of def, outputs error if out of range } procedure testrange(def : pdef;var l : tconstexprint); var lv,hv: longint; begin { for 64 bit types we need only to check if it is less than } { zero, if def is a qword node } if is_64bitint(def) then begin if (l<0) and (porddef(def)^.typ=u64bit) then begin l:=0; if (cs_check_range in aktlocalswitches) then Message(parser_e_range_check_error) else Message(parser_w_range_check_error); end; end else begin getrange(def,lv,hv); if (def^.deftype=orddef) and (porddef(def)^.typ=u32bit) then begin if lv<=hv then begin if (lhv) then begin if (cs_check_range in aktlocalswitches) then Message(parser_e_range_check_error) else Message(parser_w_range_check_error); end; end else { this happens with the wrap around problem } { if lv is positive and hv is over $7ffffff } { so it seems negative } begin if ((l>=0) and (lhv)) then begin if (cs_check_range in aktlocalswitches) then Message(parser_e_range_check_error) else Message(parser_w_range_check_error); end; end; end else if (lhv) then begin if (def^.deftype=enumdef) or (cs_check_range in aktlocalswitches) then Message(parser_e_range_check_error) else Message(parser_w_range_check_error); { Fix the value to fit in the allocated space for this type of variable } case def^.size of 1: l := l and $ff; 2: l := l and $ffff; end { l:=lv+(l mod (hv-lv+1));} end; end; end; { return the range from def in l and h } procedure getrange(def : pdef;var l : longint;var h : longint); begin case def^.deftype of orddef : begin l:=porddef(def)^.low; h:=porddef(def)^.high; end; enumdef : begin l:=penumdef(def)^.min; h:=penumdef(def)^.max; end; arraydef : begin l:=parraydef(def)^.lowrange; h:=parraydef(def)^.highrange; end; else internalerror(987); end; end; function mmx_type(p : pdef) : tmmxtype; begin mmx_type:=mmxno; if is_mmx_able_array(p) then begin if parraydef(p)^.elementtype.def^.deftype=floatdef then case pfloatdef(parraydef(p)^.elementtype.def)^.typ of s32real: mmx_type:=mmxsingle; f16bit: mmx_type:=mmxfixed16 end else case porddef(parraydef(p)^.elementtype.def)^.typ of u8bit: mmx_type:=mmxu8bit; s8bit: mmx_type:=mmxs8bit; u16bit: mmx_type:=mmxu16bit; s16bit: mmx_type:=mmxs16bit; u32bit: mmx_type:=mmxu32bit; s32bit: mmx_type:=mmxs32bit; end; end; end; function is_mmx_able_array(p : pdef) : boolean; begin {$ifdef SUPPORT_MMX} if (cs_mmx_saturation in aktlocalswitches) then begin is_mmx_able_array:=(p^.deftype=arraydef) and not(is_special_array(p)) and ( ( (parraydef(p)^.elementtype.def^.deftype=orddef) and ( ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=1) and (porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit]) ) or ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=3) and (porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit]) ) ) ) or ( ( (parraydef(p)^.elementtype.def^.deftype=floatdef) and ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=3) and (pfloatdef(parraydef(p)^.elementtype.def)^.typ=f16bit) ) or ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=1) and (pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real) ) ) ) ); end else begin is_mmx_able_array:=(p^.deftype=arraydef) and ( ( (parraydef(p)^.elementtype.def^.deftype=orddef) and ( ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=1) and (porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit]) ) or ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=3) and (porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit]) ) or ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=7) and (porddef(parraydef(p)^.elementtype.def)^.typ in [u8bit,s8bit]) ) ) ) or ( (parraydef(p)^.elementtype.def^.deftype=floatdef) and ( ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=3) and (pfloatdef(parraydef(p)^.elementtype.def)^.typ=f32bit) ) or ( (parraydef(p)^.lowrange=0) and (parraydef(p)^.highrange=1) and (pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real) ) ) ) ); end; {$else SUPPORT_MMX} is_mmx_able_array:=false; {$endif SUPPORT_MMX} end; function is_equal(def1,def2 : pdef) : boolean; var b : boolean; hd : pdef; begin { both types must exists } if not (assigned(def1) and assigned(def2)) then begin is_equal:=false; exit; end; { be sure, that if there is a stringdef, that this is def1 } if def2^.deftype=stringdef then begin hd:=def1; def1:=def2; def2:=hd; end; b:=false; { both point to the same definition ? } if def1=def2 then b:=true else { pointer with an equal definition are equal } if (def1^.deftype=pointerdef) and (def2^.deftype=pointerdef) then begin { here a problem detected in tabsolutesym } { the types can be forward type !! } if assigned(def1^.typesym) and (ppointerdef(def1)^.pointertype.def^.deftype=forwarddef) then b:=(def1^.typesym=def2^.typesym) else b:=ppointerdef(def1)^.pointertype.def=ppointerdef(def2)^.pointertype.def; end else { ordinals are equal only when the ordinal type is equal } if (def1^.deftype=orddef) and (def2^.deftype=orddef) then begin case porddef(def1)^.typ of u8bit,u16bit,u32bit, s8bit,s16bit,s32bit: b:=((porddef(def1)^.typ=porddef(def2)^.typ) and (porddef(def1)^.low=porddef(def2)^.low) and (porddef(def1)^.high=porddef(def2)^.high)); uvoid,uchar, bool8bit,bool16bit,bool32bit: b:=(porddef(def1)^.typ=porddef(def2)^.typ); end; end else if (def1^.deftype=floatdef) and (def2^.deftype=floatdef) then b:=pfloatdef(def1)^.typ=pfloatdef(def2)^.typ else { strings with the same length are equal } if (def1^.deftype=stringdef) and (def2^.deftype=stringdef) and (pstringdef(def1)^.string_typ=pstringdef(def2)^.string_typ) then begin b:=not(is_shortstring(def1)) or (pstringdef(def1)^.len=pstringdef(def2)^.len); end else if (def1^.deftype=formaldef) and (def2^.deftype=formaldef) then b:=true { file types with the same file element type are equal } { this is a problem for assign !! } { changed to allow if one is untyped } { all typed files are equal to the special } { typed file that has voiddef as elemnt type } { but must NOT match for text file !!! } else if (def1^.deftype=filedef) and (def2^.deftype=filedef) then b:=(pfiledef(def1)^.filetyp=pfiledef(def2)^.filetyp) and (( ((pfiledef(def1)^.typedfiletype.def=nil) and (pfiledef(def2)^.typedfiletype.def=nil)) or ( (pfiledef(def1)^.typedfiletype.def<>nil) and (pfiledef(def2)^.typedfiletype.def<>nil) and is_equal(pfiledef(def1)^.typedfiletype.def,pfiledef(def2)^.typedfiletype.def) ) or ( (pfiledef(def1)^.typedfiletype.def=pdef(voiddef)) or (pfiledef(def2)^.typedfiletype.def=pdef(voiddef)) ))) { sets with the same element type are equal } else if (def1^.deftype=setdef) and (def2^.deftype=setdef) then begin if assigned(psetdef(def1)^.elementtype.def) and assigned(psetdef(def2)^.elementtype.def) then b:=(psetdef(def1)^.elementtype.def^.deftype=psetdef(def2)^.elementtype.def^.deftype) else b:=true; end else if (def1^.deftype=procvardef) and (def2^.deftype=procvardef) then begin { poassembler isn't important for compatibility } { if a method is assigned to a methodpointer } { is checked before } b:=(pprocvardef(def1)^.proctypeoption=pprocvardef(def2)^.proctypeoption) and (pprocvardef(def1)^.proccalloptions=pprocvardef(def2)^.proccalloptions) and ((pprocvardef(def1)^.procoptions * po_compatibility_options)= (pprocvardef(def2)^.procoptions * po_compatibility_options)) and is_equal(pprocvardef(def1)^.rettype.def,pprocvardef(def2)^.rettype.def) and equal_paras(pprocvardef(def1)^.para,pprocvardef(def2)^.para,cp_all); end else if (def1^.deftype=arraydef) and (def2^.deftype=arraydef) then begin if is_array_of_const(def1) or is_array_of_const(def2) then begin b:=(is_array_of_const(def1) and is_array_of_const(def2)) or (is_array_of_const(def1) and is_array_constructor(def2)) or (is_array_of_const(def2) and is_array_constructor(def1)); end else if is_open_array(def1) or is_open_array(def2) then begin b:=is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def); end else begin b:=not(m_tp in aktmodeswitches) and not(m_delphi in aktmodeswitches) and (parraydef(def1)^.lowrange=parraydef(def2)^.lowrange) and (parraydef(def1)^.highrange=parraydef(def2)^.highrange) and is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def) and is_equal(parraydef(def1)^.rangetype.def,parraydef(def2)^.rangetype.def); end; end else if (def1^.deftype=classrefdef) and (def2^.deftype=classrefdef) then begin { similar to pointerdef: } if assigned(def1^.typesym) and (pclassrefdef(def1)^.pointertype.def^.deftype=forwarddef) then b:=(def1^.typesym=def2^.typesym) else b:=is_equal(pclassrefdef(def1)^.pointertype.def,pclassrefdef(def2)^.pointertype.def); end; is_equal:=b; end; function is_subequal(def1, def2: pdef): boolean; var basedef1,basedef2 : penumdef; Begin is_subequal := false; if assigned(def1) and assigned(def2) then Begin if (def1^.deftype = orddef) and (def2^.deftype = orddef) then Begin { see p.47 of Turbo Pascal 7.01 manual for the separation of types } { range checking for case statements is done with testrange } case porddef(def1)^.typ of u8bit,u16bit,u32bit, s8bit,s16bit,s32bit,s64bit,u64bit : is_subequal:=(porddef(def2)^.typ in [s64bit,u64bit,s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]); bool8bit,bool16bit,bool32bit : is_subequal:=(porddef(def2)^.typ in [bool8bit,bool16bit,bool32bit]); uchar : is_subequal:=(porddef(def2)^.typ=uchar); end; end else Begin { I assume that both enumerations are equal when the first } { pointers are equal. } { I changed this to assume that the enums are equal } { if the basedefs are equal (FK) } if (def1^.deftype=enumdef) and (def2^.deftype=enumdef) then Begin { get both basedefs } basedef1:=penumdef(def1); while assigned(basedef1^.basedef) do basedef1:=basedef1^.basedef; basedef2:=penumdef(def2); while assigned(basedef2^.basedef) do basedef2:=basedef2^.basedef; is_subequal:=basedef1=basedef2; { if penumdef(def1)^.firstenum = penumdef(def2)^.firstenum then is_subequal := TRUE; } end; end; end; { endif assigned ... } end; function assignment_overloaded(from_def,to_def : pdef) : pprocdef; var passproc : pprocdef; convtyp : tconverttype; begin assignment_overloaded:=nil; if assigned(overloaded_operators[_ASSIGNMENT]) then passproc:=overloaded_operators[_ASSIGNMENT]^.definition else exit; while passproc<>nil do begin if is_equal(passproc^.rettype.def,to_def) and (is_equal(pparaitem(passproc^.para^.first)^.paratype.def,from_def) or (isconvertable(from_def,pparaitem(passproc^.para^.first)^.paratype.def,convtyp,ordconstn,false)=1)) then begin assignment_overloaded:=passproc; break; end; passproc:=passproc^.nextoverloaded; end; end; { Returns: 0 - Not convertable 1 - Convertable 2 - Convertable, but not first choice } function isconvertable(def_from,def_to : pdef; var doconv : tconverttype;fromtreetype : tnodetype; explicit : boolean) : byte; { Tbasetype: uauto,uvoid,uchar, u8bit,u16bit,u32bit, s8bit,s16bit,s32, bool8bit,bool16bit,bool32bit, u64bit,s64bitint } type tbasedef=(bvoid,bchar,bint,bbool); const basedeftbl:array[tbasetype] of tbasedef = (bvoid,bvoid,bchar, bint,bint,bint, bint,bint,bint, bbool,bbool,bbool,bint,bint,bchar); basedefconverts : array[tbasedef,tbasedef] of tconverttype = ((tc_not_possible,tc_not_possible,tc_not_possible,tc_not_possible), (tc_not_possible,tc_equal,tc_not_possible,tc_not_possible), (tc_not_possible,tc_not_possible,tc_int_2_int,tc_int_2_bool), (tc_not_possible,tc_not_possible,tc_bool_2_int,tc_bool_2_bool)); var b : byte; hd1,hd2 : pdef; hct : tconverttype; begin { safety check } if not(assigned(def_from) and assigned(def_to)) then begin isconvertable:=0; exit; end; { tp7 procvar def support, in tp7 a procvar is always called, if the procvar is passed explicit a addrn would be there } if (m_tp_procvar in aktmodeswitches) and (def_from^.deftype=procvardef) and (fromtreetype=loadn) then begin def_from:=pprocvardef(def_from)^.rettype.def; end; { we walk the wanted (def_to) types and check then the def_from types if there is a conversion possible } b:=0; case def_to^.deftype of orddef : begin case def_from^.deftype of orddef : begin doconv:=basedefconverts[basedeftbl[porddef(def_from)^.typ],basedeftbl[porddef(def_to)^.typ]]; b:=1; if (doconv=tc_not_possible) or ((doconv=tc_int_2_bool) and (not explicit) and (not is_boolean(def_from))) or ((doconv=tc_bool_2_int) and (not explicit) and (not is_boolean(def_to))) then b:=0; end; enumdef : begin { needed for char(enum) } if explicit then begin doconv:=tc_int_2_int; b:=1; end; end; end; end; stringdef : begin case def_from^.deftype of stringdef : begin doconv:=tc_string_2_string; b:=1; end; orddef : begin { char to string} if is_char(def_from) then begin doconv:=tc_char_2_string; b:=1; end; end; arraydef : begin { array of char to string, the length check is done by the firstpass of this node } if is_chararray(def_from) then begin doconv:=tc_chararray_2_string; if (not(cs_ansistrings in aktlocalswitches) and is_shortstring(def_to)) or ((cs_ansistrings in aktlocalswitches) and is_ansistring(def_to)) then b:=1 else b:=2; end; end; pointerdef : begin { pchar can be assigned to short/ansistrings, but not in tp7 compatible mode } if is_pchar(def_from) and not(m_tp7 in aktmodeswitches) then begin doconv:=tc_pchar_2_string; b:=1; end; end; end; end; floatdef : begin case def_from^.deftype of orddef : begin { ordinal to real } if is_integer(def_from) then begin if pfloatdef(def_to)^.typ=f32bit then doconv:=tc_int_2_fix else doconv:=tc_int_2_real; b:=1; end; end; floatdef : begin { 2 float types ? } if pfloatdef(def_from)^.typ=pfloatdef(def_to)^.typ then doconv:=tc_equal else begin if pfloatdef(def_from)^.typ=f32bit then doconv:=tc_fix_2_real else if pfloatdef(def_to)^.typ=f32bit then doconv:=tc_real_2_fix else doconv:=tc_real_2_real; end; b:=1; end; end; end; enumdef : begin if (def_from^.deftype=enumdef) then begin hd1:=def_from; while assigned(penumdef(hd1)^.basedef) do hd1:=penumdef(hd1)^.basedef; hd2:=def_to; while assigned(penumdef(hd2)^.basedef) do hd2:=penumdef(hd2)^.basedef; if (hd1=hd2) then begin b:=1; { because of packenum they can have different sizes! (JM) } doconv:=tc_int_2_int; end; end; end; arraydef : begin { open array is also compatible with a single element of its base type } if is_open_array(def_to) and is_equal(parraydef(def_to)^.elementtype.def,def_from) then begin doconv:=tc_equal; b:=1; end else begin case def_from^.deftype of arraydef : begin { array constructor -> open array } if is_open_array(def_to) and is_array_constructor(def_from) then begin if is_void(parraydef(def_from)^.elementtype.def) or is_equal(parraydef(def_to)^.elementtype.def,parraydef(def_from)^.elementtype.def) then begin doconv:=tc_equal; b:=1; end else if isconvertable(parraydef(def_from)^.elementtype.def, parraydef(def_to)^.elementtype.def,hct,arrayconstructorn,false)<>0 then begin doconv:=hct; b:=2; end; end; end; pointerdef : begin if is_zero_based_array(def_to) and is_equal(ppointerdef(def_from)^.pointertype.def,parraydef(def_to)^.elementtype.def) then begin doconv:=tc_pointer_2_array; b:=1; end; end; stringdef : begin { string to array of char} if (not(is_special_array(def_to)) or is_open_array(def_to)) and is_equal(parraydef(def_to)^.elementtype.def,cchardef) then begin doconv:=tc_string_2_chararray; b:=1; end; end; end; end; end; pointerdef : begin case def_from^.deftype of stringdef : begin { string constant (which can be part of array constructor) to zero terminated string constant } if (fromtreetype in [arrayconstructorn,stringconstn]) and is_pchar(def_to) then begin doconv:=tc_cstring_2_pchar; b:=1; end; end; orddef : begin { char constant to zero terminated string constant } if (fromtreetype=ordconstn) then begin if is_equal(def_from,cchardef) and is_pchar(def_to) then begin doconv:=tc_cchar_2_pchar; b:=1; end else if is_integer(def_from) then begin doconv:=tc_cord_2_pointer; b:=1; end; end; end; arraydef : begin { chararray to pointer } if is_zero_based_array(def_from) and is_equal(parraydef(def_from)^.elementtype.def,ppointerdef(def_to)^.pointertype.def) then begin doconv:=tc_array_2_pointer; b:=1; end; end; pointerdef : begin { child class pointer can be assigned to anchestor pointers } if ( (ppointerdef(def_from)^.pointertype.def^.deftype=objectdef) and (ppointerdef(def_to)^.pointertype.def^.deftype=objectdef) and pobjectdef(ppointerdef(def_from)^.pointertype.def)^.is_related( pobjectdef(ppointerdef(def_to)^.pointertype.def)) ) or { all pointers can be assigned to void-pointer } is_equal(ppointerdef(def_to)^.pointertype.def,voiddef) or { in my opnion, is this not clean pascal } { well, but it's handy to use, it isn't ? (FK) } is_equal(ppointerdef(def_from)^.pointertype.def,voiddef) then begin doconv:=tc_equal; b:=1; end; end; procvardef : begin { procedure variable can be assigned to an void pointer } { Not anymore. Use the @ operator now.} if not(m_tp_procvar in aktmodeswitches) and (ppointerdef(def_to)^.pointertype.def^.deftype=orddef) and (porddef(ppointerdef(def_to)^.pointertype.def)^.typ=uvoid) then begin doconv:=tc_equal; b:=1; end; end; classrefdef, objectdef : begin { class types and class reference type can be assigned to void pointers } if ( ((def_from^.deftype=objectdef) and pobjectdef(def_from)^.is_class) or (def_from^.deftype=classrefdef) ) and (ppointerdef(def_to)^.pointertype.def^.deftype=orddef) and (porddef(ppointerdef(def_to)^.pointertype.def)^.typ=uvoid) then begin doconv:=tc_equal; b:=1; end; end; end; end; setdef : begin { automatic arrayconstructor -> set conversion } if is_array_constructor(def_from) then begin doconv:=tc_arrayconstructor_2_set; b:=1; end; end; procvardef : begin { proc -> procvar } if (def_from^.deftype=procdef) then begin doconv:=tc_proc_2_procvar; if proc_to_procvar_equal(pprocdef(def_from),pprocvardef(def_to)) then b:=1; end else { for example delphi allows the assignement from pointers } { to procedure variables } if (m_pointer_2_procedure in aktmodeswitches) and (def_from^.deftype=pointerdef) and (ppointerdef(def_from)^.pointertype.def^.deftype=orddef) and (porddef(ppointerdef(def_from)^.pointertype.def)^.typ=uvoid) then begin doconv:=tc_equal; b:=1; end else { nil is compatible with procvars } if (fromtreetype=niln) then begin doconv:=tc_equal; b:=1; end; end; objectdef : begin { object pascal objects } if (def_from^.deftype=objectdef) {and pobjectdef(def_from)^.isclass and pobjectdef(def_to)^.isclass }then begin doconv:=tc_equal; if pobjectdef(def_from)^.is_related(pobjectdef(def_to)) then b:=1; end else { Class specific } if (pobjectdef(def_to)^.is_class) then begin { void pointer also for delphi mode } if (m_delphi in aktmodeswitches) and is_voidpointer(def_from) then begin doconv:=tc_equal; b:=1; end else { nil is compatible with class instances } if (fromtreetype=niln) and (pobjectdef(def_to)^.is_class) then begin doconv:=tc_equal; b:=1; end; end; end; classrefdef : begin { class reference types } if (def_from^.deftype=classrefdef) then begin doconv:=tc_equal; if pobjectdef(pclassrefdef(def_from)^.pointertype.def)^.is_related( pobjectdef(pclassrefdef(def_to)^.pointertype.def)) then b:=1; end else { nil is compatible with class references } if (fromtreetype=niln) then begin doconv:=tc_equal; b:=1; end; end; filedef : begin { typed files are all equal to the abstract file type name TYPEDFILE in system.pp in is_equal in types.pas the problem is that it sholud be also compatible to FILE but this would leed to a problem for ASSIGN RESET and REWRITE when trying to find the good overloaded function !! so all file function are doubled in system.pp this is not very beautiful !!} if (def_from^.deftype=filedef) and ( ( (pfiledef(def_from)^.filetyp = ft_typed) and (pfiledef(def_to)^.filetyp = ft_typed) and ( (pfiledef(def_from)^.typedfiletype.def = pdef(voiddef)) or (pfiledef(def_to)^.typedfiletype.def = pdef(voiddef)) ) ) or ( ( (pfiledef(def_from)^.filetyp = ft_untyped) and (pfiledef(def_to)^.filetyp = ft_typed) ) or ( (pfiledef(def_from)^.filetyp = ft_typed) and (pfiledef(def_to)^.filetyp = ft_untyped) ) ) ) then begin doconv:=tc_equal; b:=1; end end; else begin { assignment overwritten ?? } if assignment_overloaded(def_from,def_to)<>nil then b:=2; end; end; isconvertable:=b; end; function CheckTypes(def1,def2 : pdef) : boolean; var s1,s2 : string; begin if not is_equal(def1,def2) then begin { Crash prevention } if (not assigned(def1)) or (not assigned(def2)) then Message(type_e_mismatch) else begin s1:=def1^.typename; s2:=def2^.typename; if (s1<>'') and (s2<>'') then Message2(type_e_not_equal_types,def1^.typename,def2^.typename) else Message(type_e_mismatch); end; CheckTypes:=false; end else CheckTypes:=true; end; end. { $Log$ Revision 1.14 2000-10-14 10:14:56 peter * moehrendorf oct 2000 rewrite Revision 1.13 2000/10/01 19:48:26 peter * lot of compile updates for cg11 Revision 1.12 2000/09/30 16:08:46 peter * more cg11 updates Revision 1.11 2000/09/24 15:06:32 peter * use defines.inc Revision 1.10 2000/09/18 12:31:15 jonas * fixed bug in push_addr_param for arrays (merged from fixes branch) Revision 1.9 2000/09/10 20:16:21 peter * array of const isn't equal with array of (merged) Revision 1.8 2000/08/19 19:51:03 peter * fixed bug with comparing constsym strings Revision 1.7 2000/08/16 13:06:07 florian + support of 64 bit integer constants Revision 1.6 2000/08/13 13:07:18 peter * equal_paras now also checks default parameter value Revision 1.5 2000/08/12 06:49:22 florian + case statement for int64/qword implemented Revision 1.4 2000/08/08 19:26:41 peter * equal_constsym() needed for default para Revision 1.3 2000/07/13 12:08:28 michael + patched to 1.1.0 with former 1.09patch from peter Revision 1.2 2000/07/13 11:32:53 michael + removed logs }