{ Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman Contains the base types for the ARM This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {# Base unit for processor information. This unit contains enumerations of registers, opcodes, sizes, and other such things which are processor specific. } unit cpubase; {$i fpcdefs.inc} interface uses cutils,cclasses, globtype,globals, cpuinfo, aasmbase, cgbase ; {***************************************************************************** Assembler Opcodes *****************************************************************************} type TAsmOp= {$i armop.inc} { This should define the array of instructions as string } op2strtable=array[tasmop] of string[11]; const { First value of opcode enumeration } firstop = low(tasmop); { Last value of opcode enumeration } lastop = high(tasmop); {***************************************************************************** Registers *****************************************************************************} type { Number of registers used for indexing in tables } tregisterindex=0..{$i rarmnor.inc}-1; const { Available Superregisters } {$i rarmsup.inc} RS_PC = RS_R15; { No Subregisters } R_SUBWHOLE = R_SUBNONE; { Available Registers } {$i rarmcon.inc} { aliases } NR_PC = NR_R15; { Integer Super registers first and last } first_int_supreg = RS_R0; first_int_imreg = $10; { Float Super register first and last } first_fpu_supreg = RS_F0; first_fpu_imreg = $08; { MM Super register first and last } first_mm_supreg = RS_S0; first_mm_imreg = $20; {$warning TODO Calculate bsstart} regnumber_count_bsstart = 64; regnumber_table : array[tregisterindex] of tregister = ( {$i rarmnum.inc} ); regstabs_table : array[tregisterindex] of shortint = ( {$i rarmsta.inc} ); regdwarf_table : array[tregisterindex] of shortint = ( {$i rarmdwa.inc} ); { registers which may be destroyed by calls } VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R15]; VOLATILE_FPUREGISTERS = [RS_F0..RS_F3]; type totherregisterset = set of tregisterindex; {***************************************************************************** Instruction post fixes *****************************************************************************} type { ARM instructions load/store and arithmetic instructions can have several instruction post fixes which are collected in this enumeration } TOpPostfix = (PF_None, { update condition flags or floating point single } PF_S, { floating point size } PF_D,PF_E,PF_P,PF_EP, { load/store } PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T, { multiple load/store address modes } PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA ); TRoundingMode = (RM_None,RM_P,RM_M,RM_Z); const cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = ( PF_None, PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None, PF_S,PF_D,PF_E,PF_None,PF_None); oppostfix2str : array[TOpPostfix] of string[2] = ('', 's', 'd','e','p','ep', 'b','sb','bt','h','sh','t', 'ia','ib','da','db','fd','fa','ed','ea'); roundingmode2str : array[TRoundingMode] of string[1] = ('', 'p','m','z'); {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE,C_AL,C_NV ); const cond2str : array[TAsmCond] of string[2]=('', 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls', 'ge','lt','gt','le','al','nv' ); uppercond2str : array[TAsmCond] of string[2]=('', 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS', 'GE','LT','GT','LE','AL','NV' ); {***************************************************************************** Flags *****************************************************************************} type TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS, F_GE,F_LT,F_GT,F_LE); {***************************************************************************** Operands *****************************************************************************} taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED); tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX); tupdatereg = (UR_None,UR_Update); pshifterop = ^tshifterop; tshifterop = record shiftmode : tshiftmode; rs : tregister; shiftimm : byte; end; {***************************************************************************** Constants *****************************************************************************} const max_operands = 4; {# Constant defining possibly all registers which might require saving } ALL_OTHERREGISTERS = []; general_superregisters = [RS_R0..RS_PC]; {# Table of registers which can be allocated by the code generator internally, when generating the code. } { legend: } { xxxregs = set of all possibly used registers of that type in the code } { generator } { usableregsxxx = set of all 32bit components of registers that can be } { possible allocated to a regvar or using getregisterxxx (this } { excludes registers which can be only used for parameter } { passing on ABI's that define this) } { c_countusableregsxxx = amount of registers in the usableregsxxx set } maxintregs = 15; { to determine how many registers to use for regvars } maxintscratchregs = 3; usableregsint = [RS_R4..RS_R10]; c_countusableregsint = 7; maxfpuregs = 8; fpuregs = [RS_F0..RS_F7]; usableregsfpu = [RS_F4..RS_F7]; c_countusableregsfpu = 4; mmregs = [RS_D0..RS_D15]; usableregsmm = [RS_D8..RS_D15]; c_countusableregsmm = 8; maxaddrregs = 0; addrregs = []; usableregsaddr = []; c_countusableregsaddr = 0; {***************************************************************************** Operand Sizes *****************************************************************************} type topsize = (S_NO, S_B,S_W,S_L,S_BW,S_BL,S_WL, S_IS,S_IL,S_IQ, S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX ); {***************************************************************************** Constants *****************************************************************************} const firstsaveintreg = RS_R4; lastsaveintreg = RS_R10; firstsavefpureg = RS_F4; lastsavefpureg = RS_F7; firstsavemmreg = RS_D8; lastsavemmreg = RS_D15; maxvarregs = 7; varregs : Array [1..maxvarregs] of tsuperregister = (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10); maxfpuvarregs = 4; fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister = (RS_F4,RS_F5,RS_F6,RS_F7); {***************************************************************************** Default generic sizes *****************************************************************************} { Defines the default address size for a processor, } OS_ADDR = OS_32; { the natural int size for a processor, } OS_INT = OS_32; OS_SINT = OS_S32; { the maximum float size for a processor, } OS_FLOAT = OS_F64; { the size of a vector register for a processor } OS_VECTOR = OS_M32; {***************************************************************************** Generic Register names *****************************************************************************} { Stack pointer register } NR_STACK_POINTER_REG = NR_R13; RS_STACK_POINTER_REG = RS_R13; { Frame pointer register } RS_FRAME_POINTER_REG = RS_R11; NR_FRAME_POINTER_REG = NR_R11; { Register for addressing absolute data in a position independant way, such as in PIC code. The exact meaning is ABI specific. For further information look at GCC source : PIC_OFFSET_TABLE_REGNUM } NR_PIC_OFFSET_REG = NR_R9; { Results are returned in this register (32-bit values) } NR_FUNCTION_RETURN_REG = NR_R0; RS_FUNCTION_RETURN_REG = RS_R0; { The value returned from a function is available in this register } NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG; RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG; NR_FPU_RESULT_REG = NR_F0; NR_MM_RESULT_REG = NR_NO; NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG; { Offset where the parent framepointer is pushed } PARENT_FRAMEPOINTER_OFFSET = 0; { Low part of 64bit return value } function NR_FUNCTION_RESULT64_LOW_REG: tregister; function RS_FUNCTION_RESULT64_LOW_REG: shortint; { High part of 64bit return value } function NR_FUNCTION_RESULT64_HIGH_REG: tregister; function RS_FUNCTION_RESULT64_HIGH_REG: shortint; {***************************************************************************** GCC /ABI linking information *****************************************************************************} const { Registers which must be saved when calling a routine declared as cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers saved should be the ones as defined in the target ABI and / or GCC. This value can be deduced from the CALLED_USED_REGISTERS array in the GCC source. } saved_standard_registers : array[0..6] of tsuperregister = (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10); { this is only for the generic code which is not used for this architecture } saved_mm_registers : array[0..0] of tsuperregister = (RS_NO); { Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = 4; {***************************************************************************** Helpers *****************************************************************************} { Returns the tcgsize corresponding with the size of reg.} function reg_cgsize(const reg: tregister) : tcgsize; function cgsize2subreg(s:Tcgsize):Tsubregister; function is_calljmp(o:tasmop):boolean; procedure inverse_flags(var f: TResFlags); function flags_to_cond(const f: TResFlags) : TAsmCond; function findreg_by_number(r:Tregister):tregisterindex; function std_regnum_search(const s:string):Tregister; function std_regname(r:Tregister):string; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} procedure shifterop_reset(var so : tshifterop); function is_pc(const r : tregister) : boolean; function is_shifter_const(d : aint;var imm_shift : byte) : boolean; function dwarf_reg(r:tregister):shortint; implementation uses systems,rgBase,verbose; const std_regname_table : array[tregisterindex] of string[7] = ( {$i rarmstd.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i rarmrni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i rarmsri.inc} ); function cgsize2subreg(s:Tcgsize):Tsubregister; begin cgsize2subreg:=R_SUBWHOLE; end; function reg_cgsize(const reg: tregister): tcgsize; begin case getregtype(reg) of R_INTREGISTER : reg_cgsize:=OS_32; R_FPUREGISTER : reg_cgsize:=OS_F80; else internalerror(200303181); end; end; function is_calljmp(o:tasmop):boolean; begin { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15. To overcome this problem we simply forbid that FPC generates jumps by loading R15 } is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX]; end; procedure inverse_flags(var f: TResFlags); const inv_flags: array[TResFlags] of TResFlags = (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI, F_LT,F_GE,F_LE,F_GT); begin f:=inv_flags[f]; end; function flags_to_cond(const f: TResFlags) : TAsmCond; const flag_2_cond: array[F_EQ..F_LE] of TAsmCond = (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE); begin if f>high(flag_2_cond) then internalerror(200112301); result:=flag_2_cond[f]; end; function findreg_by_number(r:Tregister):tregisterindex; begin result:=rgBase.findreg_by_number_table(r,regnumber_index); end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function std_regname(r:Tregister):string; var p : tregisterindex; begin p:=findreg_by_number_table(r,regnumber_index); if p<>0 then result:=std_regname_table[p] else result:=generic_regname(r); end; procedure shifterop_reset(var so : tshifterop); begin FillChar(so,sizeof(so),0); end; function is_pc(const r : tregister) : boolean; begin is_pc:=(r=NR_R15); end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI, C_LT,C_GE,C_LE,C_GT,C_None,C_None ); begin result := inverse[c]; end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; function rotl(d : dword;b : byte) : dword; begin result:=(d shr (32-b)) or (d shl b); end; function is_shifter_const(d : aint;var imm_shift : byte) : boolean; var i : longint; begin for i:=0 to 15 do begin if (dword(d) and not(rotl($ff,i*2)))=0 then begin imm_shift:=i*2; result:=true; exit; end; end; result:=false; end; function dwarf_reg(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; if result=-1 then internalerror(200603251); end; { Low part of 64bit return value } function NR_FUNCTION_RESULT64_LOW_REG: tregister; begin if target_info.endian=endian_little then result:=NR_R0 else result:=NR_R1; end; function RS_FUNCTION_RESULT64_LOW_REG: shortint; begin if target_info.endian=endian_little then result:=RS_R0 else result:=RS_R1; end; { High part of 64bit return value } function NR_FUNCTION_RESULT64_HIGH_REG: tregister; begin if target_info.endian=endian_little then result:=NR_R1 else result:=NR_R0; end; function RS_FUNCTION_RESULT64_HIGH_REG: shortint; begin if target_info.endian=endian_little then result:=RS_R1 else result:=RS_R0; end; end.