{ $Id$ Copyright (C) 1998-2000 by Florian Klaempfl This unit provides some help routines for type handling This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit types; {$i defines.inc} interface uses cclasses, cpuinfo, node, symbase,symtype,symdef,symsym; type tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit, mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle); const { true if we must never copy this parameter } never_copy_const_param : boolean = false; {***************************************************************************** Basic type functions *****************************************************************************} { returns true, if def defines an ordinal type } function is_ordinal(def : tdef) : boolean; { returns the min. value of the type } function get_min_value(def : tdef) : longint; { returns true, if def defines an ordinal type } function is_integer(def : tdef) : boolean; { true if p is a boolean } function is_boolean(def : tdef) : boolean; { true if p is a char } function is_char(def : tdef) : boolean; { true if p is a widechar } function is_widechar(def : tdef) : boolean; { true if p is a void} function is_void(def : tdef) : boolean; { true if p is a smallset def } function is_smallset(p : tdef) : boolean; { returns true, if def defines a signed data type (only for ordinal types) } function is_signed(def : tdef) : boolean; {***************************************************************************** Array helper functions *****************************************************************************} { true, if p points to a zero based (non special like open or dynamic array def, mainly this is used to see if the array is convertable to a pointer } function is_zero_based_array(p : tdef) : boolean; { true if p points to an open array def } function is_open_array(p : tdef) : boolean; { true if p points to a dynamic array def } function is_dynamic_array(p : tdef) : boolean; { true, if p points to an array of const def } function is_array_constructor(p : tdef) : boolean; { true, if p points to a variant array } function is_variant_array(p : tdef) : boolean; { true, if p points to an array of const } function is_array_of_const(p : tdef) : boolean; { true, if p points any kind of special array } function is_special_array(p : tdef) : boolean; { true if p is a char array def } function is_chararray(p : tdef) : boolean; { true if p is a wide char array def } function is_widechararray(p : tdef) : boolean; {***************************************************************************** String helper functions *****************************************************************************} { true if p points to an open string def } function is_open_string(p : tdef) : boolean; { true if p is an ansi string def } function is_ansistring(p : tdef) : boolean; { true if p is a long string def } function is_longstring(p : tdef) : boolean; { true if p is a wide string def } function is_widestring(p : tdef) : boolean; { true if p is a short string def } function is_shortstring(p : tdef) : boolean; { true if p is a pchar def } function is_pchar(p : tdef) : boolean; { true if p is a pwidechar def } function is_pwidechar(p : tdef) : boolean; { true if p is a voidpointer def } function is_voidpointer(p : tdef) : boolean; { returns true, if def uses FPU } function is_fpu(def : tdef) : boolean; { true if the return value is in EAX } function ret_in_acc(def : tdef) : boolean; { true if uses a parameter as return value } function ret_in_param(def : tdef) : boolean; { true, if def is a 64 bit int type } function is_64bitint(def : tdef) : boolean; function push_high_param(def : tdef) : boolean; { true if a parameter is too large to copy and only the address is pushed } function push_addr_param(def : tdef) : boolean; { true, if def1 and def2 are semantical the same } function is_equal(def1,def2 : tdef) : boolean; { checks for type compatibility (subgroups of type) } { used for case statements... probably missing stuff } { to use on other types } function is_subequal(def1, def2: tdef): boolean; type tconverttype = ( tc_equal, tc_not_possible, tc_string_2_string, tc_char_2_string, tc_pchar_2_string, tc_cchar_2_pchar, tc_cstring_2_pchar, tc_ansistring_2_pchar, tc_string_2_chararray, tc_chararray_2_string, tc_array_2_pointer, tc_pointer_2_array, tc_int_2_int, tc_int_2_bool, tc_bool_2_bool, tc_bool_2_int, tc_real_2_real, tc_int_2_real, tc_proc_2_procvar, tc_arrayconstructor_2_set, tc_load_smallset, tc_cord_2_pointer, tc_intf_2_string, tc_intf_2_guid, tc_class_2_intf, tc_char_2_char, tc_normal_2_smallset ); function assignment_overloaded(from_def,to_def : tdef) : tprocdef; { Returns: 0 - Not convertable 1 - Convertable 2 - Convertable, but not first choice } function isconvertable(def_from,def_to : tdef; var doconv : tconverttype; fromtreetype : tnodetype; explicit : boolean) : byte; { same as is_equal, but with error message if failed } function CheckTypes(def1,def2 : tdef) : boolean; function equal_constsym(sym1,sym2:tconstsym):boolean; { true, if two parameter lists are equal } { if acp is cp_none, all have to match exactly } { if acp is cp_value_equal_const call by value } { and call by const parameter are assumed as } { equal } { if acp is cp_all the var const or nothing are considered equal } type compare_type = ( cp_none, cp_value_equal_const, cp_all); function equal_paras(paralist1,paralist2 : tlinkedlist; acp : compare_type) : boolean; { true if a type can be allowed for another one in a func var } function convertable_paras(paralist1,paralist2 : tlinkedlist; acp : compare_type) : boolean; { true if a function can be assigned to a procvar } function proc_to_procvar_equal(def1:tprocdef;def2:tprocvardef) : boolean; { if l isn't in the range of def a range check error (if not explicit) is generated and the value is placed within the range } procedure testrange(def : tdef;var l : tconstexprint;explicit:boolean); { returns the range of def } procedure getrange(def : tdef;var l : longint;var h : longint); { some type helper routines for MMX support } function is_mmx_able_array(p : tdef) : boolean; { returns the mmx type } function mmx_type(p : tdef) : tmmxtype; { returns true, if sym needs an entry in the proplist of a class rtti } function needs_prop_entry(sym : tsym) : boolean; implementation uses globtype,globals,systems,tokens,verbose, symconst,symtable,nld; function needs_prop_entry(sym : tsym) : boolean; begin needs_prop_entry:=(sp_published in tsym(sym).symoptions) and (sym.typ in [propertysym,varsym]); end; function equal_constsym(sym1,sym2:tconstsym):boolean; var p1,p2,pend : pchar; begin equal_constsym:=false; if sym1.consttyp<>sym2.consttyp then exit; case sym1.consttyp of constint, constbool, constchar, constord : equal_constsym:=(sym1.valueord=sym2.valueord); constpointer : equal_constsym:=(sym1.valueordptr=sym2.valueordptr); conststring,constresourcestring : begin if sym1.len=sym2.len then begin p1:=pchar(sym1.valueptr); p2:=pchar(sym2.valueptr); pend:=p1+sym1.len; while (p1p2^ then break; inc(p1); inc(p2); end; if (p1=pend) then equal_constsym:=true; end; end; constreal : equal_constsym:=(pbestreal(sym1.valueptr)^=pbestreal(sym2.valueptr)^); constset : equal_constsym:=(pnormalset(sym1.valueptr)^=pnormalset(sym2.valueptr)^); constnil : equal_constsym:=true; end; end; { compare_type = ( cp_none, cp_value_equal_const, cp_all); } function equal_paras(paralist1,paralist2 : TLinkedList; acp : compare_type) : boolean; var def1,def2 : TParaItem; begin def1:=TParaItem(paralist1.first); def2:=TParaItem(paralist2.first); while (assigned(def1)) and (assigned(def2)) do begin case acp of cp_value_equal_const : begin if not(is_equal(def1.paratype.def,def2.paratype.def)) or ((def1.paratyp<>def2.paratyp) and ((def1.paratyp in [vs_var,vs_out]) or (def2.paratyp in [vs_var,vs_out]) ) ) then begin equal_paras:=false; exit; end; end; cp_all : begin if not(is_equal(def1.paratype.def,def2.paratype.def)) or (def1.paratyp<>def2.paratyp) then begin equal_paras:=false; exit; end; end; cp_none : begin if not(is_equal(def1.paratype.def,def2.paratype.def)) then begin equal_paras:=false; exit; end; { also check default value if both have it declared } if assigned(def1.defaultvalue) and assigned(def2.defaultvalue) then begin if not equal_constsym(tconstsym(def1.defaultvalue),tconstsym(def2.defaultvalue)) then begin equal_paras:=false; exit; end; end; end; end; def1:=TParaItem(def1.next); def2:=TParaItem(def2.next); end; if (def1=nil) and (def2=nil) then equal_paras:=true else equal_paras:=false; end; function convertable_paras(paralist1,paralist2 : TLinkedList;acp : compare_type) : boolean; var def1,def2 : TParaItem; doconv : tconverttype; begin def1:=TParaItem(paralist1.first); def2:=TParaItem(paralist2.first); while (assigned(def1)) and (assigned(def2)) do begin case acp of cp_value_equal_const : begin if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) or ((def1.paratyp<>def2.paratyp) and ((def1.paratyp in [vs_out,vs_var]) or (def2.paratyp in [vs_out,vs_var]) ) ) then begin convertable_paras:=false; exit; end; end; cp_all : begin if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) or (def1.paratyp<>def2.paratyp) then begin convertable_paras:=false; exit; end; end; cp_none : begin if (isconvertable(def1.paratype.def,def2.paratype.def,doconv,callparan,false)=0) then begin convertable_paras:=false; exit; end; end; end; def1:=TParaItem(def1.next); def2:=TParaItem(def2.next); end; if (def1=nil) and (def2=nil) then convertable_paras:=true else convertable_paras:=false; end; { true if a function can be assigned to a procvar } function proc_to_procvar_equal(def1:tprocdef;def2:tprocvardef) : boolean; const po_comp = po_compatibility_options-[po_methodpointer,po_classmethod]; var ismethod : boolean; begin proc_to_procvar_equal:=false; if not(assigned(def1)) or not(assigned(def2)) then exit; { check for method pointer } ismethod:=assigned(def1.owner) and (def1.owner.symtabletype=objectsymtable); { I think methods of objects are also not compatible } { with procedure variables! (FK) and assigned(def1.owner.defowner) and (tobjectdef(def1.owner.defowner)^.is_class); } if (ismethod and not (po_methodpointer in def2.procoptions)) or (not(ismethod) and (po_methodpointer in def2.procoptions)) then begin Message(type_e_no_method_and_procedure_not_compatible); exit; end; { check return value and para's and options, methodpointer is already checked parameters may also be convertable } if is_equal(def1.rettype.def,def2.rettype.def) and (equal_paras(def1.para,def2.para,cp_all) or convertable_paras(def1.para,def2.para,cp_all)) and ((po_comp * def1.procoptions)= (po_comp * def2.procoptions)) then proc_to_procvar_equal:=true else proc_to_procvar_equal:=false; end; { returns true, if def uses FPU } function is_fpu(def : tdef) : boolean; begin is_fpu:=(def.deftype=floatdef); end; { true if p is an ordinal } function is_ordinal(def : tdef) : boolean; var dt : tbasetype; begin case def.deftype of orddef : begin dt:=torddef(def).typ; is_ordinal:=dt in [uchar,uwidechar, u8bit,u16bit,u32bit,u64bit, s8bit,s16bit,s32bit,s64bit, bool8bit,bool16bit,bool32bit]; end; enumdef : is_ordinal:=true; else is_ordinal:=false; end; end; { returns the min. value of the type } function get_min_value(def : tdef) : longint; begin case def.deftype of orddef: get_min_value:=torddef(def).low; enumdef: get_min_value:=tenumdef(def).min; else get_min_value:=0; end; end; { true if p is an integer } function is_integer(def : tdef) : boolean; begin is_integer:=(def.deftype=orddef) and (torddef(def).typ in [uauto,u8bit,u16bit,u32bit,u64bit, s8bit,s16bit,s32bit,s64bit]); end; { true if p is a boolean } function is_boolean(def : tdef) : boolean; begin is_boolean:=(def.deftype=orddef) and (torddef(def).typ in [bool8bit,bool16bit,bool32bit]); end; { true if p is a void } function is_void(def : tdef) : boolean; begin is_void:=(def.deftype=orddef) and (torddef(def).typ=uvoid); end; { true if p is a char } function is_char(def : tdef) : boolean; begin is_char:=(def.deftype=orddef) and (torddef(def).typ=uchar); end; { true if p is a wchar } function is_widechar(def : tdef) : boolean; begin is_widechar:=(def.deftype=orddef) and (torddef(def).typ=uwidechar); end; { true if p is signed (integer) } function is_signed(def : tdef) : boolean; var dt : tbasetype; begin case def.deftype of orddef : begin dt:=torddef(def).typ; is_signed:=(dt in [s8bit,s16bit,s32bit,s64bit]); end; enumdef : is_signed:=tenumdef(def).min < 0; arraydef : is_signed:=is_signed(tarraydef(def).rangetype.def); else is_signed:=false; end; end; { true, if p points to an open array def } function is_open_string(p : tdef) : boolean; begin is_open_string:=(p.deftype=stringdef) and (tstringdef(p).string_typ=st_shortstring) and (tstringdef(p).len=0); end; { true, if p points to a zero based array def } function is_zero_based_array(p : tdef) : boolean; begin is_zero_based_array:=(p.deftype=arraydef) and (tarraydef(p).lowrange=0) and not(is_special_array(p)); end; { true if p points to a dynamic array def } function is_dynamic_array(p : tdef) : boolean; begin is_dynamic_array:=(p.deftype=arraydef) and tarraydef(p).IsDynamicArray; end; { true, if p points to an open array def } function is_open_array(p : tdef) : boolean; begin { check for s32bittype is needed, because for u32bit the high range is also -1 ! (PFV) } is_open_array:=(p.deftype=arraydef) and (tarraydef(p).rangetype.def=s32bittype.def) and (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=-1) and not(tarraydef(p).IsConstructor) and not(tarraydef(p).IsVariant) and not(tarraydef(p).IsArrayOfConst) and not(tarraydef(p).IsDynamicArray); end; { true, if p points to an array of const def } function is_array_constructor(p : tdef) : boolean; begin is_array_constructor:=(p.deftype=arraydef) and (tarraydef(p).IsConstructor); end; { true, if p points to a variant array } function is_variant_array(p : tdef) : boolean; begin is_variant_array:=(p.deftype=arraydef) and (tarraydef(p).IsVariant); end; { true, if p points to an array of const } function is_array_of_const(p : tdef) : boolean; begin is_array_of_const:=(p.deftype=arraydef) and (tarraydef(p).IsArrayOfConst); end; { true, if p points to a special array } function is_special_array(p : tdef) : boolean; begin is_special_array:=(p.deftype=arraydef) and ((tarraydef(p).IsVariant) or (tarraydef(p).IsArrayOfConst) or (tarraydef(p).IsConstructor) or is_open_array(p) ); end; { true if p is an ansi string def } function is_ansistring(p : tdef) : boolean; begin is_ansistring:=(p.deftype=stringdef) and (tstringdef(p).string_typ=st_ansistring); end; { true if p is an long string def } function is_longstring(p : tdef) : boolean; begin is_longstring:=(p.deftype=stringdef) and (tstringdef(p).string_typ=st_longstring); end; { true if p is an wide string def } function is_widestring(p : tdef) : boolean; begin is_widestring:=(p.deftype=stringdef) and (tstringdef(p).string_typ=st_widestring); end; { true if p is an short string def } function is_shortstring(p : tdef) : boolean; begin is_shortstring:=(p.deftype=stringdef) and (tstringdef(p).string_typ=st_shortstring); end; { true if p is a char array def } function is_chararray(p : tdef) : boolean; begin is_chararray:=(p.deftype=arraydef) and is_equal(tarraydef(p).elementtype.def,cchartype.def) and not(is_special_array(p)); end; { true if p is a widechar array def } function is_widechararray(p : tdef) : boolean; begin is_widechararray:=(p.deftype=arraydef) and is_equal(tarraydef(p).elementtype.def,cwidechartype.def) and not(is_special_array(p)); end; { true if p is a pchar def } function is_pchar(p : tdef) : boolean; begin is_pchar:=(p.deftype=pointerdef) and (is_equal(tpointerdef(p).pointertype.def,cchartype.def) or (is_zero_based_array(tpointerdef(p).pointertype.def) and is_chararray(tpointerdef(p).pointertype.def))); end; { true if p is a pchar def } function is_pwidechar(p : tdef) : boolean; begin is_pwidechar:=(p.deftype=pointerdef) and (is_equal(tpointerdef(p).pointertype.def,cwidechartype.def) or (is_zero_based_array(tpointerdef(p).pointertype.def) and is_widechararray(tpointerdef(p).pointertype.def))); end; { true if p is a voidpointer def } function is_voidpointer(p : tdef) : boolean; begin is_voidpointer:=(p.deftype=pointerdef) and (tpointerdef(p).pointertype.def.deftype=orddef) and (torddef(tpointerdef(p).pointertype.def).typ=uvoid); end; { true if p is a smallset def } function is_smallset(p : tdef) : boolean; begin is_smallset:=(p.deftype=setdef) and (tsetdef(p).settype=smallset); end; { true if the return value is in accumulator (EAX for i386), D0 for 68k } function ret_in_acc(def : tdef) : boolean; begin ret_in_acc:=(def.deftype in [orddef,pointerdef,enumdef,classrefdef]) or ((def.deftype=stringdef) and (tstringdef(def).string_typ in [st_ansistring,st_widestring])) or ((def.deftype=procvardef) and not(po_methodpointer in tprocvardef(def).procoptions)) or ((def.deftype=objectdef) and not is_object(def)) or ((def.deftype=setdef) and (tsetdef(def).settype=smallset)); end; { true, if def is a 64 bit int type } function is_64bitint(def : tdef) : boolean; begin is_64bitint:=(def.deftype=orddef) and (torddef(def).typ in [u64bit,s64bit]) end; { true if uses a parameter as return value } function ret_in_param(def : tdef) : boolean; begin ret_in_param:=(def.deftype in [arraydef,recorddef]) or ((def.deftype=stringdef) and (tstringdef(def).string_typ in [st_shortstring,st_longstring])) or ((def.deftype=procvardef) and (po_methodpointer in tprocvardef(def).procoptions)) or ((def.deftype=objectdef) and is_object(def)) or ((def.deftype=setdef) and (tsetdef(def).settype<>smallset)); end; function push_high_param(def : tdef) : boolean; begin push_high_param:=is_open_array(def) or is_open_string(def) or is_array_of_const(def); end; { true if a parameter is too large to copy and only the address is pushed } function push_addr_param(def : tdef) : boolean; begin push_addr_param:=false; if never_copy_const_param then push_addr_param:=true else begin case def.deftype of variantdef, formaldef : push_addr_param:=true; recorddef : push_addr_param:=(def.size>target_info.size_of_pointer); arraydef : push_addr_param:=((tarraydef(def).highrange>=tarraydef(def).lowrange) and (def.size>target_info.size_of_pointer)) or is_open_array(def) or is_array_of_const(def) or is_array_constructor(def); objectdef : push_addr_param:=is_object(def); stringdef : push_addr_param:=tstringdef(def).string_typ in [st_shortstring,st_longstring]; procvardef : push_addr_param:=(po_methodpointer in tprocvardef(def).procoptions); setdef : push_addr_param:=(tsetdef(def).settype<>smallset); end; end; end; { if l isn't in the range of def a range check error (if not explicit) is generated and the value is placed within the range } procedure testrange(def : tdef;var l : tconstexprint;explicit:boolean); var lv,hv: longint; error: boolean; begin error := false; { for 64 bit types we need only to check if it is less than } { zero, if def is a qword node } if is_64bitint(def) then begin if (l<0) and (torddef(def).typ=u64bit) then begin { don't zero the result, because it may come from hex notation like $ffffffffffffffff! (JM) l:=0; } if not explicit then begin if (cs_check_range in aktlocalswitches) then Message(parser_e_range_check_error) else Message(parser_w_range_check_error); end; error := true; end; end else begin getrange(def,lv,hv); if (def.deftype=orddef) and (torddef(def).typ=u32bit) then begin if (l < cardinal(lv)) or (l > cardinal(hv)) then begin if not explicit then begin if (cs_check_range in aktlocalswitches) then Message(parser_e_range_check_error) else Message(parser_w_range_check_error); end; error := true; end; end else if (lhv) then begin if not explicit then begin if ((def.deftype=enumdef) and { delphi allows range check errors in enumeration type casts FK } not(m_delphi in aktmodeswitches)) or (cs_check_range in aktlocalswitches) then Message(parser_e_range_check_error) else Message(parser_w_range_check_error); end; error := true; end; end; if error then begin { Fix the value to fit in the allocated space for this type of variable } case def.size of 1: l := l and $ff; 2: l := l and $ffff; { work around sign extension bug (to be fixed) (JM) } 4: l := l and (int64($fffffff) shl 4 + $f); end; { do sign extension if necessary (JM) } if is_signed(def) then begin case def.size of 1: l := shortint(l); 2: l := smallint(l); 4: l := longint(l); end; end; end; end; { return the range from def in l and h } procedure getrange(def : tdef;var l : longint;var h : longint); begin case def.deftype of orddef : begin l:=torddef(def).low; h:=torddef(def).high; end; enumdef : begin l:=tenumdef(def).min; h:=tenumdef(def).max; end; arraydef : begin l:=tarraydef(def).lowrange; h:=tarraydef(def).highrange; end; else internalerror(987); end; end; function mmx_type(p : tdef) : tmmxtype; begin mmx_type:=mmxno; if is_mmx_able_array(p) then begin if tarraydef(p).elementtype.def.deftype=floatdef then case tfloatdef(tarraydef(p).elementtype.def).typ of s32real: mmx_type:=mmxsingle; end else case torddef(tarraydef(p).elementtype.def).typ of u8bit: mmx_type:=mmxu8bit; s8bit: mmx_type:=mmxs8bit; u16bit: mmx_type:=mmxu16bit; s16bit: mmx_type:=mmxs16bit; u32bit: mmx_type:=mmxu32bit; s32bit: mmx_type:=mmxs32bit; end; end; end; function is_mmx_able_array(p : tdef) : boolean; begin {$ifdef SUPPORT_MMX} if (cs_mmx_saturation in aktlocalswitches) then begin is_mmx_able_array:=(p.deftype=arraydef) and not(is_special_array(p)) and ( ( (tarraydef(p).elementtype.def.deftype=orddef) and ( ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (torddef(tarraydef(p).elementtype.def).typ in [u32bit,s32bit]) ) or ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=3) and (torddef(tarraydef(p).elementtype.def).typ in [u16bit,s16bit]) ) ) ) or ( ( (tarraydef(p).elementtype.def.deftype=floatdef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (tfloatdef(tarraydef(p).elementtype.def).typ=s32real) ) ) ) ); end else begin is_mmx_able_array:=(p.deftype=arraydef) and ( ( (tarraydef(p).elementtype.def.deftype=orddef) and ( ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (torddef(tarraydef(p).elementtype.def).typ in [u32bit,s32bit]) ) or ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=3) and (torddef(tarraydef(p).elementtype.def).typ in [u16bit,s16bit]) ) or ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=7) and (torddef(tarraydef(p).elementtype.def).typ in [u8bit,s8bit]) ) ) ) or ( (tarraydef(p).elementtype.def.deftype=floatdef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (tfloatdef(tarraydef(p).elementtype.def).typ=s32real) ) ) ); end; {$else SUPPORT_MMX} is_mmx_able_array:=false; {$endif SUPPORT_MMX} end; function is_equal(def1,def2 : tdef) : boolean; var b : boolean; hd : tdef; begin { both types must exists } if not (assigned(def1) and assigned(def2)) then begin is_equal:=false; exit; end; { be sure, that if there is a stringdef, that this is def1 } if def2.deftype=stringdef then begin hd:=def1; def1:=def2; def2:=hd; end; b:=false; { both point to the same definition ? } if def1=def2 then b:=true else { pointer with an equal definition are equal } if (def1.deftype=pointerdef) and (def2.deftype=pointerdef) then begin { check if both are farpointer } if (tpointerdef(def1).is_far=tpointerdef(def2).is_far) then begin { here a problem detected in tabsolutesym } { the types can be forward type !! } if assigned(def1.typesym) and (tpointerdef(def1).pointertype.def.deftype=forwarddef) then b:=(def1.typesym=def2.typesym) else b:=tpointerdef(def1).pointertype.def=tpointerdef(def2).pointertype.def; end else b:=false; end else { ordinals are equal only when the ordinal type is equal } if (def1.deftype=orddef) and (def2.deftype=orddef) then begin case torddef(def1).typ of u8bit,u16bit,u32bit, s8bit,s16bit,s32bit: b:=((torddef(def1).typ=torddef(def2).typ) and (torddef(def1).low=torddef(def2).low) and (torddef(def1).high=torddef(def2).high)); uvoid,uchar,uwidechar, bool8bit,bool16bit,bool32bit: b:=(torddef(def1).typ=torddef(def2).typ); end; end else if (def1.deftype=floatdef) and (def2.deftype=floatdef) then b:=tfloatdef(def1).typ=tfloatdef(def2).typ else { strings with the same length are equal } if (def1.deftype=stringdef) and (def2.deftype=stringdef) and (tstringdef(def1).string_typ=tstringdef(def2).string_typ) then begin b:=not(is_shortstring(def1)) or (tstringdef(def1).len=tstringdef(def2).len); end else if (def1.deftype=formaldef) and (def2.deftype=formaldef) then b:=true { file types with the same file element type are equal } { this is a problem for assign !! } { changed to allow if one is untyped } { all typed files are equal to the special } { typed file that has voiddef as elemnt type } { but must NOT match for text file !!! } else if (def1.deftype=filedef) and (def2.deftype=filedef) then b:=(tfiledef(def1).filetyp=tfiledef(def2).filetyp) and (( ((tfiledef(def1).typedfiletype.def=nil) and (tfiledef(def2).typedfiletype.def=nil)) or ( (tfiledef(def1).typedfiletype.def<>nil) and (tfiledef(def2).typedfiletype.def<>nil) and is_equal(tfiledef(def1).typedfiletype.def,tfiledef(def2).typedfiletype.def) ) or ( (tfiledef(def1).typedfiletype.def=tdef(voidtype.def)) or (tfiledef(def2).typedfiletype.def=tdef(voidtype.def)) ))) { sets with the same element base type are equal } else if (def1.deftype=setdef) and (def2.deftype=setdef) then begin if assigned(tsetdef(def1).elementtype.def) and assigned(tsetdef(def2).elementtype.def) then b:=is_subequal(tsetdef(def1).elementtype.def,tsetdef(def2).elementtype.def) else { empty set is compatible with everything } b:=true; end else if (def1.deftype=procvardef) and (def2.deftype=procvardef) then begin { poassembler isn't important for compatibility } { if a method is assigned to a methodpointer } { is checked before } b:=(tprocvardef(def1).proctypeoption=tprocvardef(def2).proctypeoption) and (tprocvardef(def1).proccalloptions=tprocvardef(def2).proccalloptions) and ((tprocvardef(def1).procoptions * po_compatibility_options)= (tprocvardef(def2).procoptions * po_compatibility_options)) and is_equal(tprocvardef(def1).rettype.def,tprocvardef(def2).rettype.def) and equal_paras(tprocvardef(def1).para,tprocvardef(def2).para,cp_all); end else if (def1.deftype=arraydef) and (def2.deftype=arraydef) then begin if is_dynamic_array(def1) and is_dynamic_array(def2) then b:=is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def) else if is_array_of_const(def1) or is_array_of_const(def2) then begin b:=(is_array_of_const(def1) and is_array_of_const(def2)) or (is_array_of_const(def1) and is_array_constructor(def2)) or (is_array_of_const(def2) and is_array_constructor(def1)); end else if is_open_array(def1) or is_open_array(def2) then begin b:=is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def); end else begin b:=not(m_tp in aktmodeswitches) and not(m_delphi in aktmodeswitches) and (tarraydef(def1).lowrange=tarraydef(def2).lowrange) and (tarraydef(def1).highrange=tarraydef(def2).highrange) and is_equal(tarraydef(def1).elementtype.def,tarraydef(def2).elementtype.def) and is_equal(tarraydef(def1).rangetype.def,tarraydef(def2).rangetype.def); end; end else if (def1.deftype=classrefdef) and (def2.deftype=classrefdef) then begin { similar to pointerdef: } if assigned(def1.typesym) and (tclassrefdef(def1).pointertype.def.deftype=forwarddef) then b:=(def1.typesym=def2.typesym) else b:=is_equal(tclassrefdef(def1).pointertype.def,tclassrefdef(def2).pointertype.def); end; is_equal:=b; end; function is_subequal(def1, def2: tdef): boolean; var basedef1,basedef2 : tenumdef; Begin is_subequal := false; if assigned(def1) and assigned(def2) then Begin if (def1.deftype = orddef) and (def2.deftype = orddef) then Begin { see p.47 of Turbo Pascal 7.01 manual for the separation of types } { range checking for case statements is done with testrange } case torddef(def1).typ of u8bit,u16bit,u32bit, s8bit,s16bit,s32bit,s64bit,u64bit : is_subequal:=(torddef(def2).typ in [s64bit,u64bit,s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]); bool8bit,bool16bit,bool32bit : is_subequal:=(torddef(def2).typ in [bool8bit,bool16bit,bool32bit]); uchar : is_subequal:=(torddef(def2).typ=uchar); uwidechar : is_subequal:=(torddef(def2).typ=uwidechar); end; end else Begin { I assume that both enumerations are equal when the first } { pointers are equal. } { I changed this to assume that the enums are equal } { if the basedefs are equal (FK) } if (def1.deftype=enumdef) and (def2.deftype=enumdef) then Begin { get both basedefs } basedef1:=tenumdef(def1); while assigned(basedef1.basedef) do basedef1:=basedef1.basedef; basedef2:=tenumdef(def2); while assigned(basedef2.basedef) do basedef2:=basedef2.basedef; is_subequal:=basedef1=basedef2; { if tenumdef(def1).firstenum = tenumdef(def2).firstenum then is_subequal := TRUE; } end; end; end; { endif assigned ... } end; function assignment_overloaded(from_def,to_def : tdef) : tprocdef; var passproc : tprocdef; convtyp : tconverttype; begin assignment_overloaded:=nil; if assigned(overloaded_operators[_ASSIGNMENT]) then passproc:=overloaded_operators[_ASSIGNMENT].definition else exit; { look for an exact match first } while passproc<>nil do begin if is_equal(passproc.rettype.def,to_def) and (TParaItem(passproc.Para.first).paratype.def=from_def) then begin assignment_overloaded:=passproc; exit; end; passproc:=passproc.nextoverloaded; end; passproc:=overloaded_operators[_ASSIGNMENT].definition; { .... then look for an equal match } while passproc<>nil do begin if is_equal(passproc.rettype.def,to_def) and is_equal(TParaItem(passproc.Para.first).paratype.def,from_def) then begin assignment_overloaded:=passproc; exit; end; passproc:=passproc.nextoverloaded; end; passproc:=overloaded_operators[_ASSIGNMENT].definition; { .... then for convert level 1 } while passproc<>nil do begin if is_equal(passproc.rettype.def,to_def) and (isconvertable(from_def,TParaItem(passproc.Para.first).paratype.def,convtyp,ordconstn,false)=1) then begin assignment_overloaded:=passproc; exit; end; passproc:=passproc.nextoverloaded; end; end; { Returns: 0 - Not convertable 1 - Convertable 2 - Convertable, but not first choice } function isconvertable(def_from,def_to : tdef; var doconv : tconverttype; fromtreetype : tnodetype; explicit : boolean) : byte; { Tbasetype: uauto,uvoid,uchar, u8bit,u16bit,u32bit, s8bit,s16bit,s32, bool8bit,bool16bit,bool32bit, u64bit,s64bitint,uwidechar } type tbasedef=(bvoid,bchar,bint,bbool); const basedeftbl:array[tbasetype] of tbasedef = (bvoid,bvoid,bchar, bint,bint,bint, bint,bint,bint, bbool,bbool,bbool,bint,bint,bchar); basedefconverts : array[tbasedef,tbasedef] of tconverttype = ((tc_not_possible,tc_not_possible,tc_not_possible,tc_not_possible), (tc_not_possible,tc_char_2_char,tc_not_possible,tc_not_possible), (tc_not_possible,tc_not_possible,tc_int_2_int,tc_int_2_bool), (tc_not_possible,tc_not_possible,tc_bool_2_int,tc_bool_2_bool)); var b : byte; hd1,hd2 : tdef; hct : tconverttype; begin { safety check } if not(assigned(def_from) and assigned(def_to)) then begin isconvertable:=0; exit; end; { tp7 procvar def support, in tp7 a procvar is always called, if the procvar is passed explicit a addrn would be there } if (m_tp_procvar in aktmodeswitches) and (def_from.deftype=procvardef) and (fromtreetype=loadn) then begin def_from:=tprocvardef(def_from).rettype.def; end; { we walk the wanted (def_to) types and check then the def_from types if there is a conversion possible } b:=0; case def_to.deftype of orddef : begin case def_from.deftype of orddef : begin doconv:=basedefconverts[basedeftbl[torddef(def_from).typ],basedeftbl[torddef(def_to).typ]]; b:=1; if (doconv=tc_not_possible) or ((doconv=tc_int_2_bool) and (not explicit) and (not is_boolean(def_from))) or ((doconv=tc_bool_2_int) and (not explicit) and (not is_boolean(def_to))) then b:=0; end; enumdef : begin { needed for char(enum) } if explicit then begin doconv:=tc_int_2_int; b:=1; end; end; end; end; stringdef : begin case def_from.deftype of stringdef : begin doconv:=tc_string_2_string; b:=1; end; orddef : begin { char to string} if is_char(def_from) or is_widechar(def_from) then begin doconv:=tc_char_2_string; b:=1; end; end; arraydef : begin { array of char to string, the length check is done by the firstpass of this node } if is_chararray(def_from) then begin doconv:=tc_chararray_2_string; if (is_shortstring(def_to) and (def_from.size <= 255)) or (is_ansistring(def_to) and (def_from.size > 255)) then b:=1 else b:=2; end; end; pointerdef : begin { pchar can be assigned to short/ansistrings, but not in tp7 compatible mode } if is_pchar(def_from) and not(m_tp7 in aktmodeswitches) then begin doconv:=tc_pchar_2_string; { trefer ansistrings because pchars can overflow shortstrings, } { but only if ansistrings are the default (JM) } if (is_shortstring(def_to) and not(cs_ansistrings in aktlocalswitches)) or (is_ansistring(def_to) and (cs_ansistrings in aktlocalswitches)) then b:=1 else b:=2; end; end; end; end; floatdef : begin case def_from.deftype of orddef : begin { ordinal to real } if is_integer(def_from) then begin doconv:=tc_int_2_real; b:=1; end; end; floatdef : begin { 2 float types ? } if tfloatdef(def_from).typ=tfloatdef(def_to).typ then doconv:=tc_equal else doconv:=tc_real_2_real; b:=1; end; end; end; enumdef : begin if (def_from.deftype=enumdef) then begin hd1:=def_from; while assigned(tenumdef(hd1).basedef) do hd1:=tenumdef(hd1).basedef; hd2:=def_to; while assigned(tenumdef(hd2).basedef) do hd2:=tenumdef(hd2).basedef; if (hd1=hd2) then begin b:=1; { because of packenum they can have different sizes! (JM) } doconv:=tc_int_2_int; end; end; end; arraydef : begin { open array is also compatible with a single element of its base type } if is_open_array(def_to) and is_equal(tarraydef(def_to).elementtype.def,def_from) then begin doconv:=tc_equal; b:=1; end else begin case def_from.deftype of arraydef : begin { array constructor -> open array } if is_open_array(def_to) and is_array_constructor(def_from) then begin if is_void(tarraydef(def_from).elementtype.def) or is_equal(tarraydef(def_to).elementtype.def,tarraydef(def_from).elementtype.def) then begin doconv:=tc_equal; b:=1; end else if isconvertable(tarraydef(def_from).elementtype.def, tarraydef(def_to).elementtype.def,hct,arrayconstructorn,false)<>0 then begin doconv:=hct; b:=2; end; end else { array of tvarrec -> array of const } if is_array_of_const(def_to) and is_equal(tarraydef(def_to).elementtype.def,tarraydef(def_from).elementtype.def) then begin doconv:=tc_equal; b:=1; end; end; pointerdef : begin if is_zero_based_array(def_to) and is_equal(tpointerdef(def_from).pointertype.def,tarraydef(def_to).elementtype.def) then begin doconv:=tc_pointer_2_array; b:=1; end; end; stringdef : begin { string to char array } if (not is_special_array(def_to)) and is_char(tarraydef(def_to).elementtype.def) then begin doconv:=tc_string_2_chararray; b:=1; end; end; recorddef : begin { tvarrec -> array of constconst } if is_array_of_const(def_to) and is_equal(def_from,tarraydef(def_to).elementtype.def) then begin doconv:=tc_equal; b:=1; end; end; end; end; end; pointerdef : begin case def_from.deftype of stringdef : begin { string constant (which can be part of array constructor) to zero terminated string constant } if (fromtreetype in [arrayconstructorn,stringconstn]) and is_pchar(def_to) or is_pwidechar(def_to) then begin doconv:=tc_cstring_2_pchar; b:=1; end; end; orddef : begin { char constant to zero terminated string constant } if (fromtreetype=ordconstn) then begin if is_equal(def_from,cchartype.def) and is_pchar(def_to) then begin doconv:=tc_cchar_2_pchar; b:=1; end else if is_integer(def_from) then begin doconv:=tc_cord_2_pointer; b:=1; end; end; end; arraydef : begin { chararray to pointer } if is_zero_based_array(def_from) and is_equal(tarraydef(def_from).elementtype.def,tpointerdef(def_to).pointertype.def) then begin doconv:=tc_array_2_pointer; b:=1; end; end; pointerdef : begin { child class pointer can be assigned to anchestor pointers } if ( (tpointerdef(def_from).pointertype.def.deftype=objectdef) and (tpointerdef(def_to).pointertype.def.deftype=objectdef) and tobjectdef(tpointerdef(def_from).pointertype.def).is_related( tobjectdef(tpointerdef(def_to).pointertype.def)) ) or { all pointers can be assigned to void-pointer } is_equal(tpointerdef(def_to).pointertype.def,voidtype.def) or { in my opnion, is this not clean pascal } { well, but it's handy to use, it isn't ? (FK) } is_equal(tpointerdef(def_from).pointertype.def,voidtype.def) then begin { but don't allow conversion between farpointer-pointer } if (tpointerdef(def_to).is_far=tpointerdef(def_from).is_far) then begin doconv:=tc_equal; b:=1; end; end; end; procvardef : begin { procedure variable can be assigned to an void pointer } { Not anymore. Use the @ operator now.} if not(m_tp_procvar in aktmodeswitches) and (tpointerdef(def_to).pointertype.def.deftype=orddef) and (torddef(tpointerdef(def_to).pointertype.def).typ=uvoid) then begin doconv:=tc_equal; b:=1; end; end; classrefdef, objectdef : begin { class types and class reference type can be assigned to void pointers } if ( is_class_or_interface(def_from) or (def_from.deftype=classrefdef) ) and (tpointerdef(def_to).pointertype.def.deftype=orddef) and (torddef(tpointerdef(def_to).pointertype.def).typ=uvoid) then begin doconv:=tc_equal; b:=1; end; end; end; end; setdef : begin { automatic arrayconstructor -> set conversion } if is_array_constructor(def_from) then begin doconv:=tc_arrayconstructor_2_set; b:=1; end; end; procvardef : begin { proc -> procvar } if (def_from.deftype=procdef) and (m_tp_procvar in aktmodeswitches) then begin doconv:=tc_proc_2_procvar; if proc_to_procvar_equal(tprocdef(def_from),tprocvardef(def_to)) then b:=1; end else { for example delphi allows the assignement from pointers } { to procedure variables } if (m_pointer_2_procedure in aktmodeswitches) and (def_from.deftype=pointerdef) and (tpointerdef(def_from).pointertype.def.deftype=orddef) and (torddef(tpointerdef(def_from).pointertype.def).typ=uvoid) then begin doconv:=tc_equal; b:=1; end else { nil is compatible with procvars } if (fromtreetype=niln) then begin doconv:=tc_equal; b:=1; end; end; objectdef : begin { object pascal objects } if (def_from.deftype=objectdef) and tobjectdef(def_from).is_related(tobjectdef(def_to)) then begin doconv:=tc_equal; b:=1; end else { Class/interface specific } if is_class_or_interface(def_to) then begin { void pointer also for delphi mode } if (m_delphi in aktmodeswitches) and is_voidpointer(def_from) then begin doconv:=tc_equal; b:=1; end else { nil is compatible with class instances and interfaces } if (fromtreetype=niln) then begin doconv:=tc_equal; b:=1; end { classes can be assigned to interfaces } else if is_interface(def_to) and is_class(def_from) and assigned(tobjectdef(def_from).implementedinterfaces) and (tobjectdef(def_from).implementedinterfaces.searchintf(def_to)<>-1) then begin doconv:=tc_class_2_intf; b:=1; end { Interface 2 GUID handling } else if (def_to=tdef(rec_tguid)) and (fromtreetype=typen) and is_interface(def_from) and tobjectdef(def_from).isiidguidvalid then begin b:=1; doconv:=tc_equal; end; end; end; classrefdef : begin { class reference types } if (def_from.deftype=classrefdef) then begin doconv:=tc_equal; if tobjectdef(tclassrefdef(def_from).pointertype.def).is_related( tobjectdef(tclassrefdef(def_to).pointertype.def)) then b:=1; end else { nil is compatible with class references } if (fromtreetype=niln) then begin doconv:=tc_equal; b:=1; end; end; filedef : begin { typed files are all equal to the abstract file type name TYPEDFILE in system.pp in is_equal in types.pas the problem is that it sholud be also compatible to FILE but this would leed to a problem for ASSIGN RESET and REWRITE when trying to find the good overloaded function !! so all file function are doubled in system.pp this is not very beautiful !!} if (def_from.deftype=filedef) and ( ( (tfiledef(def_from).filetyp = ft_typed) and (tfiledef(def_to).filetyp = ft_typed) and ( (tfiledef(def_from).typedfiletype.def = tdef(voidtype.def)) or (tfiledef(def_to).typedfiletype.def = tdef(voidtype.def)) ) ) or ( ( (tfiledef(def_from).filetyp = ft_untyped) and (tfiledef(def_to).filetyp = ft_typed) ) or ( (tfiledef(def_from).filetyp = ft_typed) and (tfiledef(def_to).filetyp = ft_untyped) ) ) ) then begin doconv:=tc_equal; b:=1; end end; recorddef : begin { interface -> guid } if is_interface(def_from) and (def_to=rec_tguid) then begin doconv:=tc_intf_2_guid; b:=1; end else begin { assignment overwritten ?? } if assignment_overloaded(def_from,def_to)<>nil then b:=2; end; end; else begin { assignment overwritten ?? } if assignment_overloaded(def_from,def_to)<>nil then b:=2; end; end; isconvertable:=b; end; function CheckTypes(def1,def2 : tdef) : boolean; var s1,s2 : string; begin if not is_equal(def1,def2) then begin { Crash prevention } if (not assigned(def1)) or (not assigned(def2)) then Message(type_e_mismatch) else begin s1:=def1.typename; s2:=def2.typename; if (s1<>'') and (s2<>'') then Message2(type_e_not_equal_types,def1.typename,def2.typename) else Message(type_e_mismatch); end; CheckTypes:=false; end else CheckTypes:=true; end; end. { $Log$ Revision 1.50 2001-10-20 19:28:39 peter * interface 2 guid support * guid constants support Revision 1.49 2001/10/17 22:41:05 florian * several widechar fixes, case works now Revision 1.48 2001/10/16 17:15:44 jonas * auto-converting from int64 to real is again allowed for all modes (it's allowed in Delphi too) Revision 1.47 2001/09/03 13:27:41 jonas * compilerproc implementation of set addition/substraction/... * changed the declaration of some set helpers somewhat to accomodate the above change * i386 still uses the old code for comparisons of sets, because its helpers return the results in the flags * dummy tc_normal_2_small_set type conversion because I need the original resulttype of the set add nodes NOTE: you have to start a cycle with 1.0.5! Revision 1.46 2001/09/02 21:15:34 peter * don't allow int64->real for delphi mode Revision 1.45 2001/08/19 21:11:21 florian * some bugs fix: - overload; with external procedures fixed - better selection of routine to do an overloaded type case - ... some more Revision 1.44 2001/07/08 21:00:16 peter * various widestring updates, it works now mostly without charset mapping supported Revision 1.43 2001/06/29 14:16:57 jonas * fixed inconsistent handling of procvars in FPC mode (sometimes @ was required to assign the address of a procedure to a procvar, sometimes not. Now it is always required) (merged) Revision 1.42 2001/05/08 21:06:33 florian * some more support for widechars commited especially regarding type casting and constants Revision 1.41 2001/04/22 22:46:49 florian * more variant support Revision 1.40 2001/04/18 22:02:00 peter * registration of targets and assemblers Revision 1.39 2001/04/13 01:22:17 peter * symtable change to classes * range check generation and errors fixed, make cycle DEBUG=1 works * memory leaks fixed Revision 1.38 2001/04/04 21:30:47 florian * applied several fixes to get the DD8 Delphi Unit compiled e.g. "forward"-interfaces are working now Revision 1.37 2001/04/02 21:20:35 peter * resulttype rewrite Revision 1.36 2001/03/23 00:16:07 florian + some stuff to compile FreeCLX added Revision 1.35 2001/03/03 12:38:33 jonas + support for arraydefs in is_signed (for their rangetype, used in rangechecks) Revision 1.34 2001/02/26 19:44:55 peter * merged generic m68k updates from fixes branch Revision 1.33 2001/02/26 12:47:46 jonas * fixed bug in type checking for compatibility of set elements (merged) * released fix in options.pas from Carl also for FPC (merged) Revision 1.32 2001/02/20 21:44:25 peter * tvarrec -> array of const fixed Revision 1.31 2001/01/22 11:20:15 jonas * fixed web bug 1363 (merged) Revision 1.30 2001/01/08 21:43:38 peter * string isn't compatible with array of char Revision 1.29 2000/12/25 00:07:30 peter + new tlinkedlist class (merge of old tstringqueue,tcontainer and tlinkedlist objects) Revision 1.28 2000/12/22 22:38:12 peter * fixed bug #1286 Revision 1.27 2000/12/20 15:59:40 jonas - removed obsolete special case for range checking of cardinal constants at compile time Revision 1.26 2000/12/11 19:13:54 jonas * fixed range checking of cardinal constants * fixed range checking of "qword constants" (they don't really exist, but values > high(int64) were set to zero if assigned to qword) Revision 1.25 2000/12/08 14:06:11 jonas * fix for web bug 1245: arrays of char with size >255 are now passed to overloaded procedures which expect ansistrings instead of shortstrings if possible * pointer to array of chars (when using $t+) are now also considered pchars Revision 1.24 2000/11/20 15:52:47 jonas * testrange now always cuts a constant to the size of the destination if a rangeerror occurred * changed an "and $ffffffff" to "and (int64($fffffff) shl 4 + $f" to work around the constant evaluation problem we currently have Revision 1.23 2000/11/13 14:42:41 jonas * fix in testrange so that 64bit constants are properly truncated when assigned to 32bit vars Revision 1.22 2000/11/13 11:30:55 florian * some bugs with interfaces and NIL fixed Revision 1.21 2000/11/12 23:24:12 florian * interfaces are basically running Revision 1.20 2000/11/11 16:13:31 peter * farpointer and normal pointer aren't compatible Revision 1.19 2000/11/06 22:30:30 peter * more fixes Revision 1.18 2000/11/04 14:25:22 florian + merged Attila's changes for interfaces, not tested yet Revision 1.17 2000/10/31 22:30:13 peter * merged asm result patch part 2 Revision 1.16 2000/10/31 22:02:55 peter * symtable splitted, no real code changes Revision 1.15 2000/10/21 18:16:12 florian * a lot of changes: - basic dyn. array support - basic C++ support - some work for interfaces done .... Revision 1.14 2000/10/14 10:14:56 peter * moehrendorf oct 2000 rewrite Revision 1.13 2000/10/01 19:48:26 peter * lot of compile updates for cg11 Revision 1.12 2000/09/30 16:08:46 peter * more cg11 updates Revision 1.11 2000/09/24 15:06:32 peter * use defines.inc Revision 1.10 2000/09/18 12:31:15 jonas * fixed bug in push_addr_param for arrays (merged from fixes branch) Revision 1.9 2000/09/10 20:16:21 peter * array of const isn't equal with array of (merged) Revision 1.8 2000/08/19 19:51:03 peter * fixed bug with comparing constsym strings Revision 1.7 2000/08/16 13:06:07 florian + support of 64 bit integer constants Revision 1.6 2000/08/13 13:07:18 peter * equal_paras now also checks default parameter value Revision 1.5 2000/08/12 06:49:22 florian + case statement for int64/qword implemented Revision 1.4 2000/08/08 19:26:41 peter * equal_constsym() needed for default para Revision 1.3 2000/07/13 12:08:28 michael + patched to 1.1.0 with former 1.09patch from peter Revision 1.2 2000/07/13 11:32:53 michael + removed logs }