{ Copyright (c) 2000-2002 by Florian Klaempfl Type checking and register allocation for type converting nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ncnv; {$i fpcdefs.inc} interface uses node, symtype, defutil,defcmp, nld ; type ttypeconvnodeflag = ( { the typeconvnode is a proc_2_procvar, generated internally by an address operator, such as @proc, Addr(proc), Ofs(proc) or Seg(proc), which is then going to be converted to a void pointer. Why does it matter? Because, on i8086 far code memory models you're allowed to take the address of a _near_ procedure as a void pointer (which the @ operator does in TP mode), but not as a procvar (in that case the procedure must be far). } tcnf_proc_2_procvar_2_voidpointer, { proc_2_procvar, generated internally by Ofs() } tcnf_proc_2_procvar_get_offset_only ); ttypeconvnodeflags = set of ttypeconvnodeflag; ttypeconvnode = class(tunarynode) totypedef : tdef; totypedefderef : tderef; convtype : tconverttype; convnodeflags : ttypeconvnodeflags; warn_pointer_to_signed, assignment_side: boolean; constructor create(node : tnode;def:tdef);virtual; constructor create_explicit(node : tnode;def:tdef); constructor create_internal(node : tnode;def:tdef); constructor create_proc_to_procvar(node : tnode); constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override; procedure ppuwrite(ppufile:tcompilerppufile);override; procedure buildderefimpl;override; procedure derefimpl;override; function dogetcopy : tnode;override; procedure printnodeinfo(var t : text);override; {$ifdef DEBUG_NODE_XML} procedure XMLPrintNodeInfo(var T: Text); override; {$endif DEBUG_NODE_XML} function pass_1 : tnode;override; function pass_typecheck:tnode;override; function simplify(forinline : boolean):tnode; override; procedure mark_write;override; function docompare(p: tnode) : boolean; override; function retains_value_location:boolean; function assign_allowed:boolean; procedure second_call_helper(c : tconverttype); { always called before any other type conversion checks. If it returns true, the type conversion is ok and no further checks/ handling are required. } function target_specific_general_typeconv: boolean;virtual; { called in case of a valid explicit type conversion. Can be used to replace this explicit type conversion with a different node, or to reject it after all } function target_specific_explicit_typeconv: boolean;virtual; { called when inserttypeconv is used to convert to a def that is equal according to compare_defs() } class function target_specific_need_equal_typeconv(fromdef, todef: tdef): boolean; virtual; protected function typecheck_int_to_int : tnode; virtual; function typecheck_cord_to_pointer : tnode; virtual; function typecheck_chararray_to_string : tnode; virtual; function typecheck_string_to_chararray : tnode; virtual; function typecheck_string_to_string : tnode; virtual; function typecheck_char_to_string : tnode; virtual; function typecheck_char_to_chararray : tnode; virtual; function typecheck_int_to_real : tnode; virtual; function typecheck_real_to_real : tnode; virtual; function typecheck_real_to_currency : tnode; virtual; function typecheck_cchar_to_pchar : tnode; virtual; function typecheck_cstring_to_pchar : tnode; virtual; function typecheck_cstring_to_int : tnode; virtual; function typecheck_char_to_char : tnode; virtual; function typecheck_arrayconstructor_to_set : tnode; virtual; function typecheck_set_to_set : tnode; virtual; function typecheck_pchar_to_string : tnode; virtual; function typecheck_interface_to_string : tnode; virtual; function typecheck_interface_to_guid : tnode; virtual; function typecheck_dynarray_to_openarray : tnode; virtual; function typecheck_pwchar_to_string : tnode; virtual; function typecheck_variant_to_dynarray : tnode; virtual; function typecheck_dynarray_to_variant : tnode; virtual; function typecheck_variant_to_enum : tnode; virtual; function typecheck_enum_to_variant : tnode; virtual; function typecheck_proc_to_procvar : tnode; virtual; function typecheck_variant_to_interface : tnode; virtual; function typecheck_interface_to_variant : tnode; virtual; function typecheck_array_2_dynarray : tnode; virtual; function typecheck_elem_2_openarray : tnode; virtual; function typecheck_arrayconstructor_to_dynarray : tnode; virtual; function typecheck_arrayconstructor_to_array : tnode; virtual; function typecheck_anonproc_2_funcref : tnode; virtual; function typecheck_procvar_2_funcref : tnode; virtual; private function _typecheck_int_to_int : tnode; function _typecheck_cord_to_pointer : tnode; function _typecheck_chararray_to_string : tnode; function _typecheck_string_to_chararray : tnode; function _typecheck_string_to_string : tnode; function _typecheck_char_to_string : tnode; function _typecheck_char_to_chararray : tnode; function _typecheck_int_to_real : tnode; function _typecheck_real_to_real : tnode; function _typecheck_real_to_currency : tnode; function _typecheck_cchar_to_pchar : tnode; function _typecheck_cstring_to_pchar : tnode; function _typecheck_cstring_to_int : tnode; function _typecheck_char_to_char : tnode; function _typecheck_arrayconstructor_to_set : tnode; function _typecheck_set_to_set : tnode; function _typecheck_pchar_to_string : tnode; function _typecheck_interface_to_string : tnode; function _typecheck_interface_to_guid : tnode; function _typecheck_dynarray_to_openarray : tnode; function _typecheck_pwchar_to_string : tnode; function _typecheck_variant_to_dynarray : tnode; function _typecheck_dynarray_to_variant : tnode; function _typecheck_variant_to_enum : tnode; function _typecheck_enum_to_variant : tnode; function _typecheck_proc_to_procvar : tnode; function _typecheck_variant_to_interface : tnode; function _typecheck_interface_to_variant : tnode; function _typecheck_array_2_dynarray : tnode; function _typecheck_elem_2_openarray : tnode; function _typecheck_arrayconstructor_to_dynarray : tnode; function _typecheck_arrayconstructor_to_array : tnode; function _typecheck_anonproc_to_funcref : tnode; function _typecheck_procvar_to_funcref : tnode; protected function first_int_to_int : tnode;virtual; function first_cstring_to_pchar : tnode;virtual; function first_cstring_to_int : tnode;virtual; function first_string_to_chararray : tnode;virtual; function first_char_to_string : tnode;virtual; function first_char_to_chararray : tnode; virtual; function first_nothing : tnode;virtual; function first_array_to_pointer : tnode;virtual; function first_int_to_real : tnode;virtual; function first_real_to_real : tnode;virtual; function first_pointer_to_array : tnode;virtual; function first_cchar_to_pchar : tnode;virtual; function first_bool_to_int : tnode;virtual; function first_int_to_bool : tnode;virtual; function first_bool_to_bool : tnode;virtual; function first_proc_to_procvar : tnode;virtual; function first_nil_to_methodprocvar : tnode;virtual; function first_set_to_set : tnode;virtual; function first_cord_to_pointer : tnode;virtual; function first_ansistring_to_pchar : tnode;virtual; function first_arrayconstructor_to_set : tnode;virtual; function first_class_to_intf : tnode;virtual; function first_char_to_char : tnode;virtual; function first_string_to_string : tnode;virtual; function first_call_helper(c : tconverttype) : tnode; function typecheck_call_helper(c : tconverttype) : tnode; private { these wrapper are necessary, because the first_* stuff is called } { through a table. Without the wrappers override wouldn't have } { any effect } function _first_int_to_int : tnode; function _first_cstring_to_pchar : tnode; function _first_cstring_to_int : tnode; function _first_string_to_chararray : tnode; function _first_char_to_string : tnode; function _first_char_to_chararray : tnode; function _first_nothing : tnode; function _first_array_to_pointer : tnode; function _first_int_to_real : tnode; function _first_real_to_real: tnode; function _first_pointer_to_array : tnode; function _first_cchar_to_pchar : tnode; function _first_bool_to_int : tnode; function _first_int_to_bool : tnode; function _first_bool_to_bool : tnode; function _first_proc_to_procvar : tnode; function _first_nil_to_methodprocvar : tnode; function _first_cord_to_pointer : tnode; function _first_ansistring_to_pchar : tnode; function _first_arrayconstructor_to_set : tnode; function _first_class_to_intf : tnode; function _first_char_to_char : tnode; function _first_set_to_set : tnode; function _first_string_to_string : tnode; procedure _second_int_to_int;virtual; procedure _second_string_to_string;virtual; procedure _second_cstring_to_pchar;virtual; procedure _second_cstring_to_int;virtual; procedure _second_string_to_chararray;virtual; procedure _second_array_to_pointer;virtual; procedure _second_pointer_to_array;virtual; procedure _second_chararray_to_string;virtual; procedure _second_char_to_string;virtual; procedure _second_int_to_real;virtual; procedure _second_real_to_real;virtual; procedure _second_cord_to_pointer;virtual; procedure _second_proc_to_procvar;virtual; procedure _second_nil_to_methodprocvar;virtual; procedure _second_bool_to_int;virtual; procedure _second_int_to_bool;virtual; procedure _second_bool_to_bool;virtual; procedure _second_set_to_set;virtual; procedure _second_ansistring_to_pchar;virtual; procedure _second_class_to_intf;virtual; procedure _second_char_to_char;virtual; procedure _second_elem_to_openarray;virtual; procedure _second_nothing; virtual; protected procedure second_int_to_int;virtual;abstract; procedure second_string_to_string;virtual;abstract; procedure second_cstring_to_pchar;virtual;abstract; procedure second_cstring_to_int;virtual;abstract; procedure second_string_to_chararray;virtual;abstract; procedure second_array_to_pointer;virtual;abstract; procedure second_pointer_to_array;virtual;abstract; procedure second_chararray_to_string;virtual;abstract; procedure second_char_to_string;virtual;abstract; procedure second_int_to_real;virtual;abstract; procedure second_real_to_real;virtual;abstract; procedure second_cord_to_pointer;virtual;abstract; procedure second_proc_to_procvar;virtual;abstract; procedure second_nil_to_methodprocvar;virtual;abstract; procedure second_bool_to_int;virtual;abstract; procedure second_int_to_bool;virtual;abstract; procedure second_bool_to_bool;virtual;abstract; procedure second_set_to_set;virtual;abstract; procedure second_ansistring_to_pchar;virtual;abstract; procedure second_class_to_intf;virtual;abstract; procedure second_char_to_char;virtual;abstract; procedure second_elem_to_openarray;virtual;abstract; procedure second_nothing; virtual;abstract; end; ttypeconvnodeclass = class of ttypeconvnode; { common functionality of as-nodes and is-nodes } tasisnode = class(tbinarynode) protected { if non-standard usage of as-nodes is possible, targets can override this method and return true in case the conditions are fulfilled } function target_specific_typecheck: boolean;virtual; public function pass_typecheck:tnode;override; end; tasnode = class(tasisnode) { as nodes cannot be translated directly into call nodes bcause: When using -CR, explicit class typecasts are replaced with as-nodes to perform class type checking. The problem is that if a typecasted class instance is passed as a var-parameter, then you cannot replace it with a function call. So the as-node a) call the as helper to perform the type checking b) still pass the original instance as parameter to var-parameters (and in general: to return it as the result of the as-node) so the call field is required } call: tnode; constructor create(l,r : tnode);virtual; constructor create_internal(l,r : tnode);virtual; function pass_1 : tnode;override; function dogetcopy: tnode;override; function docompare(p: tnode): boolean; override; destructor destroy; override; end; tasnodeclass = class of tasnode; tisnode = class(tasisnode) constructor create(l,r : tnode);virtual; constructor create_internal(l,r : tnode);virtual; function pass_1 : tnode;override; procedure pass_generate_code;override; end; tisnodeclass = class of tisnode; var ctypeconvnode : ttypeconvnodeclass = ttypeconvnode; casnode : tasnodeclass = tasnode; cisnode : tisnodeclass=tisnode; procedure inserttypeconv(var p:tnode;def:tdef); procedure inserttypeconv_explicit(var p:tnode;def:tdef); procedure inserttypeconv_internal(var p:tnode;def:tdef); procedure arrayconstructor_to_set(var p : tnode);inline; function arrayconstructor_to_set(p:tnode;freep:boolean):tnode; function arrayconstructor_can_be_set(p:tnode):boolean; procedure insert_varargstypeconv(var p : tnode; iscvarargs: boolean); function maybe_global_proc_to_nested(var fromnode: tnode; todef: tdef): boolean; implementation uses globtype,systems,constexp,compinnr, cutils,verbose,globals,widestr,ppu, symconst,symdef,symsym,symcpu,symtable, ncon,ncal,nset,nadd,nmem,nmat,nbas,nutils,ninl,nflw, psub, cgbase,procinfo, htypechk,blockutl,pparautl,procdefutil,pass_1,cpuinfo; {***************************************************************************** Helpers *****************************************************************************} type ttypeconvnodetype = (tct_implicit,tct_explicit,tct_internal); procedure do_inserttypeconv(var p: tnode;def: tdef; convtype: ttypeconvnodetype); begin if not assigned(p.resultdef) then begin typecheckpass(p); if codegenerror then exit; end; { don't insert superfluous type conversions, but in case of bitpacked accesses, the original type must remain too so that not too many/few bits are laoded. Also, in case the deftyp changes, don't ignore because lots of code expects that if the resultdef is set to e.g. stringdef, it remains that way (e.g., in case of Java where java_jlstring equals unicodestring according to equal_defs, but an add node for strings still expects the resultdef of the node to be a stringdef) } if equal_defs(p.resultdef,def) and (p.resultdef.typ=def.typ) and not is_bitpacked_access(p) and { result of a hardware vector node must remain a hardware vector of the same kind (will match to tc_equal with regular arrays of same dimension/eledef) } not((p.resultdef.typ=arraydef) and tarraydef(p.resultdef).is_hwvector) and ((p.blocktype=bt_const) or not ctypeconvnode.target_specific_need_equal_typeconv(p.resultdef,def)) then begin { don't replace encoded string constants to rawbytestring encoding. preserve the codepage } if not (is_rawbytestring(def) and (p.nodetype=stringconstn)) then p.resultdef:=def end else begin case convtype of tct_implicit: p:=ctypeconvnode.create(p,def); tct_explicit: p:=ctypeconvnode.create_explicit(p,def); tct_internal: p:=ctypeconvnode.create_internal(p,def); end; p.fileinfo:=ttypeconvnode(p).left.fileinfo; typecheckpass(p); end; end; procedure inserttypeconv(var p:tnode;def:tdef); begin do_inserttypeconv(p,def,tct_implicit); end; procedure inserttypeconv_explicit(var p: tnode; def: tdef); begin do_inserttypeconv(p,def,tct_explicit); end; procedure inserttypeconv_internal(var p:tnode;def:tdef); begin do_inserttypeconv(p,def,tct_internal); end; {***************************************************************************** Array constructor to Set Conversion *****************************************************************************} procedure arrayconstructor_to_set(var p : tnode); begin p:=arrayconstructor_to_set(p,true); end; function arrayconstructor_to_set(p:tnode;freep:boolean):tnode; var constp : tsetconstnode; p2,p3,p4 : tnode; hdef : tdef; constset : Pconstset; constsetlo, constsethi : TConstExprInt; procedure update_constsethi(def:tdef; maybetruncenumrange: boolean); begin if (def.typ=orddef) and ((torddef(def).high>=constsethi) or (torddef(def).low <=constsetlo)) then begin if torddef(def).ordtype=uwidechar then begin constsethi:=255; constsetlo:=0; if hdef=nil then hdef:=def; end else begin if (torddef(def).high>=constsethi) then constsethi:=torddef(def).high; if (torddef(def).low<=constsetlo) then constsetlo:=torddef(def).low; if hdef=nil then begin if (constsethi>255) or (torddef(def).low<0) then hdef:=u8inttype else hdef:=def; end; if constsethi>255 then constsethi:=255; if constsetlo<0 then constsetlo:=0; end; end else if (def.typ=enumdef) and ((tenumdef(def).max>=constsethi) or (tenumdef(def).min<=constsetlo)) then begin if hdef=nil then hdef:=def; if (tenumdef(def).max>=constsethi) then constsethi:=tenumdef(def).max; if (tenumdef(def).min<=constsetlo) then constsetlo:=tenumdef(def).min; { for constant set elements, delphi allows the usage of elements of enumerations which have value>255 if there is no element with a value > 255 used } if (maybetruncenumrange) then begin if constsethi>255 then constsethi:=255; if constsetlo<0 then constsetlo:=0; end; end; end; procedure do_set(pos : longint); begin if (pos and not $ff)<>0 then begin Message(parser_e_illegal_set_expr); exit; end; if pos>constsethi then constsethi:=pos; if posarrayconstructorn then internalerror(200205105); new(constset); constset^:=[]; hdef:=nil; { make sure to set constsetlo correctly for empty sets } if assigned(tarrayconstructornode(p).left) then constsetlo:=high(aint) else constsetlo:=0; constsethi:=0; constp:=csetconstnode.create(nil,hdef); constp.value_set:=constset; result:=constp; hp:=tarrayconstructornode(p); if assigned(hp.left) then begin first:=true; while assigned(hp) do begin p4:=nil; { will contain the tree to create the set } { split a range into p2 and p3 } if hp.left.nodetype=arrayconstructorrangen then begin p2:=tarrayconstructorrangenode(hp.left).left; p3:=tarrayconstructorrangenode(hp.left).right; tarrayconstructorrangenode(hp.left).left:=nil; tarrayconstructorrangenode(hp.left).right:=nil; end else begin p2:=hp.left; hp.left:=nil; p3:=nil; end; typecheckpass(p2); set_varstate(p2,vs_read,[vsf_must_be_valid]); if assigned(p3) then begin typecheckpass(p3); set_varstate(p3,vs_read,[vsf_must_be_valid]); end; if codegenerror then break; oldfilepos:=current_filepos; current_filepos:=p2.fileinfo; case p2.resultdef.typ of enumdef, orddef: begin { widechars are not yet supported } if is_widechar(p2.resultdef) then begin if block_type<>bt_const then inserttypeconv(p2,cansichartype); if (p2.nodetype<>ordconstn) and not (m_default_unicodestring in current_settings.modeswitches) then incompatibletypes(cwidechartype,cansichartype); end; getrange(p2.resultdef,lr,hr); if assigned(p3) then begin if is_widechar(p3.resultdef) then begin if block_type<>bt_const then inserttypeconv(p3,cansichartype); if (p3.nodetype<>ordconstn) and not (m_default_unicodestring in current_settings.modeswitches) then begin current_filepos:=p3.fileinfo; incompatibletypes(cwidechartype,cansichartype); end; end; { this isn't good, you'll get problems with type t010 = 0..10; ts = set of t010; var s : ts;b : t010 begin s:=[1,2,b]; end. if is_integer(p3^.resultdef) then begin inserttypeconv(p3,u8bitdef); end; } if assigned(hdef) and not(equal_defs(hdef,p3.resultdef)) then begin CGMessagePos(p3.fileinfo,type_e_typeconflict_in_set); end else begin if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then begin if not(is_integer(p3.resultdef)) then begin if not(assigned(hdef)) and first then hdef:=p3.resultdef; end else begin inserttypeconv(p3,u8inttype); inserttypeconv(p2,u8inttype); end; if tordconstnode(p2).value.svalue>tordconstnode(p3).value.svalue then CGMessagePos(p2.fileinfo,type_w_empty_constant_range_set); for l:=tordconstnode(p2).value.svalue to tordconstnode(p3).value.svalue do do_set(l); p2.free; p3.free; end else begin update_constsethi(p2.resultdef,false); inserttypeconv(p2,hdef); update_constsethi(p3.resultdef,false); inserttypeconv(p3,hdef); if assigned(hdef) then inserttypeconv(p3,hdef) else if first then hdef:=p3.resultdef else inserttypeconv(p3,u8inttype); p4:=csetelementnode.create(p2,p3); end; end; end else begin { Single value } if p2.nodetype=ordconstn then begin if assigned(hdef) then inserttypeconv(p2,hdef) else if not(is_integer(p2.resultdef)) and first then hdef:=p2.resultdef else inserttypeconv(p2,u8inttype); if not(is_integer(p2.resultdef)) then update_constsethi(p2.resultdef,true); do_set(tordconstnode(p2).value.svalue); p2.free; end else begin update_constsethi(p2.resultdef,false); if assigned(hdef) then inserttypeconv(p2,hdef) else if not(is_integer(p2.resultdef)) and first then hdef:=p2.resultdef else inserttypeconv(p2,u8inttype); p4:=csetelementnode.create(p2,nil); end; end; end; else CGMessage(type_e_ordinal_expr_expected); end; { insert the set creation tree } if assigned(p4) then result:=caddnode.create(addn,result,p4); { load next and dispose current node } p2:=hp; hp:=tarrayconstructornode(tarrayconstructornode(p2).right); tarrayconstructornode(p2).right:=nil; if freep then p2.free; current_filepos:=oldfilepos; first:=false; end; if (hdef=nil) then hdef:=u8inttype; end else begin { empty set [], only remove node } if freep then p.free; end; { set the initial set type } constp.resultdef:=csetdef.create(hdef,constsetlo.svalue,constsethi.svalue,true); { determine the resultdef for the tree } typecheckpass(result); end; function arrayconstructor_can_be_set(p:tnode):boolean; var p1,p2 : tnode; hdef : tdef; begin { keep in sync with arrayconstructor_to_set } if not assigned(p) then internalerror(2015050401); if not assigned(tarrayconstructornode(p).left) then begin if assigned(tarrayconstructornode(p).right) then internalerror(2015050103); result:=true; end else begin result:=false; hdef:=nil; while assigned(p) do begin if tarrayconstructornode(p).left.nodetype=arrayconstructorrangen then begin p1:=tarrayconstructorrangenode(tarrayconstructornode(p).left).left; p2:=tarrayconstructorrangenode(tarrayconstructornode(p).left).right; end else begin p1:=tarrayconstructornode(p).left; p2:=nil; end; case p1.resultdef.typ of orddef, enumdef: begin if is_widechar(p1.resultdef) then begin if p1.nodetype<>ordconstn then exit else if (tordconstnode(p1).value.uvalue>high(byte)) and not (m_default_unicodestring in current_settings.modeswitches) then exit; end; if assigned(p2) then begin if is_widechar(p2.resultdef) then begin if p2.nodetype<>ordconstn then exit else if (tordconstnode(p2).value.uvalue>high(byte)) and not (m_default_unicodestring in current_settings.modeswitches) then exit; end; { anything to exclude? } end else begin { anything to exclude? } end; end; stringdef: if p1.nodetype<>stringconstn then exit else if assigned(hdef) and not is_char(hdef) then exit; else exit; end; p:=tarrayconstructornode(p).right; end; result:=true; end; end; procedure insert_varargstypeconv(var p : tnode; iscvarargs: boolean); begin { procvars without arguments in variant arrays are always called by Delphi } if not(iscvarargs) then maybe_call_procvar(p,true); if not(iscvarargs) and (p.nodetype=stringconstn) and { don't cast to AnsiString if already casted to Wide/UnicodeString, issue #18266 } (tstringconstnode(p).cst_type in [cst_conststring,cst_shortstring,cst_longstring]) then p:=ctypeconvnode.create_internal(p,getansistringdef) else case p.resultdef.typ of enumdef : p:=ctypeconvnode.create_internal(p,s32inttype); arraydef : begin if is_chararray(p.resultdef) then p:=ctypeconvnode.create_internal(p,charpointertype) else if is_widechararray(p.resultdef) then p:=ctypeconvnode.create_internal(p,widecharpointertype) else CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename); end; orddef : begin if is_integer(p.resultdef) and not(is_64bitint(p.resultdef)) then if not(m_delphi in current_settings.modeswitches) then p:=ctypeconvnode.create(p,s32inttype) else { delphi doesn't generate a range error when passing a cardinal >= $80000000, but since these are seen as longint on the callee side, this causes data loss; as a result, we require an explicit longint() typecast in FPC mode on the caller side if range checking should be disabled, but not in Delphi mode } p:=ctypeconvnode.create_internal(p,s32inttype) else if is_void(p.resultdef) then CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename) else if iscvarargs and is_currency(p.resultdef) and (current_settings.fputype<>fpu_none) then p:=ctypeconvnode.create(p,s64floattype); end; floatdef : if not(iscvarargs) then begin if not(is_currency(p.resultdef)) then p:=ctypeconvnode.create(p,pbestrealtype^); end else begin if is_constrealnode(p) and not(nf_explicit in p.flags) then MessagePos(p.fileinfo,type_w_double_c_varargs); if (tfloatdef(p.resultdef).floattype in [s32real,s64currency]) or (is_constrealnode(p) and not(nf_explicit in p.flags)) then p:=ctypeconvnode.create(p,s64floattype); end; procvardef : p:=ctypeconvnode.create(p,voidpointertype); stringdef: if iscvarargs then p:=ctypeconvnode.create(p,charpointertype); variantdef: if iscvarargs then CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename); { maybe warn in case it's not using "packrecords c"? } recorddef: if not iscvarargs then CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename); pointerdef: ; classrefdef: if iscvarargs then p:=ctypeconvnode.create(p,voidpointertype); objectdef : if is_objc_class_or_protocol(p.resultdef) then p:=ctypeconvnode.create(p,voidpointertype) else if iscvarargs or is_object(p.resultdef) then CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename) else else CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename); end; typecheckpass(p); end; { in FPC mode, @procname immediately has to be evaluated as a procvar. If procname is global, then this will be a global procvar. Since converting global procvars to local procvars is not allowed (see point d in defcmp.proc_to_procvar_equal()), this results in errors when passing global procedures to local procvar parameters or assigning them to nested procvars. The solution is to remove the (wrong) conversion to a global procvar, and instead insert a conversion to the local procvar type. } function maybe_global_proc_to_nested(var fromnode: tnode; todef: tdef): boolean; var hp: tnode; begin result:=false; if (m_nested_procvars in current_settings.modeswitches) and not(m_tp_procvar in current_settings.modeswitches) and (todef.typ=procvardef) and is_nested_pd(tprocvardef(todef)) and (fromnode.nodetype=typeconvn) and (ttypeconvnode(fromnode).convtype=tc_proc_2_procvar) and not is_nested_pd(tprocvardef(fromnode.resultdef)) and (proc_to_procvar_equal(tprocdef(ttypeconvnode(fromnode).left.resultdef),tprocvardef(todef),false)>=te_convert_l1) then begin hp:=fromnode; fromnode:=ctypeconvnode.create_proc_to_procvar(ttypeconvnode(fromnode).left); ttypeconvnode(fromnode).totypedef:=todef; typecheckpass(fromnode); ttypeconvnode(hp).left:=nil; hp.free; result:=true; end; end; { similar as above, but for assigning @classtype.method to a procvar of object. pexpr.do_proc_call() stores the symtable of classtype in the loadnode so we can retrieve it here (rather than the symtable in which method was found, which may be a parent class) } function maybe_classmethod_to_methodprocvar(var fromnode: tnode; todef: tdef): boolean; var hp: tnode; begin result:=false; if not(m_tp_procvar in current_settings.modeswitches) and (todef.typ=procvardef) and is_methodpointer(tprocvardef(todef)) and (fromnode.nodetype=typeconvn) and (ttypeconvnode(fromnode).convtype=tc_proc_2_procvar) and is_methodpointer(fromnode.resultdef) and (po_classmethod in tprocvardef(fromnode.resultdef).procoptions) and not(po_staticmethod in tprocvardef(fromnode.resultdef).procoptions) and (proc_to_procvar_equal(tprocdef(ttypeconvnode(fromnode).left.resultdef),tprocvardef(todef),false)>=te_convert_l1) then begin hp:=fromnode; fromnode:=ttypeconvnode(fromnode).left; if (fromnode.nodetype=loadn) and not assigned(tloadnode(fromnode).left) then tloadnode(fromnode).set_mp(cloadvmtaddrnode.create(ctypenode.create(tdef(tloadnode(fromnode).symtable.defowner)))); fromnode:=ctypeconvnode.create_proc_to_procvar(fromnode); ttypeconvnode(fromnode).totypedef:=todef; typecheckpass(fromnode); ttypeconvnode(hp).left:=nil; hp.free; result:=true; end; end; {***************************************************************************** TTYPECONVNODE *****************************************************************************} constructor ttypeconvnode.create(node : tnode;def:tdef); begin inherited create(typeconvn,node); convtype:=tc_none; convnodeflags:=[]; totypedef:=def; if def=nil then internalerror(200103281); fileinfo:=node.fileinfo; {An attempt to convert the result of a floating point division (with the / operator) to an integer type will fail. Give a hint to use the div operator.} if (node.nodetype=slashn) and (def.typ=orddef) and not(is_currency(def)) then cgmessage(type_h_use_div_for_int); {In expressions like int64:=longint+longint, an integer overflow could be avoided by simply converting the operands to int64 first. Give a hint to do this.} if (node.nodetype in [addn,subn,muln]) and (def.typ=orddef) and (node.resultdef<>nil) and (node.resultdef.typ=orddef) and ((Torddef(node.resultdef).low>=Torddef(def).low) and (Torddef(node.resultdef).high<=Torddef(def).high)) and ((Torddef(node.resultdef).low>Torddef(def).low) or (Torddef(node.resultdef).high totypedef then { Print only if it's different } Write(T,' totypedef="', totypedef.typename, '"'); Write(T,' convtype="', convtype); First := True; for i := Low(TTypeConvNodeFlag) to High(TTypeConvNodeFlag) do if i in ConvNodeFlags then begin if First then begin Write(T, '" convnodeflags="', i); First := False; end else Write(T, ',', i); end; { If no flags were printed, this is the closing " for convtype } Write(T, '"'); end; {$endif DEBUG_NODE_XML} function ttypeconvnode.typecheck_cord_to_pointer : tnode; begin result:=nil; if left.nodetype=ordconstn then begin { check if we have a valid pointer constant (JM) } {$if sizeof(pointer) > sizeof(TConstPtrUInt)} {$if sizeof(TConstPtrUInt) = 4} if (tordconstnode(left).value < int64(low(longint))) or (tordconstnode(left).value > int64(high(cardinal))) then CGMessage(parser_e_range_check_error); {$else} {$if sizeof(TConstPtrUInt) = 8} if (tordconstnode(left).value < int64(low(int64))) or (tordconstnode(left).value > int64(high(qword))) then CGMessage(parser_e_range_check_error); {$else} internalerror(2001020801); {$endif} {$endif} {$endif} if not(nf_explicit in flags) then if (tordconstnode(left).value.svalue=0) then CGMessage(type_w_zero_to_nil) else { in Delphi mode, these aren't caught in compare_defs_ext } IncompatibleTypes(left.resultdef,resultdef); result:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value.uvalue),resultdef); end else internalerror(200104023); end; function ttypeconvnode.typecheck_chararray_to_string : tnode; var chartype : string[8]; newblock : tblocknode; newstat : tstatementnode; restemp : ttempcreatenode; begin if is_widechar(tarraydef(left.resultdef).elementdef) then chartype:='widechar' else chartype:='char'; if tstringdef(resultdef).stringtype=st_shortstring then begin newblock:=internalstatements(newstat); restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false); addstatement(newstat,restemp); addstatement(newstat,ccallnode.createintern('fpc_'+chartype+'array_to_shortstr', ccallparanode.create(cordconstnode.create( ord(tarraydef(left.resultdef).lowrange=0),pasbool1type,false), ccallparanode.create(left,ccallparanode.create( ctemprefnode.create(restemp),nil))))); addstatement(newstat,ctempdeletenode.create_normal_temp(restemp)); addstatement(newstat,ctemprefnode.create(restemp)); result:=newblock; end else if (tstringdef(resultdef).stringtype=st_ansistring) then begin result:=ccallnode.createinternres( 'fpc_'+chartype+'array_to_'+tstringdef(resultdef).stringtypname, ccallparanode.create( cordconstnode.create( ord(tarraydef(left.resultdef).lowrange=0), pasbool1type, false ), ccallparanode.create( cordconstnode.create( getparaencoding(resultdef), u16inttype, true ), ccallparanode.create(left,nil) ) ), resultdef ); end else result:=ccallnode.createinternres( 'fpc_'+chartype+'array_to_'+tstringdef(resultdef).stringtypname, ccallparanode.create(cordconstnode.create( ord(tarraydef(left.resultdef).lowrange=0),pasbool1type,false), ccallparanode.create(left,nil)),resultdef); left:=nil; end; function ttypeconvnode.typecheck_string_to_chararray : tnode; var newblock : tblocknode; newstat : tstatementnode; restemp : ttempcreatenode; pchtemp : pchar; arrsize : tcgint; chartype : string[8]; begin result := nil; with tarraydef(resultdef) do begin if highrangetstringconstnode(left).len) and is_char(tarraydef(resultdef).elementdef) then Message2(type_w_array_size_does_not_match_size_of_constant_string,tostr(tstringconstnode(left).len),tostr(arrsize)); { if the array of char is large enough we can use the string constant directly. This is handled in ncgcnv } if (arrsize>=tstringconstnode(left).len) and is_char(tarraydef(resultdef).elementdef) then begin { pad the constant string with #0 to the array len } { (2.0.x compatible) } if (arrsize>tstringconstnode(left).len) then begin pchtemp:=concatansistrings(tstringconstnode(left).asconstpchar,pchar(StringOfChar(#0,arrsize-tstringconstnode(left).len)),tstringconstnode(left).len,arrsize-tstringconstnode(left).len); left.free; left:=cstringconstnode.createpchar(pchtemp,arrsize,nil); freemem(pchtemp); typecheckpass(left); end; exit; end; { Convert to wide/short/ansistring and call default helper } if is_widechar(tarraydef(resultdef).elementdef) then inserttypeconv(left,cunicodestringtype) else begin if tstringconstnode(left).len>255 then inserttypeconv(left,getansistringdef) else inserttypeconv(left,cshortstringtype); end; end; if is_widechar(tarraydef(resultdef).elementdef) then chartype:='widechar' else chartype:='char'; newblock:=internalstatements(newstat); restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false); addstatement(newstat,restemp); addstatement(newstat,ccallnode.createintern('fpc_'+tstringdef(left.resultdef).stringtypname+ '_to_'+chartype+'array',ccallparanode.create(left,ccallparanode.create( ctemprefnode.create(restemp),nil)))); addstatement(newstat,ctempdeletenode.create_normal_temp(restemp)); addstatement(newstat,ctemprefnode.create(restemp)); result:=newblock; left:=nil; end; function ttypeconvnode.typecheck_char_to_string : tnode; var procname: string[31]; para : tcallparanode; hp : tstringconstnode; ws : tcompilerwidestring; sa : ansistring; cw : tcompilerwidechar; l : SizeUInt; exprtype : tdef; begin result:=nil; sa:=''; if (left.nodetype=ordconstn) and ((tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring,st_ansistring]) or (torddef(left.resultdef).ordtype in [uchar,uwidechar])) then begin if (tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring]) then begin initwidestring(ws); if torddef(left.resultdef).ordtype=uwidechar then concatwidestringchar(ws,tcompilerwidechar(tordconstnode(left).value.uvalue)) else concatwidestringchar(ws,asciichar2unicode(chr(tordconstnode(left).value.uvalue))); hp:=cstringconstnode.createunistr(ws); hp.changestringtype(resultdef); donewidestring(ws); end else begin if (torddef(left.resultdef).ordtype=uwidechar) then begin if not((current_settings.sourcecodepage=CP_UTF8) or ((tstringdef(resultdef).stringtype=st_ansistring) and (tstringdef(resultdef).encoding=CP_UTF8))) then begin if tordconstnode(left).value.uvalue>127 then begin Message(type_w_unicode_data_loss); // compiler has different codepage than a system running an application // to prevent wrong codepage and data loss we are converting unicode char // using a helper routine. This is not delphi compatible behavior. // Delphi converts UniocodeChar to ansistring at the compile time // old behavior: // hp:=cstringconstnode.createstr(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue))); para:=ccallparanode.create(left,nil); if tstringdef(resultdef).stringtype=st_ansistring then para:=ccallparanode.create(cordconstnode.create(getparaencoding(resultdef),u16inttype,true),para); result:=ccallnode.createinternres('fpc_uchar_to_'+tstringdef(resultdef).stringtypname, para,resultdef); left:=nil; exit; end else hp:=cstringconstnode.createstr(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue))); end else begin cw:=tcompilerwidechar(tordconstnode(left).value.uvalue); SetLength(sa,5); l:=UnicodeToUtf8(@(sa[1]),Length(sa),@cw,1); SetLength(sa,l-1); hp:=cstringconstnode.createstr(sa); { explicitly set the type of string constant to avoid unnecessary conversion } if (tstringdef(resultdef).stringtype=st_ansistring) and (tstringdef(resultdef).encoding=CP_UTF8) then begin hp.cst_type:=cst_ansistring; hp.resultdef:=resultdef; end; end end else hp:=cstringconstnode.createstr(chr(tordconstnode(left).value.uvalue)); { output string consts in local ansistring encoding } if is_ansistring(resultdef) and ((tstringdef(resultdef).encoding=0) or (tstringdef(resultdef).encoding=globals.CP_NONE)) then tstringconstnode(hp).changestringtype(getansistringdef) else tstringconstnode(hp).changestringtype(resultdef); end; result:=hp; end else { shortstrings are handled 'inline' (except for widechars) } if (tstringdef(resultdef).stringtype<>st_shortstring) or (torddef(left.resultdef).ordtype=uwidechar) or (target_info.system in systems_managed_vm) then begin { parameter } para:=ccallparanode.create(left,nil); { encoding required? } if tstringdef(resultdef).stringtype=st_ansistring then para:=ccallparanode.create(cordconstnode.create(getparaencoding(resultdef),u16inttype,true),para); { create the procname } if torddef(left.resultdef).ordtype<>uwidechar then begin procname:='fpc_char_to_'; if tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring] then if nf_explicit in flags then Message2(type_w_explicit_string_cast,left.resultdef.typename,resultdef.typename) else Message2(type_w_implicit_string_cast,left.resultdef.typename,resultdef.typename); end else begin procname:='fpc_uchar_to_'; if not (tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring]) then if nf_explicit in flags then Message2(type_w_explicit_string_cast_loss,left.resultdef.typename,resultdef.typename) else Message2(type_w_implicit_string_cast_loss,left.resultdef.typename,resultdef.typename); end; procname:=procname+tstringdef(resultdef).stringtypname; { and finally the call } result:=ccallnode.createinternres(procname,para,resultdef); left := nil; end else begin { use at least u16inttype } {$ifdef cpu8bitalu} exprtype:=u16inttype; {$else cpu8bitalu} exprtype:=uinttype; {$endif cpu8bitalu} { create word(byte(char) shl 8 or 1) for litte endian machines } { and word(byte(char) or 256) for big endian machines } left := ctypeconvnode.create_internal(left,exprtype); if (target_info.endian = endian_little) then left := caddnode.create(orn, cshlshrnode.create(shln,left,cordconstnode.create(8,exprtype,false)), cordconstnode.create(1,exprtype,false)) else left := caddnode.create(orn,left, cordconstnode.create(1 shl 8,exprtype,false)); left := ctypeconvnode.create_internal(left,u16inttype); typecheckpass(left); end; end; function ttypeconvnode.typecheck_string_to_string : tnode; begin result:=nil; if (left.nodetype=stringconstn) and (((tstringdef(resultdef).stringtype=st_ansistring) and (tstringdef(resultdef).encoding<>CP_NONE) ) ) and (tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) then begin tstringconstnode(left).changestringtype(resultdef); Result:=left; left:=nil; end else if (tstringdef(resultdef).stringtype=st_ansistring) and (tstringdef(left.resultdef).stringtype=st_ansistring) and (tstringdef(resultdef).encoding<>tstringdef(left.resultdef).encoding) then begin result:=ccallnode.createinternres( 'fpc_ansistr_to_ansistr', ccallparanode.create( cordconstnode.create( tstringdef(resultdef).encoding, u16inttype, true ), ccallparanode.create(left,nil) ), resultdef ); left:=nil; end else if (left.nodetype=stringconstn) and (tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) and (tstringdef(resultdef).stringtype=st_shortstring) then begin if not hasnonasciichars(tstringconstnode(left).valuews) then begin tstringconstnode(left).changestringtype(resultdef); Result:=left; left:=nil; end; end else if (tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) and not (tstringdef(resultdef).stringtype in [st_unicodestring,st_widestring]) then begin if nf_explicit in flags then Message2(type_w_explicit_string_cast_loss,left.resultdef.typename,resultdef.typename) else Message2(type_w_implicit_string_cast_loss,left.resultdef.typename,resultdef.typename); end else if not (tstringdef(left.resultdef).stringtype in [st_unicodestring,st_widestring]) and (tstringdef(resultdef).stringtype in [st_unicodestring,st_widestring]) then begin if nf_explicit in flags then Message2(type_w_explicit_string_cast,left.resultdef.typename,resultdef.typename) else Message2(type_w_implicit_string_cast,left.resultdef.typename,resultdef.typename); end end; function ttypeconvnode.typecheck_char_to_chararray : tnode; begin result:=nil; end; function ttypeconvnode.typecheck_char_to_char : tnode; var hp : tordconstnode; begin result:=nil; if (left.nodetype=ordconstn) and ((torddef(resultdef).ordtype<>uchar) or (torddef(left.resultdef).ordtype<>uwidechar) or (current_settings.sourcecodepage<>CP_UTF8)) then begin if (torddef(resultdef).ordtype=uchar) and (torddef(left.resultdef).ordtype=uwidechar) and (current_settings.sourcecodepage<>CP_UTF8) then begin if tordconstnode(left).value.uvalue>127 then Message(type_w_unicode_data_loss); hp:=cordconstnode.create( ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue))), cansichartype,true); result:=hp; end else if (torddef(resultdef).ordtype=uwidechar) and (torddef(left.resultdef).ordtype=uchar) then begin hp:=cordconstnode.create( asciichar2unicode(chr(tordconstnode(left).value.uvalue)), cwidechartype,true); result:=hp; end else internalerror(200105131); exit; end; end; function ttypeconvnode.typecheck_int_to_int : tnode; var v : TConstExprInt; begin result:=nil; if left.nodetype=ordconstn then begin v:=tordconstnode(left).value; if is_currency(resultdef) and not(nf_internal in flags) then v:=v*10000; if (resultdef.typ=pointerdef) then result:=cpointerconstnode.create(TConstPtrUInt(v.uvalue),resultdef) else begin if is_currency(left.resultdef) then begin if not(nf_internal in flags) then v:=v div 10000; end else if (resultdef.typ in [orddef,enumdef]) then adaptrange(resultdef,v,([nf_internal,nf_absolute]*flags)<>[],nf_explicit in flags,cs_check_range in localswitches); result:=cordconstnode.create(v,resultdef,false); end; end else if left.nodetype=pointerconstn then begin v:=tpointerconstnode(left).value; if (resultdef.typ=pointerdef) then result:=cpointerconstnode.create(v.uvalue,resultdef) else begin if is_currency(resultdef) and not(nf_internal in flags) then v:=v*10000; result:=cordconstnode.create(v,resultdef,false); end; end else begin if (is_currency(resultdef) or is_currency(left.resultdef)) and (nf_internal in flags) then begin include(flags,nf_is_currency) end { multiply by 10000 for currency. We need to use getcopy to pass the argument because the current node is always disposed. Only inserting the multiply in the left node is not possible because it'll get in an infinite loop to convert int->currency } else if is_currency(resultdef) then begin result:=caddnode.create(muln,getcopy,cordconstnode.create(10000,resultdef,false)); include(result.flags,nf_is_currency); include(taddnode(result).left.flags,nf_internal); end else if is_currency(left.resultdef) then begin result:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,resultdef,false)); include(result.flags,nf_is_currency); include(tmoddivnode(result).left.flags,nf_internal); end; end; end; function ttypeconvnode.typecheck_int_to_real : tnode; var rv : bestreal; begin result:=nil; if left.nodetype=ordconstn then begin rv:=tordconstnode(left).value; if is_currency(resultdef) and not(nf_internal in flags) then rv:=rv*10000.0 else if is_currency(left.resultdef) and not(nf_internal in flags) then rv:=rv/10000.0; result:=crealconstnode.create(rv,resultdef); end else begin if (is_currency(resultdef) or is_currency(left.resultdef)) and (nf_internal in flags) then begin include(flags,nf_is_currency) end { multiply by 10000 for currency. We need to use getcopy to pass the argument because the current node is always disposed. Only inserting the multiply in the left node is not possible because it'll get in an infinite loop to convert int->currency } else if is_currency(resultdef) then begin result:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,resultdef)); include(result.flags,nf_is_currency); end else if is_currency(left.resultdef) then begin result:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,resultdef)); include(result.flags,nf_is_currency); end; end; end; function ttypeconvnode.typecheck_real_to_currency : tnode; begin if not is_currency(resultdef) then internalerror(200304221); result:=nil; if not(nf_internal in flags) then begin left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resultdef)); include(left.flags,nf_is_currency); { Convert constants directly, else call Round() } if left.nodetype=realconstn then result:=cordconstnode.create(round(trealconstnode(left).value_real),resultdef,false) else begin result:=cinlinenode.create(in_round_real,false,left); { Internal type cast to currency } result:=ctypeconvnode.create_internal(result,s64currencytype); left:=nil; end end else begin include(left.flags,nf_is_currency); result:=left; left:=nil; end; end; function ttypeconvnode.typecheck_real_to_real : tnode; begin result:=nil; if not(nf_internal in flags) then begin if is_currency(left.resultdef) and not(is_currency(resultdef)) then begin left:=caddnode.create(slashn,left,crealconstnode.create(10000.0,left.resultdef)); include(left.flags,nf_is_currency); typecheckpass(left); end else if is_currency(resultdef) and not(is_currency(left.resultdef)) then begin left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resultdef)); include(left.flags,nf_is_currency); include(flags,nf_is_currency); typecheckpass(left); end; { comp is handled by the fpu but not a floating type point } if is_fpucomp(resultdef) and not(is_fpucomp(left.resultdef)) and not (nf_explicit in flags) then Message(type_w_convert_real_2_comp); end else include(flags,nf_is_currency); end; function ttypeconvnode.typecheck_cchar_to_pchar : tnode; begin result:=nil; { handle any constants via cunicodestringtype because the compiler cannot convert arbitrary unicodechar constants at compile time to a shortstring (since it doesn't know the code page to use) } inserttypeconv(left,cunicodestringtype); { evaluate again, reset resultdef so the convert_typ will be calculated again and cstring_to_pchar will be used for futher conversion } convtype:=tc_none; result:=pass_typecheck; end; function ttypeconvnode.typecheck_cstring_to_pchar : tnode; begin result:=nil; if is_pwidechar(resultdef) then inserttypeconv(left,cunicodestringtype) else if is_pchar(resultdef) and (is_widestring(left.resultdef) or is_unicodestring(left.resultdef)) then begin inserttypeconv(left,getansistringdef); { the second pass of second_cstring_to_pchar expects a } { strinconstn, but this may become a call to the } { widestring manager in case left contains "high ascii" } if (left.nodetype<>stringconstn) then begin result:=left; left:=nil; end; end; end; function ttypeconvnode.typecheck_cstring_to_int : tnode; var fcc : cardinal; pb : pbyte; begin result:=nil; if left.nodetype<>stringconstn then internalerror(200510012); if (m_mac in current_settings.modeswitches) and is_integer(resultdef) and (tstringconstnode(left).cst_type=cst_conststring) and (tstringconstnode(left).len=4) then begin pb:=pbyte(tstringconstnode(left).asconstpchar); fcc:=(pb[0] shl 24) or (pb[1] shl 16) or (pb[2] shl 8) or pb[3]; result:=cordconstnode.create(fcc,u32inttype,false); end else CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename); end; function ttypeconvnode.typecheck_arrayconstructor_to_set : tnode; var hp : tnode; begin result:=nil; if left.nodetype<>arrayconstructorn then internalerror(5546); { remove typeconv node } hp:=left; left:=nil; { create a set constructor tree } arrayconstructor_to_set(hp); if is_emptyset(hp) then begin { enforce the result type for an empty set } hp.resultdef:=resultdef; result:=hp; end else if hp.resultdef<>resultdef then begin { the set might contain a subrange element (e.g. through a variable), thus we need to insert another type conversion } if nf_explicit in flags then result:=ctypeconvnode.create_explicit(hp,totypedef) else if nf_internal in flags then result:=ctypeconvnode.create_internal(hp,totypedef) else result:=ctypeconvnode.create(hp,totypedef); end else result:=hp; end; function ttypeconvnode.typecheck_set_to_set : tnode; begin result:=nil; { constant sets can be converted by changing the type only } if (left.nodetype=setconstn) then begin left.resultdef:=resultdef; result:=left; left:=nil; exit; end; end; function ttypeconvnode.typecheck_pchar_to_string : tnode; var newblock : tblocknode; newstat : tstatementnode; restemp : ttempcreatenode; begin if tstringdef(resultdef).stringtype=st_shortstring then begin newblock:=internalstatements(newstat); restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false); addstatement(newstat,restemp); addstatement(newstat,ccallnode.createintern('fpc_pchar_to_shortstr',ccallparanode.create(left,ccallparanode.create( ctemprefnode.create(restemp),nil)))); addstatement(newstat,ctempdeletenode.create_normal_temp(restemp)); addstatement(newstat,ctemprefnode.create(restemp)); result:=newblock; end else if tstringdef(resultdef).stringtype=st_ansistring then result := ccallnode.createinternres( 'fpc_pchar_to_'+tstringdef(resultdef).stringtypname, ccallparanode.create( cordconstnode.create(getparaencoding(resultdef),u16inttype,true), ccallparanode.create(left,nil) ), resultdef ) else result := ccallnode.createinternres( 'fpc_pchar_to_'+tstringdef(resultdef).stringtypname, ccallparanode.create(left,nil),resultdef); left:=nil; end; function ttypeconvnode.typecheck_interface_to_string : tnode; begin if assigned(tobjectdef(left.resultdef).iidstr) then begin if not(oo_has_valid_guid in tobjectdef(left.resultdef).objectoptions) then CGMessage1(type_e_interface_has_no_guid,tobjectdef(left.resultdef).typename); result:=cstringconstnode.createstr(tobjectdef(left.resultdef).iidstr^); tstringconstnode(result).changestringtype(cshortstringtype); end else internalerror(2013112913); end; function ttypeconvnode.typecheck_interface_to_guid : tnode; begin if assigned(tobjectdef(left.resultdef).iidguid) then begin if not(oo_has_valid_guid in tobjectdef(left.resultdef).objectoptions) then CGMessage1(type_e_interface_has_no_guid,tobjectdef(left.resultdef).typename); result:=cguidconstnode.create(tobjectdef(left.resultdef).iidguid^); end else internalerror(2013112914); end; function ttypeconvnode.typecheck_dynarray_to_openarray : tnode; begin if (actualtargetnode(@left)^.nodetype in [pointerconstn,niln]) then CGMessage(type_e_no_addr_of_constant); { a dynamic array is a pointer to an array, so to convert it to } { an open array, we have to dereference it (JM) } result:=ctypeconvnode.create_internal(left,cpointerdef.getreusable(resultdef)); typecheckpass(result); { left is reused } left:=nil; result:=cderefnode.create(result); include(TDerefNode(result).derefnodeflags,drnf_no_checkpointer); end; function ttypeconvnode.typecheck_pwchar_to_string : tnode; var newblock : tblocknode; newstat : tstatementnode; restemp : ttempcreatenode; begin if tstringdef(resultdef).stringtype=st_shortstring then begin newblock:=internalstatements(newstat); restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false); addstatement(newstat,restemp); addstatement(newstat,ccallnode.createintern('fpc_pwidechar_to_shortstr',ccallparanode.create(left,ccallparanode.create( ctemprefnode.create(restemp),nil)))); addstatement(newstat,ctempdeletenode.create_normal_temp(restemp)); addstatement(newstat,ctemprefnode.create(restemp)); result:=newblock; end else if tstringdef(resultdef).stringtype=st_ansistring then begin result:=ccallnode.createinternres( 'fpc_pwidechar_to_'+tstringdef(resultdef).stringtypname, ccallparanode.create( cordconstnode.create( getparaencoding(resultdef), u16inttype, true ), ccallparanode.create(left,nil) ), resultdef ); end else result := ccallnode.createinternres( 'fpc_pwidechar_to_'+tstringdef(resultdef).stringtypname, ccallparanode.create(left,nil),resultdef); left:=nil; end; function ttypeconvnode.typecheck_variant_to_dynarray : tnode; begin result := ccallnode.createinternres( 'fpc_variant_to_dynarray', ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(resultdef),initrtti,rdt_normal)), ccallparanode.create(left,nil) ),resultdef); typecheckpass(result); left:=nil; end; function ttypeconvnode.typecheck_dynarray_to_variant : tnode; begin result := ccallnode.createinternres( 'fpc_dynarray_to_variant', ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(left.resultdef),initrtti,rdt_normal)), ccallparanode.create(ctypeconvnode.create_explicit(left,voidpointertype),nil) ),resultdef); typecheckpass(result); left:=nil; end; function ttypeconvnode.typecheck_variant_to_interface : tnode; begin if def_is_related(tobjectdef(resultdef),tobjectdef(search_system_type('IDISPATCH').typedef)) then result := ccallnode.createinternres( 'fpc_variant_to_idispatch', ccallparanode.create(left,nil) ,resultdef) else result := ccallnode.createinternres( 'fpc_variant_to_interface', ccallparanode.create(left,nil) ,resultdef); typecheckpass(result); left:=nil; end; function ttypeconvnode.typecheck_interface_to_variant : tnode; begin if def_is_related(tobjectdef(left.resultdef),tobjectdef(search_system_type('IDISPATCH').typedef)) then result := ccallnode.createinternres( 'fpc_idispatch_to_variant', ccallparanode.create(left,nil) ,resultdef) else result := ccallnode.createinternres( 'fpc_interface_to_variant', ccallparanode.create(left,nil) ,resultdef); typecheckpass(result); left:=nil; end; function ttypeconvnode.typecheck_variant_to_enum : tnode; begin result := ctypeconvnode.create_internal(left,sinttype); result := ctypeconvnode.create_internal(result,resultdef); typecheckpass(result); { left is reused } left := nil; end; function ttypeconvnode.typecheck_enum_to_variant : tnode; begin result := ctypeconvnode.create_internal(left,sinttype); result := ctypeconvnode.create_internal(result,cvarianttype); typecheckpass(result); { left is reused } left := nil; end; function ttypeconvnode.typecheck_array_2_dynarray : tnode; var newstatement : tstatementnode; temp : ttempcreatenode; temp2 : ttempcreatenode; begin { create statements with call to getmem+initialize } result:=internalstatements(newstatement); { create temp for result } temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true); addstatement(newstatement,temp); { get temp for array of lengths } temp2:=ctempcreatenode.create(sinttype,sinttype.size,tt_persistent,false); addstatement(newstatement,temp2); { one dimensional } addstatement(newstatement,cassignmentnode.create( ctemprefnode.create(temp2), cordconstnode.create (tarraydef(left.resultdef).highrange+1,s32inttype,true))); { create call to fpc_dynarr_setlength } addstatement(newstatement,ccallnode.createintern('fpc_dynarray_setlength', ccallparanode.create(caddrnode.create_internal (ctemprefnode.create(temp2)), ccallparanode.create(cordconstnode.create (1,s32inttype,true), ccallparanode.create(caddrnode.create_internal (crttinode.create(tstoreddef(resultdef),initrtti,rdt_normal)), ccallparanode.create( ctypeconvnode.create_internal( ctemprefnode.create(temp),voidpointertype), nil)))) )); addstatement(newstatement,ctempdeletenode.create(temp2)); { copy ... } addstatement(newstatement,cassignmentnode.create( ctypeconvnode.create_internal(cderefnode.create(ctypeconvnode.create_internal(ctemprefnode.create(temp),voidpointertype)),left.resultdef), left )); { left is reused } left:=nil; { the last statement should return the value as location and type, this is done be referencing the temp and converting it first from a persistent temp to normal temp } addstatement(newstatement,ctempdeletenode.create_normal_temp(temp)); addstatement(newstatement,ctemprefnode.create(temp)); end; function ttypeconvnode.typecheck_elem_2_openarray : tnode; begin result:=nil; end; function ttypeconvnode.typecheck_arrayconstructor_to_dynarray : tnode; var newstatement, assstatement : tstatementnode; arrnode : ttempcreatenode; temp2 : ttempcreatenode; assnode : tnode; paracount : integer; elemnode : tarrayconstructornode; begin { assignment of []? } if ( (left.nodetype=arrayconstructorn) and not assigned(tarrayconstructornode(left).left) ) or is_emptyset(left) then begin result:=cnilnode.create; exit; end; if resultdef.typ<>arraydef then internalerror(2017050102); tarrayconstructornode(left).force_type(tarraydef(resultdef).elementdef); result:=internalstatements(newstatement); { create temp for result } arrnode:=ctempcreatenode.create(totypedef,totypedef.size,tt_persistent,true); addstatement(newstatement,arrnode); paracount:=0; { create an assignment call for each element } assnode:=internalstatements(assstatement); if left.nodetype=arrayconstructorrangen then internalerror(2016021902); elemnode:=tarrayconstructornode(left); while assigned(elemnode) do begin { arr[i] := param_i } if not assigned(elemnode.left) then internalerror(2017050103); addstatement(assstatement, cassignmentnode.create( cvecnode.create( ctemprefnode.create(arrnode), cordconstnode.create(paracount,tarraydef(totypedef).rangedef,false)), elemnode.left)); elemnode.left:=nil; inc(paracount); elemnode:=tarrayconstructornode(elemnode.right); if assigned(elemnode) and (elemnode.nodetype<>arrayconstructorn) then internalerror(2016021903); end; { get temp for array of lengths } temp2:=ctempcreatenode.create_value(sinttype,sinttype.size,tt_persistent,false,cordconstnode.create(paracount,s32inttype,true)); addstatement(newstatement,temp2); { create call to fpc_dynarr_setlength } addstatement(newstatement,ccallnode.createintern('fpc_dynarray_setlength', ccallparanode.create(caddrnode.create_internal (ctemprefnode.create(temp2)), ccallparanode.create(cordconstnode.create (1,s32inttype,true), ccallparanode.create(caddrnode.create_internal (crttinode.create(tstoreddef(totypedef),initrtti,rdt_normal)), ccallparanode.create( ctypeconvnode.create_internal( ctemprefnode.create(arrnode),voidpointertype), nil)))) )); { add assignment statememnts } addstatement(newstatement,ctempdeletenode.create(temp2)); addstatement(newstatement,assnode); { the last statement should return the value as location and type, this is done be referencing the temp and converting it first from a persistent temp to normal temp } addstatement(newstatement,ctempdeletenode.create_normal_temp(arrnode)); addstatement(newstatement,ctemprefnode.create(arrnode)); end; function ttypeconvnode.typecheck_arrayconstructor_to_array : tnode; var newstatement, assstatement : tstatementnode; arrnode : ttempcreatenode; temp2 : ttempcreatenode; assnode : tnode; paracount : integer; elemnode : tarrayconstructornode; begin tarrayconstructornode(left).force_type(tarraydef(resultdef).elementdef); result:=internalstatements(newstatement); { create temp for result } arrnode:=ctempcreatenode.create(totypedef,totypedef.size,tt_persistent,true); addstatement(newstatement,arrnode); paracount:=0; { create an assignment call for each element } assnode:=internalstatements(assstatement); if left.nodetype=arrayconstructorrangen then internalerror(2020041402); elemnode:=tarrayconstructornode(left); while assigned(elemnode) do begin { arr[i] := param_i } if not assigned(elemnode.left) then internalerror(2020041403); addstatement(assstatement, cassignmentnode.create( cvecnode.create( ctemprefnode.create(arrnode), cordconstnode.create(paracount+tarraydef(totypedef).lowrange,tarraydef(totypedef).rangedef,false)), elemnode.left)); elemnode.left:=nil; inc(paracount); elemnode:=tarrayconstructornode(elemnode.right); if assigned(elemnode) and (elemnode.nodetype<>arrayconstructorn) then internalerror(2020041404); end; { get temp for array of lengths } temp2:=ctempcreatenode.create_value(sinttype,sinttype.size,tt_persistent,false,cordconstnode.create(paracount,s32inttype,true)); addstatement(newstatement,temp2); { add assignment statememnts } addstatement(newstatement,ctempdeletenode.create(temp2)); addstatement(newstatement,assnode); { the last statement should return the value as location and type, this is done be referencing the temp and converting it first from a persistent temp to normal temp } addstatement(newstatement,ctempdeletenode.create_normal_temp(arrnode)); addstatement(newstatement,ctemprefnode.create(arrnode)); end; function ttypeconvnode._typecheck_int_to_int : tnode; begin result := typecheck_int_to_int; end; function ttypeconvnode._typecheck_cord_to_pointer : tnode; begin result := typecheck_cord_to_pointer; end; function ttypeconvnode._typecheck_chararray_to_string : tnode; begin result := typecheck_chararray_to_string; end; function ttypeconvnode._typecheck_string_to_chararray : tnode; begin result := typecheck_string_to_chararray; end; function ttypeconvnode._typecheck_string_to_string: tnode; begin result := typecheck_string_to_string; end; function ttypeconvnode._typecheck_char_to_string : tnode; begin result := typecheck_char_to_string; end; function ttypeconvnode._typecheck_char_to_chararray : tnode; begin result := typecheck_char_to_chararray; end; function ttypeconvnode._typecheck_int_to_real : tnode; begin result := typecheck_int_to_real; end; function ttypeconvnode._typecheck_real_to_real : tnode; begin result := typecheck_real_to_real; end; function ttypeconvnode._typecheck_real_to_currency : tnode; begin result := typecheck_real_to_currency; end; function ttypeconvnode._typecheck_cchar_to_pchar : tnode; begin result := typecheck_cchar_to_pchar; end; function ttypeconvnode._typecheck_cstring_to_pchar : tnode; begin result := typecheck_cstring_to_pchar; end; function ttypeconvnode._typecheck_cstring_to_int : tnode; begin result := typecheck_cstring_to_int; end; function ttypeconvnode._typecheck_char_to_char : tnode; begin result := typecheck_char_to_char; end; function ttypeconvnode._typecheck_arrayconstructor_to_set : tnode; begin result := typecheck_arrayconstructor_to_set; end; function ttypeconvnode._typecheck_set_to_set : tnode; begin result := typecheck_set_to_set; end; function ttypeconvnode._typecheck_pchar_to_string : tnode; begin result := typecheck_pchar_to_string; end; function ttypeconvnode._typecheck_interface_to_string : tnode; begin result := typecheck_interface_to_string; end; function ttypeconvnode._typecheck_interface_to_guid : tnode; begin result := typecheck_interface_to_guid; end; function ttypeconvnode._typecheck_dynarray_to_openarray : tnode; begin result := typecheck_dynarray_to_openarray; end; function ttypeconvnode._typecheck_pwchar_to_string : tnode; begin result := typecheck_pwchar_to_string; end; function ttypeconvnode._typecheck_variant_to_dynarray : tnode; begin result := typecheck_variant_to_dynarray; end; function ttypeconvnode._typecheck_dynarray_to_variant : tnode; begin result := typecheck_dynarray_to_variant; end; function ttypeconvnode._typecheck_variant_to_enum : tnode; begin result := typecheck_variant_to_enum; end; function ttypeconvnode._typecheck_enum_to_variant : tnode; begin result := typecheck_enum_to_variant; end; function ttypeconvnode._typecheck_proc_to_procvar : tnode; begin result := typecheck_proc_to_procvar; end; function ttypeconvnode._typecheck_variant_to_interface : tnode; begin result := typecheck_variant_to_interface; end; function ttypeconvnode._typecheck_interface_to_variant : tnode; begin result := typecheck_interface_to_variant; end; function ttypeconvnode._typecheck_array_2_dynarray : tnode; begin result := typecheck_array_2_dynarray; end; function ttypeconvnode._typecheck_elem_2_openarray : tnode; begin result := typecheck_elem_2_openarray; end; function ttypeconvnode._typecheck_arrayconstructor_to_dynarray : tnode; begin result:=typecheck_arrayconstructor_to_dynarray; end; function ttypeconvnode._typecheck_arrayconstructor_to_array : tnode; begin result:=typecheck_arrayconstructor_to_array; end; function ttypeconvnode._typecheck_procvar_to_funcref : tnode; begin result:=typecheck_procvar_2_funcref; end; function ttypeconvnode._typecheck_anonproc_to_funcref : tnode; begin result:=typecheck_anonproc_2_funcref; end; function ttypeconvnode.target_specific_general_typeconv: boolean; begin result:=false; end; function ttypeconvnode.target_specific_explicit_typeconv: boolean; begin result:=false; end; class function ttypeconvnode.target_specific_need_equal_typeconv(fromdef, todef: tdef): boolean; begin result:=false; end; type tsym_mapping = record oldsym:tsym; newsym:tsym; end; psym_mapping = ^tsym_mapping; function replace_self_sym(var n:tnode;arg:pointer):foreachnoderesult; var mapping : psym_mapping absolute arg; ld : tloadnode; begin if n.nodetype=loadn then begin ld:=tloadnode(n); if ld.symtableentry=mapping^.oldsym then begin ld.symtableentry:=mapping^.newsym; { make sure that the node is processed again } ld.resultdef:=nil; if assigned(ld.left) then begin { no longer loaded through the frame pointer } ld.left.free; ld.left:=nil; end; typecheckpass(n); end; end; result:=fen_true; end; function ttypeconvnode.typecheck_proc_to_procvar : tnode; function is_self_sym(sym:tsym):boolean; begin result:=(sym.typ in [localvarsym,paravarsym]) and (vo_is_self in tabstractvarsym(sym).varoptions); end; var pd : tabstractprocdef; copytype : tproccopytyp; source: pnode; fpsym, selfsym, sym : tsym; mapping : tsym_mapping; pi : tprocinfo; i : longint; begin result:=nil; pd:=tabstractprocdef(left.resultdef); { create procvardef (default for create_proc_to_procvar is voiddef, but if later a regular inserttypeconvnode() is used to insert a type conversion to the actual procvardef, totypedef will be set to the real procvartype that we are converting to) } if assigned(totypedef) and (totypedef.typ=procvardef) then begin { have to do this in typecheckpass so that it's triggered for typed constant declarations } if po_is_block in tprocvardef(totypedef).procoptions then begin { can only convert from procdef to procvardef, but in the mean time other type conversions may have been inserted (pointers, proc2procvar, ...) } source:=actualtargetnode(@left); while (source^.nodetype=typeconvn) and (ttypeconvnode(source^).convtype=tc_proc_2_procvar) and (is_void(source^.resultdef) or (source^.resultdef.typ=procvardef)) do begin { won't skip proc2procvar } source:=actualtargetnode(@ttypeconvnode(source^).left); end; if (source^.nodetype=loadn) and (source^.resultdef.typ=procdef) and not is_nested_pd(tprocdef(source^.resultdef)) and not is_objcclass(tdef(source^.resultdef.owner.defowner)) then begin result:=generate_block_for_procaddr(tloadnode(source^)); exit; end else CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename); end else if (pd.typ=procdef) and (po_anonymous in pd.procoptions) then begin if left.nodetype<>loadn then internalerror(2021062402); { get rid of any potential framepointer loading; if it's necessary (for a nested procvar for example) it will be added again } if assigned(tloadnode(left).left) and (tloadnode(left).left.nodetype=loadparentfpn) then begin tloadnode(left).left.free; tloadnode(left).left:=nil; tloadnode(left).resultdef:=nil; end; if tprocvardef(totypedef).is_methodpointer then begin if assigned(tprocdef(pd).capturedsyms) and ( (tprocdef(pd).capturedsyms.count>1) or ( (tprocdef(pd).capturedsyms.count=1) and not is_self_sym(tsym(pcapturedsyminfo(tprocdef(pd).capturedsyms[0])^.sym)) ) ) then begin result:=cerrornode.create; exit; end; { so that insert_self_and_vmt_para correctly inserts the Self, cause it otherwise skips that for anonymous functions } include(pd.procoptions,po_methodpointer); { we know this only captures Self, so we can move the anonymous function to normal function level } pd.parast.symtablelevel:=normal_function_level; tprocdef(pd).localst.symtablelevel:=normal_function_level; selfsym:=nil; fpsym:=nil; { find the framepointer parameter and an eventual self } for i:=0 to tprocdef(pd).parast.symlist.count-1 do begin sym:=tsym(tprocdef(pd).parast.symlist[i]); if sym.typ<>paravarsym then continue; if vo_is_parentfp in tparavarsym(sym).varoptions then fpsym:=sym; if vo_is_self in tparavarsym(sym).varoptions then selfsym:=sym; if assigned(fpsym) and assigned(selfsym) then break; end; if assigned(fpsym) then tprocdef(pd).parast.symlist.remove(fpsym); { if we don't have a self parameter already we need to insert a suitable one } if not assigned(selfsym) then begin { replace the self symbol by the new parameter if it was captured } if assigned(tprocdef(pd).capturedsyms) and (tprocdef(pd).capturedsyms.count>0) then begin if not assigned(tprocdef(pd).struct) then { we can't use the captured symbol for the struct as that might be the self of a type helper, thus we need to find the parent procinfo that provides the Self } tprocdef(pd).struct:=current_procinfo.get_normal_proc.procdef.struct; if not assigned(tprocdef(pd).struct) then internalerror(2021062204); insert_self_and_vmt_para(pd); mapping.oldsym:=tsym(pcapturedsyminfo(tprocdef(pd).capturedsyms[0])^.sym); mapping.newsym:=nil; { find the new self parameter } for i:=0 to tprocdef(pd).parast.symlist.count-1 do begin sym:=tsym(tprocdef(pd).parast.symlist[i]); if (sym.typ=paravarsym) and (vo_is_self in tparavarsym(sym).varoptions) then begin mapping.newsym:=sym; break; end; end; if not assigned(mapping.newsym) then internalerror(2021062202); { the anonymous function can only be a direct child of the current_procinfo } pi:=current_procinfo.get_first_nestedproc; while assigned(pi) do begin if pi.procdef=pd then break; pi:=tprocinfo(pi.next); end; if not assigned(pi) then internalerror(2021062203); { replace all uses of the captured Self by the new Self parameter } foreachnodestatic(pm_preprocess,tcgprocinfo(pi).code,@replace_self_sym,@mapping); end else begin { for a nested function of a method struct is already set } if not assigned(tprocdef(pd).struct) then { simply add a TObject as Self parameter } tprocdef(pd).struct:=class_tobject; insert_self_and_vmt_para(pd); { there is no self, so load a nil value } tloadnode(left).set_mp(cnilnode.create); end; end; { the anonymous function no longer adheres to the nested calling convention } exclude(pd.procoptions,po_delphi_nested_cc); tprocdef(pd).calcparas; if not assigned(tloadnode(left).left) then tloadnode(left).set_mp(load_self_node); end else if tprocvardef(totypedef).is_addressonly then begin if assigned(tprocdef(pd).capturedsyms) and (tprocdef(pd).capturedsyms.count>0) then begin result:=cerrornode.create; exit; end; { remove framepointer and Self parameters } for i:=tprocdef(pd).parast.symlist.count-1 downto 0 do begin sym:=tsym(tprocdef(pd).parast.symlist[i]); if (sym.typ=paravarsym) and (tparavarsym(sym).varoptions*[vo_is_parentfp,vo_is_self]<>[]) then tprocdef(pd).parast.symlist.delete(i); end; { the anonymous function no longer adheres to the nested calling convention } exclude(pd.procoptions,po_delphi_nested_cc); { we don't need to look through the existing nodes, cause the parameter was never used anyway } tprocdef(pd).calcparas; end else begin { this is a nested function pointer, so ensure that the anonymous function is handled as such } if assigned(tprocdef(pd).capturedsyms) and (tprocdef(pd).capturedsyms.count>0) and (left.nodetype=loadn) then begin tloadnode(left).left:=cloadparentfpnode.create(tprocdef(tloadnode(left).symtable.defowner),lpf_forload); typecheckpass(tloadnode(left).left); pi:=current_procinfo.get_first_nestedproc; while assigned(pi) do begin if pi.procdef=pd then break; pi:=tprocinfo(pi.next); end; pi.set_needs_parentfp(tprocdef(tloadnode(left).symtable.defowner).parast.symtablelevel); end; end; end; resultdef:=totypedef; end else begin { only need the address of the method? this is needed for @tobject.create. In this case there will be a loadn without a methodpointer. } if (left.nodetype=loadn) and not assigned(tloadnode(left).left) and (not(m_nested_procvars in current_settings.modeswitches) or not is_nested_pd(tabstractprocdef(tloadnode(left).resultdef))) then copytype:=pc_address_only else copytype:=pc_normal; resultdef:=cprocvardef.getreusableprocaddr(pd,copytype); end; end; function ttypeconvnode.typecheck_procvar_2_funcref : tnode; var capturer : tsym; intfdef : tdef; ld,blck,hp : tnode; stmt : tstatementnode; begin result:=nil; if not(m_tp_procvar in current_settings.modeswitches) and is_invokable(resultdef) and (left.nodetype=typeconvn) and (ttypeconvnode(left).convtype=tc_proc_2_procvar) and is_methodpointer(left.resultdef) and (po_classmethod in tprocvardef(left.resultdef).procoptions) and not(po_staticmethod in tprocvardef(left.resultdef).procoptions) and (proc_to_funcref_equal(tprocdef(ttypeconvnode(left).left.resultdef),tobjectdef(resultdef))>=te_convert_l1) then begin hp:=left; left:=ttypeconvnode(left).left; if (left.nodetype=loadn) and not assigned(tloadnode(left).left) then tloadnode(left).set_mp(cloadvmtaddrnode.create(ctypenode.create(tdef(tloadnode(left).symtable.defowner)))); left:=ctypeconvnode.create_proc_to_procvar(left); ttypeconvnode(left).totypedef:=resultdef; typecheckpass(left); ttypeconvnode(hp).left:=nil; hp.free; end; intfdef:=capturer_add_procvar_or_proc(current_procinfo,left,capturer,hp); if assigned(intfdef) then begin if assigned(capturer) then ld:=cloadnode.create(capturer,capturer.owner) else ld:=cnilnode.create; result:=ctypeconvnode.create_internal( ctypeconvnode.create_internal( ld, intfdef), totypedef); if assigned(hp) then begin blck:=internalstatements(stmt); addstatement(stmt,cassignmentnode.create(hp,left)); left:=nil; addstatement(stmt,result); result:=blck; end; end; if not assigned(result) then result:=cerrornode.create; end; function ttypeconvnode.typecheck_anonproc_2_funcref : tnode; var capturer : tsym; intfdef : tdef; ldnode : tnode; begin intfdef:=capturer_add_anonymous_proc(current_procinfo,tprocdef(left.resultdef),capturer); if assigned(intfdef) then begin if assigned(capturer) then ldnode:=cloadnode.create(capturer,capturer.owner) else ldnode:=cnilnode.create; result:=ctypeconvnode.create_internal( ctypeconvnode.create_internal( ldnode, intfdef), totypedef); end else result:=cerrornode.create; end; function ttypeconvnode.typecheck_call_helper(c : tconverttype) : tnode; const resultdefconvert : array[tconverttype] of pointer = ( {none} nil, {equal} nil, {not_possible} nil, { string_2_string } @ttypeconvnode._typecheck_string_to_string, { char_2_string } @ttypeconvnode._typecheck_char_to_string, { char_2_chararray } @ttypeconvnode._typecheck_char_to_chararray, { pchar_2_string } @ttypeconvnode._typecheck_pchar_to_string, { cchar_2_pchar } @ttypeconvnode._typecheck_cchar_to_pchar, { cstring_2_pchar } @ttypeconvnode._typecheck_cstring_to_pchar, { cstring_2_int } @ttypeconvnode._typecheck_cstring_to_int, { ansistring_2_pchar } nil, { string_2_chararray } @ttypeconvnode._typecheck_string_to_chararray, { chararray_2_string } @ttypeconvnode._typecheck_chararray_to_string, { array_2_pointer } nil, { pointer_2_array } nil, { int_2_int } @ttypeconvnode._typecheck_int_to_int, { int_2_bool } nil, { bool_2_bool } nil, { bool_2_int } nil, { real_2_real } @ttypeconvnode._typecheck_real_to_real, { int_2_real } @ttypeconvnode._typecheck_int_to_real, { real_2_currency } @ttypeconvnode._typecheck_real_to_currency, { proc_2_procvar } @ttypeconvnode._typecheck_proc_to_procvar, { nil_2_methodprocvar } nil, { arrayconstructor_2_set } @ttypeconvnode._typecheck_arrayconstructor_to_set, { set_to_set } @ttypeconvnode._typecheck_set_to_set, { cord_2_pointer } @ttypeconvnode._typecheck_cord_to_pointer, { intf_2_string } @ttypeconvnode._typecheck_interface_to_string, { intf_2_guid } @ttypeconvnode._typecheck_interface_to_guid, { class_2_intf } nil, { char_2_char } @ttypeconvnode._typecheck_char_to_char, { dynarray_2_openarray} @ttypeconvnode._typecheck_dynarray_to_openarray, { pwchar_2_string} @ttypeconvnode._typecheck_pwchar_to_string, { variant_2_dynarray} @ttypeconvnode._typecheck_variant_to_dynarray, { dynarray_2_variant} @ttypeconvnode._typecheck_dynarray_to_variant, { variant_2_enum} @ttypeconvnode._typecheck_variant_to_enum, { enum_2_variant} @ttypeconvnode._typecheck_enum_to_variant, { variant_2_interface} @ttypeconvnode._typecheck_interface_to_variant, { interface_2_variant} @ttypeconvnode._typecheck_variant_to_interface, { array_2_dynarray} @ttypeconvnode._typecheck_array_2_dynarray, { elem_2_openarray } @ttypeconvnode._typecheck_elem_2_openarray, { arrayconstructor_2_dynarray } @ttypeconvnode._typecheck_arrayconstructor_to_dynarray, { arrayconstructor_2_array } @ttypeconvnode._typecheck_arrayconstructor_to_array, { anonproc_2_funcref } @ttypeconvnode._typecheck_anonproc_to_funcref, { procvar_2_funcref } @ttypeconvnode._typecheck_procvar_to_funcref ); type tprocedureofobject = function : tnode of object; var r : TMethod; begin result:=nil; { this is a little bit dirty but it works } { and should be quite portable too } r.Code:=resultdefconvert[c]; r.Data:=self; if assigned(r.Code) then result:=tprocedureofobject(r)(); end; function ttypeconvnode.pass_typecheck:tnode; var hdef : tdef; hp : tnode; currprocdef : tabstractprocdef; aprocdef : tprocdef; eq : tequaltype; cdoptions : tcompare_defs_options; selfnode : tnode; newblock: tblocknode; newstatement: tstatementnode; tempnode: ttempcreatenode; begin result:=nil; resultdef:=totypedef; typecheckpass(left); if codegenerror then exit; { When absolute force tc_equal } if (nf_absolute in flags) then begin convtype:=tc_equal; { we need to check regability only if something is really regable } if ((tstoreddef(left.resultdef).is_intregable) or (tstoreddef(resultdef).is_fpuregable)) and ( (tstoreddef(resultdef).is_intregable<>tstoreddef(left.resultdef).is_intregable) or (tstoreddef(resultdef).is_fpuregable<>tstoreddef(left.resultdef).is_fpuregable) or { like in pdecvar.read_absolute(): if the size changes, the register size would also have to change (but second_nothing does not handle this) } (tstoreddef(resultdef).size<>tstoreddef(left.resultdef).size)) then make_not_regable(left,[ra_addr_regable]); exit; end; { tp procvar support. Skip typecasts to procvar, record or set. Those convert on the procvar value. This is used to access the fields of a methodpointer } if not(nf_load_procvar in flags) and not(resultdef.typ in [procvardef,recorddef,setdef]) and not is_invokable(resultdef) and { in case of interface assignments of invokables they'll be converted to voidpointertype using an internal conversions; we must not call the invokable in that case } not ( (nf_internal in flags) and is_invokable(left.resultdef) ) then maybe_call_procvar(left,true); if target_specific_general_typeconv then exit; if convtype=tc_none then begin cdoptions:=[cdo_allow_variant,cdo_warn_incompatible_univ]; { overloaded operators require calls, which is not possible inside a constant declaration } if (block_type<>bt_const) and not(nf_internal in flags) then include(cdoptions,cdo_check_operator); if nf_explicit in flags then include(cdoptions,cdo_explicit); if nf_internal in flags then include(cdoptions,cdo_internal); aprocdef:=nil; eq:=compare_defs_ext(left.resultdef,resultdef,left.nodetype,convtype,aprocdef,cdoptions); case eq of te_exact, te_equal : begin { JVM in particular gets itself in a twist if string consts aren't prematurely simplified } if not target_specific_need_equal_typeconv(left.resultdef, resultdef) then begin result := simplify(false); if assigned(result) then begin { Make sure the compiler knows that this address is typed (prevents the warning from tbs/tb0504.pp from triggering) } if (nf_explicit in flags) and (result.nodetype = addrn) then include(taddrnode(result).addrnodeflags,anf_typedaddr); exit; end; end; { in case of bitpacked accesses, the original type must remain so that not too many/few bits are laoded } if is_bitpacked_access(left) then convtype:=tc_int_2_int; { Only leave when there is no conversion to do. We can still need to call a conversion routine, like the routine to convert a stringconstnode } if (convtype in [tc_equal,tc_not_possible]) and { some conversions, like dynarray to pointer in Delphi mode, must not be removed, because then we get memory leaks due to missing temp finalization } (not is_managed_type(left.resultdef) or { different kinds of refcounted types may need calls to different kinds of refcounting helpers } (resultdef=left.resultdef)) then begin {$ifdef llvm} { we still may have to insert a type conversion at the llvm level } if (blocktype<>bt_const) and (left.resultdef<>resultdef) and { if unspecialised generic -> we won't generate any code for this, and keeping the type conversion node will cause valid_for_assign to fail because the typecast will be from/to something of 0 bytes to/from something with a non-zero size } not is_typeparam(left.resultdef) and not is_typeparam(resultdef) then result:=nil else {$endif llvm} begin left.resultdef:=resultdef; if (nf_explicit in flags) and (left.nodetype = addrn) then include(taddrnode(left).addrnodeflags,anf_typedaddr); result:=left; left:=nil; end; exit; end; end; te_convert_l1, te_convert_l2, te_convert_l3, te_convert_l4, te_convert_l5, te_convert_l6: { nothing to do } ; te_convert_operator : begin include(current_procinfo.flags,pi_do_call); addsymref(aprocdef.procsym,aprocdef); hp:=ccallnode.create(ccallparanode.create(left,nil),Tprocsym(aprocdef.procsym),nil,nil,[],nil); { tell explicitly which def we must use !! (PM) } tcallnode(hp).procdefinition:=aprocdef; left:=nil; result:=hp; exit; end; te_incompatible : begin { convert an array constructor to a set so that we still get the error "set of Y incompatible to Z" instead of "array of X incompatible to Z" } if (resultdef.typ<>arraydef) and is_array_constructor(left.resultdef) then begin arrayconstructor_to_set(left); typecheckpass(left); end; { Procedures have a resultdef of voiddef and functions of their own resultdef. They will therefore always be incompatible with a procvar. Because isconvertable cannot check for procedures we use an extra check for them.} if (left.nodetype=calln) and (tcallnode(left).required_para_count=0) and ( (resultdef.typ=procvardef) or is_invokable(resultdef) ) and ( (m_tp_procvar in current_settings.modeswitches) or (m_mac_procvar in current_settings.modeswitches) ) then begin if assigned(tcallnode(left).right) then begin { this is already a procvar, if it is really equal is checked below } convtype:=tc_equal; hp:=tcallnode(left).right.getcopy; currprocdef:=tabstractprocdef(hp.resultdef); end else begin if resultdef.typ=procvardef then begin convtype:=tc_proc_2_procvar; currprocdef:=Tprocsym(Tcallnode(left).symtableprocentry).Find_procdef_byprocvardef(Tprocvardef(resultdef)); end else begin convtype:=tc_procvar_2_funcref; currprocdef:=tprocsym(tcallnode(left).symtableprocentry).find_procdef_byfuncrefdef(tobjectdef(resultdef)); end; hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry), tprocdef(currprocdef),tcallnode(left).symtableproc); if (tcallnode(left).symtableprocentry.owner.symtabletype=ObjectSymtable) then begin selfnode:=tcallnode(left).methodpointer; if assigned(selfnode) then begin { in case the nodetype is a typen, avoid the internal error in set_mp and instead let the code error out normally } if selfnode.nodetype<>typen then tloadnode(hp).set_mp(selfnode.getcopy) end else tloadnode(hp).set_mp(load_self_node); end; typecheckpass(hp); end; left.free; left:=hp; { Now check if the procedure we are going to assign to the procvar, is compatible with the procvar's type } if not(nf_explicit in flags) and ( ( (resultdef.typ=procvardef) and (proc_to_procvar_equal(currprocdef,tprocvardef(resultdef),false)=te_incompatible) ) or ( is_invokable(resultdef) and (proc_to_funcref_equal(currprocdef,tobjectdef(resultdef))=te_incompatible) ) ) then IncompatibleTypes(left.resultdef,resultdef) else result:=typecheck_call_helper(convtype); exit; end else if maybe_global_proc_to_nested(left,resultdef) or maybe_classmethod_to_methodprocvar(left,resultdef) then begin result:=left; left:=nil; exit; end; { Handle explicit type conversions } if nf_explicit in flags then begin { do common tc_equal cast, except when dealing with proc -> procvar (may have to get rid of method pointer) } if (left.resultdef.typ<>procdef) or (resultdef.typ<>procvardef) then convtype:=tc_equal else convtype:=tc_proc_2_procvar; { ordinal constants can be resized to 1,2,4,8 bytes } if (left.nodetype=ordconstn) then begin { Insert typeconv for ordinal to the correct size first on left, after that the other conversion can be done } hdef:=nil; case longint(resultdef.size) of 1 : hdef:=s8inttype; 2 : hdef:=s16inttype; 4 : hdef:=s32inttype; 8 : hdef:=s64inttype; end; { we need explicit, because it can also be an enum } if assigned(hdef) then inserttypeconv_internal(left,hdef) else CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename); end; { class/interface to class/interface, with checkobject support } if is_class_or_interface_or_objc(resultdef) and is_class_or_interface_or_objc(left.resultdef) then begin { check if the types are related } if not(nf_internal in flags) and (not(def_is_related(tobjectdef(left.resultdef),tobjectdef(resultdef)))) and (not(def_is_related(tobjectdef(resultdef),tobjectdef(left.resultdef)))) then begin { Give an error when typecasting class to interface, this is compatible with delphi } if is_interface(resultdef) and not is_interface(left.resultdef) then CGMessage2(type_e_classes_not_related, FullTypeName(left.resultdef,resultdef), FullTypeName(resultdef,left.resultdef)) else CGMessage2(type_w_classes_not_related, FullTypeName(left.resultdef,resultdef), FullTypeName(resultdef,left.resultdef)) end; { Add runtime check? } if not is_objc_class_or_protocol(resultdef) and not is_objc_class_or_protocol(left.resultdef) and (cs_check_object in current_settings.localswitches) and not(nf_internal in flags) then begin { we can translate the typeconvnode to 'as' when typecasting to a class or interface } { we need to make sure the result can still be passed as a var parameter } newblock:=internalstatements(newstatement); if (valid_for_var(left,false)) then begin tempnode:=ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true); addstatement(newstatement,tempnode); addstatement(newstatement,cassignmentnode.create( ctemprefnode.create(tempnode), caddrnode.create_internal(left))); left:=ctypeconvnode.create_internal(cderefnode.create(ctemprefnode.create(tempnode)),left.resultdef); end else begin tempnode:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,true); addstatement(newstatement,tempnode); addstatement(newstatement,cassignmentnode.create( ctemprefnode.create(tempnode), left)); left:=ctemprefnode.create(tempnode); end; addstatement(newstatement,casnode.create(left.getcopy,cloadvmtaddrnode.create(ctypenode.create(resultdef)))); addstatement(newstatement,ctempdeletenode.create_normal_temp(tempnode)); addstatement(newstatement,ctypeconvnode.create_internal(left,resultdef)); left:=nil; result:=newblock; exit; end; end else begin { only if the same size or formal def, and } { don't allow type casting of constants to } { structured types } if not( (left.resultdef.typ=formaldef) or {$ifdef jvm} { enums /are/ class instances on the JVM platform } (((left.resultdef.typ=enumdef) and (resultdef.typ=objectdef)) or ((resultdef.typ=enumdef) and (left.resultdef.typ=objectdef))) or {$endif} ( is_void(left.resultdef) and (left.nodetype=derefn) ) or ( not(is_open_array(left.resultdef)) and not(is_array_constructor(left.resultdef)) and not(is_array_of_const(left.resultdef)) and { if the from type is an anonymous function then don't blindly convert it if the size is the same as compare_defs_ext already determined that the anonymous function is not compatible } not( (left.resultdef.typ=procdef) and (po_anonymous in tprocdef(left.resultdef).procoptions) ) and (left.resultdef.size=resultdef.size) and { disallow casts of const nodes } (not is_constnode(left) or { however, there are some exceptions } (not(resultdef.typ in [arraydef,recorddef,setdef,stringdef, filedef,variantdef,objectdef]) or is_class_or_interface_or_objc(resultdef) or { the softfloat code generates casts to record } (nf_internal in flags) )) ) ) then CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename) else begin { perform target-specific explicit typecast checks } if target_specific_explicit_typeconv then begin result:=simplify(false); exit; end; end; end; end else IncompatibleTypes(left.resultdef,resultdef); end; end; end; { Give hint or warning for unportable code, exceptions are - typecasts from constants - void } if not(nf_internal in flags) and (left.nodetype<>ordconstn) and not(is_void(left.resultdef)) and (((left.resultdef.typ=orddef) and (resultdef.typ in [pointerdef,procvardef,classrefdef])) or ((resultdef.typ=orddef) and (left.resultdef.typ in [pointerdef,procvardef,classrefdef]))) then begin {Converting pointers to signed integers is a bad idea. Warn.} warn_pointer_to_signed:=(resultdef.typ=orddef) and (Torddef(resultdef).ordtype in [s8bit,s16bit,s32bit,s64bit]); { Give a warning when sizes don't match, because then info will be lost } if left.resultdef.size=resultdef.size then CGMessage(type_h_pointer_to_longint_conv_not_portable) else CGMessage(type_w_pointer_to_longint_conv_not_portable); end; { tc_cord_2_pointer still requires a type check, which simplify does not do } if (convtype<>tc_cord_2_pointer) then begin result := simplify(false); if assigned(result) then exit; end; { now call the resultdef helper to do constant folding } result:=typecheck_call_helper(convtype); end; { some code generators for 64 bit CPUs might not support 32 bit operations, so we can disable the following optimization in fpcdefs.inc. Currently the only CPU for which this applies is powerpc64 } {$ifndef CPUNO32BITOPS} { checks whether we can safely remove typeconversions to bigger types in case range and overflow checking are off, and in case the result of this node tree is downcasted again to a smaller type value afterwards, the smaller types being allowed are described by validints, ordinal constants must fit into l..h We do this on 64 bit CPUs as well, they benefit from it as well } function checkremovebiginttypeconvs(n: tnode; out gotsint: boolean;validints : tordtypeset;const l,h : Tconstexprint): boolean; var gotminus1, gotsigned, gotunsigned, gotdivmod: boolean; { checks whether a node has an accepted resultdef, or originally had one but was implicitly converted to s64bit } function wasoriginallysmallerint(n: tnode): boolean; begin if (n.resultdef.typ<>orddef) then exit(false); gotsigned:=gotsigned or is_signed(n.resultdef); gotunsigned:=gotunsigned or not(is_signed(n.resultdef)); { actually, we should only check right (denominator) nodes here, but setting it always is a safe approximation } if ((n.nodetype=ordconstn) and (tordconstnode(n).value=-1)) then gotminus1:=true; if (torddef(n.resultdef).ordtype in validints) then begin if is_signed(n.resultdef) then gotsint:=true; exit(true); end; { type conv to a bigger int, we do not like to use? } if (torddef(n.resultdef).ordtype in ([s8bit,u8bit,s16bit,u16bit,s32bit,u32bit,s64bit,u64bit]-validints)) and { nf_explicit is also set for explicitly typecasted } { ordconstn's } ([nf_internal,nf_explicit]*n.flags=[]) and { either a typeconversion node coming from a smaller type } (((n.nodetype=typeconvn) and (ttypeconvnode(n).left.resultdef.typ=orddef) and (torddef(ttypeconvnode(n).left.resultdef).ordtype in validints)) or { or an ordconstnode which has a smaller type} ((n.nodetype=ordconstn) and (tordconstnode(n).value>=l) and (tordconstnode(n).value<=h))) then begin if ((n.nodetype=typeconvn) and is_signed(ttypeconvnode(n).left.resultdef)) or ((n.nodetype=ordconstn) and (tordconstnode(n).value<0)) then begin gotsint:=true; gotsigned:=true; end else gotunsigned:=true; exit(true); end; result:=false; end; function docheckremoveinttypeconvs(n: tnode): boolean; begin if wasoriginallysmallerint(n) then exit(true); case n.nodetype of subn,orn,xorn: begin { the result could become negative in this case } if n.nodetype=subn then gotsint:=true; result:= docheckremoveinttypeconvs(tbinarynode(n).left) and docheckremoveinttypeconvs(tbinarynode(n).right); end; unaryminusn: begin gotsint:=true; result:=docheckremoveinttypeconvs(tunarynode(n).left); end; shrn: begin result:=wasoriginallysmallerint(tbinarynode(n).left) and docheckremoveinttypeconvs(tbinarynode(n).right); end; notn: result:=docheckremoveinttypeconvs(tunarynode(n).left); addn,muln,divn,modn,andn,shln: begin if n.nodetype in [divn,modn] then gotdivmod:=true; result:= (docheckremoveinttypeconvs(tbinarynode(n).left) and docheckremoveinttypeconvs(tbinarynode(n).right) and (not(n.nodetype in [modn,divn]) or (not(gotminus1))) ) or ( (n.nodetype=andn) and ( { Right node is more likely to be a constant, so check this one first } wasoriginallysmallerint(tbinarynode(n).right) or wasoriginallysmallerint(tbinarynode(n).left) ) ); end; else result:=false; end; end; begin { checkremove64bittypeconvs } gotdivmod:=false; gotsint:=false; gotminus1:=false; gotsigned:=false; gotunsigned:=false; result:= docheckremoveinttypeconvs(n) and (not(gotdivmod) or (gotsigned xor gotunsigned)); end; { remove int type conversions and set the result to the given type } procedure doremoveinttypeconvs(level : dword;var n: tnode; todef: tdef; forceunsigned: boolean; signedtype,unsignedtype : tdef); function SmallerOrSigned(def: tdef): Boolean; begin Result := (def.size < signedtype.size) or ( (def.size = signedtype.size) and is_signed(def) ) end; var newblock: tblocknode; newstatements: tstatementnode; originaldivtree: tnode; tempnode: ttempcreatenode; NeedMinus1Check: Boolean; begin { we may not recurse into shr nodes: dword1:=dword1+((dword2+dword3) shr 2); while we can remove an extension on the outermost addition, we cannot remove it from the shr } { Don't downsize into a division operation either, as the numerator can be much larger than the result and non-linear properties prevent accurate truncation; fixes #39646 [Kit] } if (n.nodetype in [shrn,divn,modn]) and (level<>0) then begin inserttypeconv_internal(n,todef); exit; end; case n.nodetype of subn,addn,muln,divn,modn,xorn,andn,orn,shln,shrn: begin exclude(n.flags,nf_internal); if not forceunsigned and is_signed(n.resultdef) then begin originaldivtree:=nil; NeedMinus1Check:=False; if n.nodetype in [divn,modn] then begin { If the DIV operation is being downsized, we must explicitly check for a divisor of -1 } NeedMinus1Check := True; { If the operand size is equal or smaller, the -1 check isn't necessary } if ( SmallerOrSigned(tbinarynode(n).left.resultdef) or ( (tbinarynode(n).left.nodetype = typeconvn) and SmallerOrSigned(ttypeconvnode(tbinarynode(n).left).left.resultdef) ) ) and ( SmallerOrSigned(tbinarynode(n).right.resultdef) or ( (tbinarynode(n).right.nodetype = typeconvn) and SmallerOrSigned(ttypeconvnode(tbinarynode(n).right).left.resultdef) ) ) then NeedMinus1Check := False; end; if NeedMinus1Check then originaldivtree:=n.getcopy; doremoveinttypeconvs(level+1,tbinarynode(n).left,signedtype,false,signedtype,unsignedtype); doremoveinttypeconvs(level+1,tbinarynode(n).right,signedtype,false,signedtype,unsignedtype); n.resultdef:=signedtype; if NeedMinus1Check then begin newblock:=internalstatements(newstatements); tempnode:=ctempcreatenode.create(n.resultdef,n.resultdef.size,tt_persistent,true); addstatement(newstatements,tempnode); addstatement(newstatements,cifnode.create_internal( caddnode.create_internal(equaln,tbinarynode(n).right.getcopy,cordconstnode.create(-1,n.resultdef,false)), cassignmentnode.create_internal( ctemprefnode.create(tempnode), cmoddivnode.create(n.nodetype,tbinarynode(originaldivtree).left.getcopy,cordconstnode.create(-1,tbinarynode(originaldivtree).right.resultdef,false)) ), cassignmentnode.create_internal( ctemprefnode.create(tempnode),n ) ) ); addstatement(newstatements,ctempdeletenode.create_normal_temp(tempnode)); addstatement(newstatements,ctemprefnode.create(tempnode)); n:=newblock; do_typecheckpass(n); originaldivtree.free; end; end else begin doremoveinttypeconvs(level+1,tbinarynode(n).left,unsignedtype,forceunsigned,signedtype,unsignedtype); doremoveinttypeconvs(level+1,tbinarynode(n).right,unsignedtype,forceunsigned,signedtype,unsignedtype); n.resultdef:=unsignedtype; end; //if ((n.nodetype=andn) and (tbinarynode(n).left.nodetype=ordconstn) and // ((tordconstnode(tbinarynode(n).left).value and $7fffffff)=tordconstnode(tbinarynode(n).left).value) // ) then // inserttypeconv_internal(tbinarynode(n).right,n.resultdef) //else if (n.nodetype=andn) and (tbinarynode(n).right.nodetype=ordconstn) and // ((tordconstnode(tbinarynode(n).right).value and $7fffffff)=tordconstnode(tbinarynode(n).right).value) then // inserttypeconv_internal(tbinarynode(n).left,n.resultdef); end; unaryminusn,notn: begin exclude(n.flags,nf_internal); if not forceunsigned and is_signed(n.resultdef) then begin doremoveinttypeconvs(level+1,tunarynode(n).left,signedtype,false,signedtype,unsignedtype); n.resultdef:=signedtype; end else begin doremoveinttypeconvs(level+1,tunarynode(n).left,unsignedtype,forceunsigned,signedtype,unsignedtype); n.resultdef:=unsignedtype; end; end; typeconvn: begin ttypeconvnode(n).totypedef:=todef; { may change the type conversion, e.g. if the old conversion was from 64 bit to a 64 bit, and now becomes 64 bit to 32 bit } n.resultdef:=nil; ttypeconvnode(n).convtype:=tc_none; typecheckpass(n); end; else inserttypeconv_internal(n,todef); end; end; {$endif not CPUNO32BITOPS} procedure swap_const_value (var val : TConstExprInt; size : longint); begin case size of 1 : {do nothing }; 2 : if val.signed then val.svalue:=swapendian(smallint(val.svalue)) else val.uvalue:=swapendian(word(val.uvalue)); 4 : if val.signed then val.svalue:=swapendian(longint(val.svalue)) else val.uvalue:=swapendian(qword(val.uvalue)); 8 : if val.signed then val.svalue:=swapendian(int64(val.svalue)) else val.uvalue:=swapendian(qword(val.uvalue)); else internalerror(2014111201); end; end; function ttypeconvnode.simplify(forinline : boolean): tnode; var hp: tnode; v: Tconstexprint; {$ifndef CPUNO32BITOPS} foundsint: boolean; {$endif not CPUNO32BITOPS} begin result := nil; { Constant folding and other node transitions to remove the typeconv node } case left.nodetype of stringconstn : if (resultdef.typ=stringdef) and ((convtype=tc_equal) or ((convtype=tc_string_2_string) and ( ((not is_widechararray(left.resultdef) and not is_wide_or_unicode_string(left.resultdef)) or (tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring,st_ansistring]) ) ) ) ) then begin { output string consts in local ansistring encoding } if is_ansistring(resultdef) and { do not mess with the result type for internally created nodes } not(nf_internal in flags) and ((tstringdef(resultdef).encoding=0) or (tstringdef(resultdef).encoding=globals.CP_NONE)) then tstringconstnode(left).changestringtype(getansistringdef) else tstringconstnode(left).changestringtype(resultdef); result:=left; left:=nil; exit; end else if (convtype<>tc_cstring_2_pchar) and is_dynamicstring(left.resultdef) and (tstringconstnode(left).len=0) and (resultdef.typ=pointerdef) and cstringconstnode.emptydynstrnil then begin result:=cnilnode.create; exit; end; realconstn : begin if (convtype = tc_real_2_currency) then result := typecheck_real_to_currency else if (convtype = tc_real_2_real) then result := typecheck_real_to_real else exit; if not(assigned(result)) then begin result := left; left := nil; end; if (result.nodetype = realconstn) then begin hp:=result; result:=crealconstnode.create(trealconstnode(hp).value_real,resultdef); if nf_is_currency in hp.flags then include(result.flags,nf_is_currency); if ([nf_explicit,nf_internal] * flags <> []) then include(result.flags, nf_explicit); hp.free; end; end; niln : begin { nil to ordinal node } if (resultdef.typ=orddef) then begin hp:=cordconstnode.create(0,resultdef,true); if ([nf_explicit,nf_internal] * flags <> []) then include(hp.flags, nf_explicit); result:=hp; exit; end else { fold nil to any pointer type } if (resultdef.typ=pointerdef) then begin hp:=cnilnode.create; hp.resultdef:=resultdef; if ([nf_explicit,nf_internal] * flags <> []) then include(hp.flags, nf_explicit); result:=hp; exit; end else { remove typeconv after niln, but not when the result is a methodpointer. The typeconv of the methodpointer will then take care of updateing size of niln to OS_64 } if not((resultdef.typ=procvardef) and not(tprocvardef(resultdef).is_addressonly)) and { converting (dynamic array) nil to a an open array is not allowed } not is_open_array(resultdef) then begin left.resultdef:=resultdef; if ([nf_explicit,nf_internal] * flags <> []) then include(left.flags, nf_explicit); result:=left; left:=nil; exit; end; end; ordconstn : begin { ordinal contants can be directly converted } { but not char to char because it is a widechar to char or via versa } { which needs extra code to do the code page transistion } { constant ordinal to pointer } if (resultdef.typ=pointerdef) and (convtype<>tc_cchar_2_pchar) then begin if (target_info.system in systems_managed_vm) and (tordconstnode(left).value<>0) then message(parser_e_feature_unsupported_for_vm); hp:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value.uvalue),resultdef); if ([nf_explicit,nf_internal] * flags <> []) then include(hp.flags, nf_explicit); result:=hp; exit; end else if is_ordinal(resultdef) and not(convtype=tc_char_2_char) then begin { replace the resultdef and recheck the range } if ([nf_explicit,nf_absolute, nf_internal] * flags <> []) then include(left.flags, nf_explicit) else { no longer an ordconst with an explicit typecast } exclude(left.flags, nf_explicit); { when converting from one boolean type to another, force } { booleans to 0/1, and byte/word/long/qwordbool to 0/-1 } { (Delphi-compatibile) } if is_boolean(left.resultdef) and is_boolean(resultdef) and (is_cbool(left.resultdef) or is_cbool(resultdef)) then begin if is_pasbool(resultdef) then tordconstnode(left).value:=ord(tordconstnode(left).value<>0) else tordconstnode(left).value:=-ord(tordconstnode(left).value<>0); end else begin { for constant values on absolute variables, swapping is required } if (target_info.endian = endian_big) and (nf_absolute in flags) then swap_const_value(tordconstnode(left).value,tordconstnode(left).resultdef.size); if not(nf_generic_para in flags) then adaptrange( resultdef,tordconstnode(left).value, { when evaluating an explicit typecast during inlining, don't warn about lost bits; only warn if someone literally typed e.g. byte($1ff) } (([nf_internal,nf_absolute]*flags)<>[]) or (forinline and (nf_explicit in flags)), nf_explicit in flags, cs_check_range in localswitches); { swap value back, but according to new type } if (target_info.endian = endian_big) and (nf_absolute in flags) then swap_const_value(tordconstnode(left).value,resultdef.size); { cut off the new value? } if resultdef.size []) then include(left.flags, nf_explicit) else { no longer an ordconst with an explicit typecast } exclude(left.flags, nf_explicit); result:=left; left:=nil; exit; end { constant pointer to ordinal } else if is_ordinal(resultdef) then begin hp:=cordconstnode.create(TConstExprInt(tpointerconstnode(left).value), resultdef,not(nf_explicit in flags)); if ([nf_explicit,nf_internal] * flags <> []) then include(hp.flags, nf_explicit); result:=hp; exit; end; end; else ; end; {$ifndef CPUNO32BITOPS} { must be done before code below, because we need the typeconversions for ordconstn's as well } case convtype of tc_bool_2_int, tc_int_2_bool, tc_int_2_int: begin if (localswitches * [cs_check_range,cs_check_overflow] = []) and (resultdef.typ in [pointerdef,orddef,enumdef]) then begin { avoid unnecessary widening of intermediary calculations to 64 bit } if (resultdef.size <= 4) and is_64bitint(left.resultdef) and (left.nodetype in [subn,addn,muln,divn,modn,xorn,andn,orn,notn,unaryminusn,shln,shrn]) and checkremovebiginttypeconvs(left,foundsint,[s8bit,u8bit,s16bit,u16bit,s32bit,u32bit],int64(low(longint)),high(cardinal)) then doremoveinttypeconvs(0,left,generrordef,not foundsint,s32inttype,u32inttype); {$if defined(cpu16bitalu)} if (resultdef.size <= 2) and (is_32bitint(left.resultdef) or is_64bitint(left.resultdef)) and (left.nodetype in [subn,addn,muln,divn,modn,xorn,andn,orn,notn,unaryminusn,shln,shrn]) and checkremovebiginttypeconvs(left,foundsint,[s8bit,u8bit,s16bit,u16bit],int64(low(smallint)),high(word)) then doremoveinttypeconvs(0,left,generrordef,not foundsint,s16inttype,u16inttype); {$endif defined(cpu16bitalu)} {$if defined(cpu8bitalu)} if (resultdef.size objectdef) and equal_defs(totypedef, resultdef) and equal_defs(left.resultdef, resultdef) and { Undefined definitions are usually generics that haven't been specialized yet } not is_undefined(resultdef) and not is_undefined(totypedef) and not is_undefined(left.resultdef) ) ) and not is_managed_type(resultdef) and not is_managed_type(totypedef) and not is_managed_type(left.resultdef) then begin { Exact conversion - we can remove this typeconv node } if nf_absolute in flags then { Make sure the absolute flag gets transferred } Include(left.flags, nf_absolute); Result := left; left := nil; Exit; end; end; procedure Ttypeconvnode.mark_write; begin if not(convtype=tc_pointer_2_array) then left.mark_write; end; function ttypeconvnode.first_cord_to_pointer : tnode; begin result:=nil; internalerror(200104043); end; function ttypeconvnode.first_int_to_int : tnode; begin first_int_to_int:=nil; expectloc:=left.expectloc; if not is_void(left.resultdef) then begin if (left.expectloc<>LOC_REGISTER) and ((resultdef.size>left.resultdef.size) or (left.expectloc in [LOC_SUBSETREF,LOC_CSUBSETREF,LOC_SUBSETREG,LOC_CSUBSETREG])) then expectloc:=LOC_REGISTER else if (left.expectloc=LOC_CREGISTER) and (resultdef.size 1 then begin { convert first to string, then to chararray } inserttypeconv(left,cshortstringtype); inserttypeconv(left,resultdef); result:=left; left := nil; exit; end; result := nil; end; function ttypeconvnode.first_nothing : tnode; begin first_nothing:=nil; end; function ttypeconvnode.first_array_to_pointer : tnode; begin first_array_to_pointer:=nil; make_not_regable(left,[ra_addr_regable]); expectloc:=LOC_REGISTER; end; function ttypeconvnode.first_int_to_real: tnode; var fname: string[32]; begin if target_info.system in systems_wince then begin { converting a 64bit integer to a float requires a helper } if is_64bitint(left.resultdef) or is_currency(left.resultdef) then begin { hack to avoid double division by 10000, as it's already done by typecheckpass.resultdef_int_to_real } if is_currency(left.resultdef) then left.resultdef := s64inttype; if is_signed(left.resultdef) then fname:='i64to' else fname:='ui64to'; end else { other integers are supposed to be 32 bit } begin if is_signed(left.resultdef) then fname:='ito' else fname:='uto'; firstpass(left); end; if tfloatdef(resultdef).floattype=s64real then fname:=fname+'d' else fname:=fname+'s'; result:=ccallnode.createintern(fname,ccallparanode.create( left,nil)); left:=nil; firstpass(result); exit; end else begin { converting a 64bit integer to a float requires a helper } if is_64bitint(left.resultdef) or is_currency(left.resultdef) then begin { hack to avoid double division by 10000, as it's already done by typecheckpass.resultdef_int_to_real } if is_currency(left.resultdef) then left.resultdef := s64inttype; if is_signed(left.resultdef) then fname:='int64_to_' else { we can't do better currently } fname:='qword_to_'; end else { other integers are supposed to be 32 bit } begin if is_signed(left.resultdef) then fname:='int32_to_' else fname:='int64_to_'; firstpass(left); end; if tfloatdef(resultdef).floattype=s64real then fname:=fname+'float64' else fname:=fname+'float32'; result:=ctypeconvnode.create_internal(ccallnode.createintern(fname,ccallparanode.create( left,nil)),resultdef); left:=nil; firstpass(result); exit; end; end; function ttypeconvnode.first_real_to_real : tnode; begin {$ifdef cpufpemu} if cs_fp_emulation in current_settings.moduleswitches then begin if target_info.system in systems_wince then begin case tfloatdef(left.resultdef).floattype of s32real: case tfloatdef(resultdef).floattype of s64real: result:=ccallnode.createintern('stod',ccallparanode.create(left,nil)); s32real: begin result:=left; left:=nil; end; else internalerror(2005082704); end; s64real: case tfloatdef(resultdef).floattype of s32real: result:=ccallnode.createintern('dtos',ccallparanode.create(left,nil)); s64real: begin result:=left; left:=nil; end; else internalerror(2005082703); end; else internalerror(2005082702); end; left:=nil; firstpass(result); exit; end else begin case tfloatdef(left.resultdef).floattype of s32real: case tfloatdef(resultdef).floattype of s64real: result:=ctypeconvnode.create_explicit(ccallnode.createintern('float32_to_float64',ccallparanode.create( ctypeconvnode.create_internal(left,search_system_type('FLOAT32REC').typedef),nil)),resultdef); s32real: begin result:=left; left:=nil; end; else internalerror(200610151); end; s64real: case tfloatdef(resultdef).floattype of s32real: result:=ctypeconvnode.create_explicit(ccallnode.createintern('float64_to_float32',ccallparanode.create( ctypeconvnode.create_internal(left,search_system_type('FLOAT64').typedef),nil)),resultdef); s64real: begin result:=left; left:=nil; end; else internalerror(200610152); end; else internalerror(200610153); end; left:=nil; firstpass(result); exit; end; end else {$endif cpufpemu} begin first_real_to_real:=nil; if not use_vectorfpu(resultdef) then expectloc:=LOC_FPUREGISTER else expectloc:=LOC_MMREGISTER; end; end; function ttypeconvnode.first_pointer_to_array : tnode; begin first_pointer_to_array:=nil; expectloc:=LOC_REFERENCE; end; function ttypeconvnode.first_cchar_to_pchar : tnode; begin first_cchar_to_pchar:=nil; internalerror(200104021); end; function ttypeconvnode.first_bool_to_int : tnode; begin first_bool_to_int:=nil; { byte(boolean) or word(wordbool) or longint(longbool) must be accepted for var parameters } if (nf_explicit in flags) and (left.resultdef.size=resultdef.size) and (left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then begin expectloc:=left.expectloc; exit; end; expectloc:=LOC_REGISTER; end; function ttypeconvnode.first_int_to_bool : tnode; begin first_int_to_bool:=nil; { byte(boolean) or word(wordbool) or longint(longbool) must be accepted for var parameters } if (nf_explicit in flags) and (left.resultdef.size=resultdef.size) and (left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then begin {$ifdef xtensa} expectloc:=LOC_REGISTER; {$else xtensa} expectloc:=left.expectloc; {$endif xtensa} exit; end; { when converting 64bit int to C-ctyle boolean, first convert to an int32 and then } { convert to a boolean (only necessary for 32bit processors) } { note: not if left is already a bool (qwordbool that is true, even if only because the highest bit is set, must remain true if it is --implicitly, unlike integers-- converted to another type of bool), Left can already be a bool because this routine can also be called from first_bool_to_bool } if not is_boolean(left.resultdef) and (left.resultdef.size > sizeof(aint)) and (left.resultdef.size<>resultdef.size) and is_cbool(resultdef) then begin left:=ctypeconvnode.create_internal(left,s32inttype); firstpass(left); exit; end; expectloc:=LOC_REGISTER; end; function ttypeconvnode.first_bool_to_bool : tnode; begin first_bool_to_bool:=nil; if (left.expectloc in [LOC_FLAGS,LOC_JUMP]) and not is_cbool(resultdef) then expectloc := left.expectloc { the following cases use the code generation for bool_to_int/ int_to_bool -> also set their expectlocs } else if (resultdef.size=left.resultdef.size) and (is_cbool(resultdef)=is_cbool(left.resultdef)) then result:=first_bool_to_int else result:=first_int_to_bool end; function ttypeconvnode.first_char_to_char : tnode; var fname: string[18]; begin if (torddef(resultdef).ordtype=uchar) and (torddef(left.resultdef).ordtype=uwidechar) then fname := 'fpc_uchar_to_char' else if (torddef(resultdef).ordtype=uwidechar) and (torddef(left.resultdef).ordtype=uchar) then fname := 'fpc_char_to_uchar' else internalerror(2007081201); result := ccallnode.createintern(fname,ccallparanode.create(left,nil)); left:=nil; firstpass(result); end; function ttypeconvnode.first_proc_to_procvar : tnode; begin first_proc_to_procvar:=nil; { if we take the address of a nested function, the current function/ procedure needs a stack frame since it's required to construct the nested procvar } if is_nested_pd(tprocvardef(resultdef)) and ( not (po_anonymous in tprocdef(left.resultdef).procoptions) or (po_delphi_nested_cc in tprocvardef(resultdef).procoptions) ) then include(current_procinfo.flags,pi_needs_stackframe); if tabstractprocdef(resultdef).is_addressonly then expectloc:=LOC_REGISTER else expectloc:=left.expectloc; end; function ttypeconvnode.first_nil_to_methodprocvar : tnode; begin first_nil_to_methodprocvar:=nil; expectloc:=LOC_REGISTER; end; function ttypeconvnode.first_set_to_set : tnode; var newstatement : tstatementnode; temp : ttempcreatenode; begin { in theory, we should do range checking here, but Delphi doesn't do it either (FK) } if left.nodetype=setconstn then begin left.resultdef:=resultdef; result:=left; left:=nil; end { equal sets for the code generator? } else if (left.resultdef.size=resultdef.size) and (tsetdef(left.resultdef).setbase=tsetdef(resultdef).setbase) then { TODO: This causes wrong (but Delphi-compatible) results for disjoint subsets} { e.g., this prints true because of this: var sa: set of 1..2; sb: set of 5..6; b: byte; begin b:=1; sa:=[1..2]; sb:=sa; writeln(b in sb); end. } begin result:=left; left:=nil; end else begin result:=internalstatements(newstatement); { in case left is a smallset expression, it can be an addn or so. } { fpc_varset_load expects a formal const parameter, which doesn't } { accept set addn's -> assign to a temp first and pass the temp } if not(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE]) then begin temp:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,false); addstatement(newstatement,temp); { temp := left } addstatement(newstatement,cassignmentnode.create( ctemprefnode.create(temp),left)); addstatement(newstatement,ctempdeletenode.create_normal_temp(temp)); addstatement(newstatement,ctemprefnode.create(temp)); left:=result; firstpass(left); { recreate the result's internalstatements list } result:=internalstatements(newstatement); end; { create temp for result } temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true); addstatement(newstatement,temp); addstatement(newstatement,ccallnode.createintern('fpc_varset_load', ccallparanode.create(cordconstnode.create(tsetdef(left.resultdef).setbase div 8 - tsetdef(resultdef).setbase div 8,sinttype,false), ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false), ccallparanode.create(ctemprefnode.create(temp), ccallparanode.create(cordconstnode.create(left.resultdef.size,sinttype,false), ccallparanode.create(left,nil)))))) ); addstatement(newstatement,ctempdeletenode.create_normal_temp(temp)); addstatement(newstatement,ctemprefnode.create(temp)); left:=nil; end; end; function ttypeconvnode.first_ansistring_to_pchar : tnode; begin first_ansistring_to_pchar:=nil; expectloc:=LOC_REGISTER; end; function ttypeconvnode.first_arrayconstructor_to_set : tnode; begin first_arrayconstructor_to_set:=nil; internalerror(200104022); end; function ttypeconvnode.first_class_to_intf : tnode; var hd : tobjectdef; ImplIntf : TImplementedInterface; begin result:=nil; expectloc:=LOC_REGISTER; hd:=tobjectdef(left.resultdef); while assigned(hd) do begin ImplIntf:=find_implemented_interface(hd,tobjectdef(resultdef)); if assigned(ImplIntf) then begin case ImplIntf.IType of etStandard: { handle in pass 2 } ; etFieldValue, etFieldValueClass: if is_interface(tobjectdef(resultdef)) then begin result:=left; propaccesslist_to_node(result,tpropertysym(implintf.implementsgetter).owner,tpropertysym(implintf.implementsgetter).propaccesslist[palt_read]); { this ensures proper refcounting when field is of class type } if not is_interface(result.resultdef) then inserttypeconv(result, resultdef); left:=nil; end else begin internalerror(200802213); end; etStaticMethodResult, etStaticMethodClass, etVirtualMethodResult, etVirtualMethodClass: if is_interface(tobjectdef(resultdef)) then begin { TODO: generating a call to TObject.GetInterface instead could yield smaller code size. OTOH, refcounting gotchas are possible that way. } { constructor create(l:tnode; v : tprocsym;st : TSymtable; mp: tnode; callflags:tcallnodeflags); } result:=ccallnode.create(nil,tprocsym(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym), tprocsym(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym).owner, left,[],nil); addsymref(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym); { if it is a class, process it further in a similar way } if not is_interface(result.resultdef) then inserttypeconv(result, resultdef); left:=nil; end else if is_class(tobjectdef(resultdef)) then begin internalerror(200802211); end else internalerror(200802231); end; break; end; hd:=hd.childof; end; if hd=nil then internalerror(200802164); end; function ttypeconvnode.first_string_to_string : tnode; var procname: string[31]; newblock : tblocknode; newstat : tstatementnode; restemp : ttempcreatenode; begin { get the correct procedure name } procname := 'fpc_'+tstringdef(left.resultdef).stringtypname+ '_to_'+tstringdef(resultdef).stringtypname; if tstringdef(resultdef).stringtype=st_shortstring then begin newblock:=internalstatements(newstat); restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false); addstatement(newstat,restemp); addstatement(newstat,ccallnode.createintern(procname,ccallparanode.create(left,ccallparanode.create( ctemprefnode.create(restemp),nil)))); addstatement(newstat,ctempdeletenode.create_normal_temp(restemp)); addstatement(newstat,ctemprefnode.create(restemp)); result:=newblock; end { encoding parameter required? } else if (tstringdef(resultdef).stringtype=st_ansistring) and (tstringdef(left.resultdef).stringtype in [st_widestring,st_unicodestring,st_shortstring,st_ansistring]) then result:=ccallnode.createinternres(procname, ccallparanode.create(cordconstnode.create(getparaencoding(resultdef),u16inttype,true), ccallparanode.create(left,nil)),resultdef) else result:=ccallnode.createinternres(procname,ccallparanode.create(left,nil),resultdef); left:=nil; end; function ttypeconvnode._first_int_to_int : tnode; begin result:=first_int_to_int; end; function ttypeconvnode._first_cstring_to_pchar : tnode; begin result:=first_cstring_to_pchar; end; function ttypeconvnode._first_cstring_to_int : tnode; begin result:=first_cstring_to_int; end; function ttypeconvnode._first_string_to_chararray : tnode; begin result:=first_string_to_chararray; end; function ttypeconvnode._first_char_to_string : tnode; begin result:=first_char_to_string; end; function ttypeconvnode._first_char_to_chararray: tnode; begin result:=first_char_to_chararray; end; function ttypeconvnode._first_nothing : tnode; begin result:=first_nothing; end; function ttypeconvnode._first_array_to_pointer : tnode; begin result:=first_array_to_pointer; end; function ttypeconvnode._first_int_to_real : tnode; begin result:=first_int_to_real; end; function ttypeconvnode._first_real_to_real : tnode; begin result:=first_real_to_real; end; function ttypeconvnode._first_pointer_to_array : tnode; begin result:=first_pointer_to_array; end; function ttypeconvnode._first_cchar_to_pchar : tnode; begin result:=first_cchar_to_pchar; end; function ttypeconvnode._first_bool_to_int : tnode; begin result:=first_bool_to_int; end; function ttypeconvnode._first_int_to_bool : tnode; begin result:=first_int_to_bool; end; function ttypeconvnode._first_bool_to_bool : tnode; begin result:=first_bool_to_bool; end; function ttypeconvnode._first_proc_to_procvar : tnode; begin result:=first_proc_to_procvar; end; function ttypeconvnode._first_nil_to_methodprocvar : tnode; begin result:=first_nil_to_methodprocvar; end; function ttypeconvnode._first_set_to_set : tnode; begin result:=first_set_to_set; end; function ttypeconvnode._first_cord_to_pointer : tnode; begin result:=first_cord_to_pointer; end; function ttypeconvnode._first_ansistring_to_pchar : tnode; begin result:=first_ansistring_to_pchar; end; function ttypeconvnode._first_arrayconstructor_to_set : tnode; begin result:=first_arrayconstructor_to_set; end; function ttypeconvnode._first_class_to_intf : tnode; begin result:=first_class_to_intf; end; function ttypeconvnode._first_char_to_char : tnode; begin result:=first_char_to_char; end; function ttypeconvnode._first_string_to_string : tnode; begin result:=first_string_to_string; end; function ttypeconvnode.first_call_helper(c : tconverttype) : tnode; const firstconvert : array[tconverttype] of pointer = ( nil, { none } @ttypeconvnode._first_nothing, {equal} @ttypeconvnode._first_nothing, {not_possible} @ttypeconvnode._first_string_to_string, @ttypeconvnode._first_char_to_string, @ttypeconvnode._first_char_to_chararray, nil, { removed in typecheck_chararray_to_string } @ttypeconvnode._first_cchar_to_pchar, @ttypeconvnode._first_cstring_to_pchar, @ttypeconvnode._first_cstring_to_int, @ttypeconvnode._first_ansistring_to_pchar, @ttypeconvnode._first_string_to_chararray, nil, { removed in typecheck_chararray_to_string } @ttypeconvnode._first_array_to_pointer, @ttypeconvnode._first_pointer_to_array, @ttypeconvnode._first_int_to_int, @ttypeconvnode._first_int_to_bool, @ttypeconvnode._first_bool_to_bool, @ttypeconvnode._first_bool_to_int, @ttypeconvnode._first_real_to_real, @ttypeconvnode._first_int_to_real, nil, { removed in typecheck_real_to_currency } @ttypeconvnode._first_proc_to_procvar, @ttypeconvnode._first_nil_to_methodprocvar, @ttypeconvnode._first_arrayconstructor_to_set, @ttypeconvnode._first_set_to_set, @ttypeconvnode._first_cord_to_pointer, @ttypeconvnode._first_nothing, @ttypeconvnode._first_nothing, @ttypeconvnode._first_class_to_intf, @ttypeconvnode._first_char_to_char, @ttypeconvnode._first_nothing, @ttypeconvnode._first_nothing, nil, nil, nil, nil, nil, nil, nil, @ttypeconvnode._first_nothing, @ttypeconvnode._first_nothing, @ttypeconvnode._first_nothing, nil, nil ); type tprocedureofobject = function : tnode of object; var r : TMethod; begin { this is a little bit dirty but it works } { and should be quite portable too } r.Code:=firstconvert[c]; r.Data:=self; if not assigned(r.Code) then internalerror(200312081); first_call_helper:=tprocedureofobject(r)() end; function ttypeconvnode.pass_1 : tnode; begin if warn_pointer_to_signed then cgmessage(type_w_pointer_to_signed); result:=nil; firstpass(left); if codegenerror then exit; expectloc:=left.expectloc; if nf_explicit in flags then { check if the result could be in a register } if (not(tstoreddef(resultdef).is_intregable) and not(tstoreddef(resultdef).is_const_intregable) and not(tstoreddef(resultdef).is_fpuregable)) or ((left.resultdef.typ = floatdef) and (resultdef.typ <> floatdef)) then make_not_regable(left,[ra_addr_regable]); result:=first_call_helper(convtype); end; function ttypeconvnode.retains_value_location:boolean; begin result:=assigned(left.resultdef) and ( (convtype=tc_equal) or { typecasting from void is always allowed } is_void(left.resultdef) or (left.resultdef.typ=formaldef) or { int 2 int with same size reuses same location, or for tp7 mode also allow size < orignal size } ( (convtype=tc_int_2_int) and ( not is_bitpacked_access(left) and (resultdef.size=left.resultdef.size) or ((m_tp7 in current_settings.modeswitches) and (resultdef.size value location changes } ((convtype=tc_elem_2_openarray) and not(target_info.system in systems_managed_vm)) ); end; function ttypeconvnode.assign_allowed:boolean; begin result:=retains_value_location; { When using only a part of the value it can't be in a register since that will load the value in a new register first } { the same goes for changing the sign of equal-sized values which are smaller than an entire register } if result and { don't try to check the size of an open array } (is_open_array(resultdef) or is_open_array(left.resultdef) or (resultdef.size2) then begin result:=internalstatements(statement); tempnode:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,true); addstatement(statement,tempnode); addstatement(statement,cassignmentnode.create_internal(ctemprefnode.create(tempnode),left)); addstatement(statement,caddnode.create_internal(andn, caddnode.create_internal(unequaln,ctemprefnode.create(tempnode),cnilnode.create), caddnode.create_internal(equaln,cloadvmtaddrnode.create(ctemprefnode.create(tempnode)),right) ) ); left:=nil; right:=nil; end else begin result:=caddnode.create_internal(andn, caddnode.create_internal(unequaln,left.getcopy,cnilnode.create), caddnode.create_internal(equaln,cloadvmtaddrnode.create(left.getcopy),right) ); right:=nil; end; end else result := ccallnode.createinternres('fpc_do_is', ccallparanode.create(left,ccallparanode.create(right,nil)), resultdef); end else begin if is_class(left.resultdef) then if is_shortstring(right.resultdef) then procname := 'fpc_class_is_corbaintf' else procname := 'fpc_class_is_intf' else if right.resultdef.typ=classrefdef then procname := 'fpc_intf_is_class' else procname := 'fpc_intf_is'; result := ctypeconvnode.create_internal(ccallnode.createintern(procname, ccallparanode.create(right,ccallparanode.create(left,nil))),resultdef); end; left := nil; right := nil; //firstpass(call); if codegenerror then exit; end; { dummy pass_2, it will never be called, but we need one since } { you can't instantiate an abstract class } procedure tisnode.pass_generate_code; begin end; {***************************************************************************** TASNODE *****************************************************************************} constructor tasnode.create(l,r : tnode); begin inherited create(asn,l,r); call := nil; end; constructor tasnode.create_internal(l,r : tnode); begin create(l,r); include(flags,nf_internal); end; destructor tasnode.destroy; begin call.free; inherited destroy; end; function tasnode.dogetcopy: tnode; begin result := inherited dogetcopy; if assigned(call) then tasnode(result).call := call.getcopy else tasnode(result).call := nil; end; function tasnode.docompare(p: tnode): boolean; begin result:= inherited docompare(p) and tasnode(p).call.isequal(call); end; function tasnode.pass_1 : tnode; var procname: string; begin result:=nil; { Passing a class type to an "as" expression cannot result in a class of that type to be constructed. We could put this inside the if-block below, but this way it is safe for sure even if the code below changes } if assigned(right) then include(right.flags,nf_ignore_for_wpo); if not assigned(call) then begin if is_class(left.resultdef) and (right.resultdef.typ=classrefdef) then call := ccallnode.createinternres('fpc_do_as', ccallparanode.create(left,ccallparanode.create(right,nil)), resultdef) else begin if is_class(left.resultdef) then if is_shortstring(right.resultdef) then procname := 'fpc_class_as_corbaintf' else procname := 'fpc_class_as_intf' else if right.resultdef.typ=classrefdef then procname := 'fpc_intf_as_class' else procname := 'fpc_intf_as'; call := ctypeconvnode.create_internal(ccallnode.createintern(procname, ccallparanode.create(right,ccallparanode.create(left,nil))),resultdef); end; left := nil; right := nil; firstpass(call); if codegenerror then exit; expectloc:=call.expectloc; end; end; end.