{ Copyright (c) 1998-2002 by Florian Klaempfl Generate PowerPC assembler for type converting nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit nppccnv; {$I fpcdefs.inc} interface uses node, ncnv, ncgcnv, defcmp; type tppctypeconvnode = class(tcgtypeconvnode) protected { procedure second_int_to_int;override; } { procedure second_string_to_string;override; } { procedure second_cstring_to_pchar;override; } { procedure second_string_to_chararray;override; } { procedure second_array_to_pointer;override; } function first_int_to_real: tnode; override; { procedure second_pointer_to_array;override; } { procedure second_chararray_to_string;override; } { procedure second_char_to_string;override; } procedure second_int_to_real; override; { procedure second_real_to_real; override;} { procedure second_cord_to_pointer;override; } { procedure second_proc_to_procvar;override; } { procedure second_bool_to_int;override; } procedure second_int_to_bool; override; { procedure second_load_smallset;override; } { procedure second_ansistring_to_pchar;override; } { procedure second_pchar_to_string;override; } { procedure second_class_to_intf;override; } { procedure second_char_to_char;override; } end; implementation uses verbose, globtype, globals, systems, symconst, symdef, aasmbase, aasmtai,aasmdata, defutil, cgbase, cgutils, pass_1, pass_2, ncon, ncal,procinfo, ncgutil, cpubase, aasmcpu, rgobj, tgobj, cgobj; {***************************************************************************** FirstTypeConv *****************************************************************************} function tppctypeconvnode.first_int_to_real: tnode; begin if (is_currency(left.resulttype.def)) then begin // hack to avoid double division by 10000, as it's // already done by resulttypepass.resulttype_int_to_real left.resulttype := s64inttype; end else begin // everything that is less than 64 bits is converted to a 64 bit signed // integer - because the int_to_real conversion is faster for 64 bit // signed ints compared to 64 bit unsigned ints. if (not (torddef(left.resulttype.def).typ in [s64bit, u64bit])) then begin inserttypeconv(left, s64inttype); end; end; firstpass(left); result := nil; if registersfpu < 1 then registersfpu := 1; expectloc := LOC_FPUREGISTER; end; {***************************************************************************** SecondTypeConv *****************************************************************************} procedure tppctypeconvnode.second_int_to_real; const convconst : double = $100000000; var tempconst : trealconstnode; disp, disp2: treference; // temp registers for converting signed ints valuereg, leftreg, // additional temp registers for converting unsigned 64 bit ints tmpintreg1, tmpintreg2, tmpfpureg, tmpfpuconst : tregister; size: tcgsize; signed: boolean; begin location_reset(location, LOC_FPUREGISTER, def_cgsize(resulttype.def)); { the code here comes from the PowerPC Compiler Writer's Guide } { * longint to double (works for all rounding modes) } { std R3,disp(R1) # store doubleword } { lfd FR1,disp(R1) # load float double } { fcfid FR1,FR1 # convert to floating-point integer } { * unsigned 64 bit int to fp value (works for all rounding modes) } { rldicl rT1,rS,32,32 # isolate high half } { rldicl rT2,rS,0,32 # isolate low half } { std rT1,disp(R1) # store high half } { std rT2,disp+8(R1) # store low half } { lfd frT1,disp(R1) # load high half } { lfd frD,disp+8(R1) # load low half } { fcfid frT1,frT1 # convert each half to floating } { fcfid frD,frD # point integer (no round) } { fmadd frD,frC,frT1,frD # (2^32)*high + low } { # (only add can round) } tg.Gettemp(current_asmdata.CurrAsmList, 8, tt_normal, disp); { do the signed case for everything but 64 bit unsigned integers } signed := (left.location.size <> OS_64); { we need a certain constant for the conversion of unsigned 64 bit integers, so create them here. Additonally another temporary location is neeted } if (not signed) then begin // allocate temp for constant value used for unsigned 64 bit ints tempconst := crealconstnode.create(convconst, pbestrealtype^); resulttypepass(tempconst); firstpass(tempconst); secondpass(tempconst); if (tempconst.location.loc <> LOC_CREFERENCE) then internalerror(200110011); // allocate second temp memory tg.Gettemp(current_asmdata.CurrAsmList, 8, tt_normal, disp2); end; case left.location.loc of // the conversion algorithm does not modify the input register, so it can // be used for both LOC_REGISTER and LOC_CREGISTER LOC_REGISTER, LOC_CREGISTER: begin leftreg := left.location.register; valuereg := leftreg; end; LOC_REFERENCE, LOC_CREFERENCE: begin leftreg := cg.getintregister(current_asmdata.CurrAsmList, OS_INT); valuereg := leftreg; if signed then size := OS_S64 else size := OS_64; cg.a_load_ref_reg(current_asmdata.CurrAsmList, def_cgsize(left.resulttype.def), size, left.location.reference, leftreg); end else internalerror(200110012); end; if (signed) then begin // std rS, disp(r1) cg.a_load_reg_ref(current_asmdata.CurrAsmList, OS_S64, OS_S64, valuereg, disp); // lfd frD, disp(r1) location.register := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64); cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64, disp, location.register); // fcfid frD, frD current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FCFID, location.register, location.register)); end else begin { ts:todo use TOC for this constant or at least schedule better } // lfd frC, const tmpfpuconst := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64); cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64,tempconst.location.reference, tmpfpuconst); tempconst.free; tmpintreg1 := cg.getintregister(current_asmdata.CurrAsmList, OS_64); // rldicl rT1, rS, 32, 32 current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_const_const(A_RLDICL, tmpintreg1, valuereg, 32, 32)); // rldicl rT2, rS, 0, 32 tmpintreg2 := cg.getintregister(current_asmdata.CurrAsmList, OS_64); current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_const_const(A_RLDICL, tmpintreg2, valuereg, 0, 32)); // std rT1, disp(r1) cg.a_load_reg_ref(current_asmdata.CurrAsmList, OS_S64, OS_S64, tmpintreg1, disp); // std rT2, disp2(r1) cg.a_load_reg_ref(current_asmdata.CurrAsmList, OS_S64, OS_S64, tmpintreg2, disp2); // lfd frT1, disp(R1) tmpfpureg := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64); cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64, disp, tmpfpureg); // lfd frD, disp+8(R1) location.register := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64); cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64, disp2, location.register); // fcfid frT1, frT1 current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FCFID, tmpfpureg, tmpfpureg)); // fcfid frD, frD current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FCFID, location.register, location.register)); // fmadd frD,frC,frT1,frD # (2^32)*high + low } current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_reg_reg(A_FMADD, location.register, tmpfpuconst, tmpfpureg, location.register)); // free used temps tg.ungetiftemp(current_asmdata.CurrAsmList, disp2); end; // free reference tg.ungetiftemp(current_asmdata.CurrAsmList, disp); end; procedure tppctypeconvnode.second_int_to_bool; var hreg1, hreg2: tregister; resflags: tresflags; opsize: tcgsize; hlabel, oldTrueLabel, oldFalseLabel: tasmlabel; begin oldTrueLabel := current_procinfo.CurrTrueLabel; oldFalseLabel := current_procinfo.CurrFalseLabel; current_asmdata.getjumplabel(current_procinfo.CurrTrueLabel); current_asmdata.getjumplabel(current_procinfo.CurrFalseLabel); secondpass(left); if codegenerror then exit; { byte(boolean) or word(wordbool) or longint(longbool) must } { be accepted for var parameters } if (nf_explicit in flags) and (left.resulttype.def.size = resulttype.def.size) and (left.location.loc in [LOC_REFERENCE, LOC_CREFERENCE, LOC_CREGISTER]) then begin current_procinfo.CurrTrueLabel := oldTrueLabel; current_procinfo.CurrFalseLabel := oldFalseLabel; location_copy(location, left.location); exit; end; location_reset(location, LOC_REGISTER, def_cgsize(resulttype.def)); opsize := def_cgsize(left.resulttype.def); case left.location.loc of LOC_CREFERENCE, LOC_REFERENCE, LOC_REGISTER, LOC_CREGISTER: begin if left.location.loc in [LOC_CREFERENCE, LOC_REFERENCE] then begin hreg1 := cg.getintregister(current_asmdata.CurrAsmList, OS_INT); cg.a_load_ref_reg(current_asmdata.CurrAsmList, opsize, opsize, left.location.reference, hreg1); end else begin hreg1 := left.location.register; end; hreg2 := cg.getintregister(current_asmdata.CurrAsmList, OS_INT); current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_const(A_SUBIC, hreg2, hreg1, 1)); current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_reg(A_SUBFE, hreg1, hreg2, hreg1)); end; LOC_FLAGS: begin hreg1 := cg.getintregister(current_asmdata.CurrAsmList, OS_INT); resflags := left.location.resflags; cg.g_flags2reg(current_asmdata.CurrAsmList, location.size, resflags, hreg1); end; LOC_JUMP: begin hreg1 := cg.getintregister(current_asmdata.CurrAsmList, OS_INT); current_asmdata.getjumplabel(hlabel); cg.a_label(current_asmdata.CurrAsmList, current_procinfo.CurrTrueLabel); cg.a_load_const_reg(current_asmdata.CurrAsmList, OS_INT, 1, hreg1); cg.a_jmp_always(current_asmdata.CurrAsmList, hlabel); cg.a_label(current_asmdata.CurrAsmList, current_procinfo.CurrFalseLabel); cg.a_load_const_reg(current_asmdata.CurrAsmList, OS_INT, 0, hreg1); cg.a_label(current_asmdata.CurrAsmList, hlabel); end; else internalerror(10062); end; location.register := hreg1; current_procinfo.CurrTrueLabel := oldTrueLabel; current_procinfo.CurrFalseLabel := oldFalseLabel; end; begin ctypeconvnode := tppctypeconvnode; end.