{ This file is part of the Free Pascal run time library. Copyright (c) 2005,2009 by the Free Pascal development team See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} {$ifdef FPC_HAS_FEATURE_THREADING} constructor TSimpleRWSync.Create; begin System.InitCriticalSection(Crit); end; destructor TSimpleRWSync.Destroy; begin System.DoneCriticalSection(Crit); end; function TSimpleRWSync.Beginwrite : boolean; begin System.EnterCriticalSection(Crit); result:=true; end; procedure TSimpleRWSync.Endwrite; begin System.LeaveCriticalSection(Crit); end; procedure TSimpleRWSync.Beginread; begin System.EnterCriticalSection(Crit); end; procedure TSimpleRWSync.Endread; begin System.LeaveCriticalSection(Crit); end; type PMREWThreadInfo = ^TMREWThreadInfo; TMREWThreadInfo = record Next: PMREWThreadInfo; Active: longint; RefCount: LongInt; ThreadID: TThreadID; end; const cInUse: LongInt = MaxInt; cAvail: LongInt = 0; const cNewReader : LongInt = - $1; cNewWriter : LongInt = $10000; cReadMask : LongInt = $0000FFFF; cWriteMask : LongInt = $7FFF0000; constructor TMultiReadExclusiveWriteSynchronizer.Create; begin System.InitCriticalSection(fwritelock); fwaitingwriterlock:=RTLEventCreate; RTLEventResetEvent(fwaitingwriterlock); fwriterequests:=0; factivethreads:=0; freaderqueue:=BasicEventCreate(nil,true,false,''); { synchronize initialization with later reads/writes } ReadWriteBarrier; end; destructor TMultiReadExclusiveWriteSynchronizer.Destroy; var p,q: PMREWThreadInfo; i: integer; begin System.DoneCriticalSection(fwritelock); RtlEventDestroy(fwaitingwriterlock); BasicEventDestroy(freaderqueue); { Clean up thread info } for i:=Low(fThreadList) to High(fThreadList) do begin q:=fThreadList[i]; fThreadList[i]:=nil; while q<>nil do begin p:=q; q:=q^.Next; FreeMem(p); end; end; end; function TMultiReadExclusiveWriteSynchronizer.Beginwrite : boolean; var p: PMREWThreadInfo; begin { Result indicates whether the protected memory was not modified, that is, it is set to false if another writer could have chagned memory} Result:=True; { for quick checking by candidate-readers -- use interlockedincrement/ decrement instead of setting 1/0, because a single thread can recursively acquire the write lock multiple times } { Count pending not granted requests so writes always take priority over read requests} System.InterlockedIncrement(fwriterequests); { Get per thread counter } p:=PMREWThreadInfo( GetThreadInfo(True) ); if System.TryEnterCriticalSection(fwritelock)=0 then begin { TryEnterCriticalSection failed, so not first in the write lock queue } Result:=False; { If we hold a read lock, then a deadlock will result.. This is because the first thread in the write queue (holding fwritelock) does not have mutexes write lock, as it must be waiting on this thread to release its' read lock } if p^.RefCount > 0 then begin System.InterlockedDecrement(fwriterequests); raise TMREWException.Create('Deadlock detected'); end; { wait for any other writers that may be in progress } System.EnterCriticalSection(fwritelock); end; { Need to synchronize with readers only when this is the first write request by this thread } if (p^.RefCount and cWriteMask)=0 then begin { Count active threads rather than readers. A write request can be granted whenever the count has reduced to one } { no order vs increment of fwriterequests needed, because we acquired a critical section which orders for us } if p^.RefCount=0 then System.InterlockedIncrement(factivethreads); { new readers have to block from now on; writers get priority to avoid writer starvation (since they have to compete with potentially many concurrent readers and other writers) } BasicEventResetEvent(freaderqueue); { it is possible that earlier on we missed waiting on the fwaitingwriterlock and that it's still set (must be done after acquiring the fwritelock, because otherwise one writer could reset the fwaitingwriterlock of another one that's about to wait on it) } RTLeventResetEvent(fwaitingwriterlock); { wait until we are the only active thread (no need for memory order barriers, because RTLeventResetEvent and RTLEventWaitFor imply a full barrier) } while System.InterlockedExchangeAdd(factivethreads,0) > 1 do RTLEventWaitFor(fwaitingwriterlock); { Make sure that out-of-order execution cannot already perform reads inside the critical section before the lock has been acquired } ReadBarrier; end; { Count write lock acquisitions by thread } Inc(p^.RefCount,cNewWriter); end; procedure TMultiReadExclusiveWriteSynchronizer.Endwrite; var p: PMREWThreadInfo; begin p:=PMREWThreadInfo( GetThreadInfo(False) ); { Protect against EndWrite called out of sequence blocking lock } if (p<>nil) and ((p^.RefCount and cWriteMask)<>0) then begin { Update per thread counter before releasing next write thread } Dec(p^.RefCount,cNewWriter); { Finish all writes inside the section, and the update of the RefCount, so that everything executing afterwards will certainly see these results } WriteBarrier; { Reduce active thread count assuming it was not previously a read lock } if p^.RefCount=0 then begin System.InterlockedDecrement(factivethreads); { order w.r.t. decrement of fwriterequests below } WriteBarrier; end; { signal potential readers that the coast is clear if all recursive write locks have been freed } { Also test for pending write requests } if System.InterlockedDecrement(fwriterequests)=0 then begin { No more writers pending, wake any pending readers } BasicEventSetEvent(freaderqueue); end; { free the writer lock so another writer can become active } System.LeaveCriticalSection(fwritelock); { Remove reference to thread if not in use any more } if p^.RefCount=0 then RemoveThread(p); end else raise TMREWException.Create('EndWrite called before BeginWrite'); end; procedure TMultiReadExclusiveWriteSynchronizer.Beginread; Const wrSignaled = 0; wrTimeout = 1; wrAbandoned= 2; wrError = 3; var p: PMREWThreadInfo; begin { Check if we already have a lock, if so grant immediate access } p:=PMREWThreadInfo( GetThreadInfo(True) ); if p^.RefCount=0 then begin { Wanted non-recursive read lock, so increase active threads } System.InterlockedIncrement(factivethreads); { wait until there are no more writer active or pending } ReadWriteBarrier; while System.InterlockedExchangeAdd(fwriterequests,0)<>0 do begin ReadWriteBarrier; { This thread is not active } if System.InterlockedDecrement(factivethreads)<>0 then RTLEventSetEvent(fwaitingwriterlock); if (BasicEventWaitFor(high(cardinal),freaderqueue) in [wrAbandoned,wrError]) then raise TMREWException.create('BasicEventWaitFor failed in TMultiReadExclusiveWriteSynchronizer.Beginread'); { Try again to make this thread active } System.InterlockedIncrement(factivethreads); { order w.r.t. reading fwriterequests } ReadWriteBarrier; end; { Make sure that out-of-order execution cannot perform reads inside the critical section before the lock has been acquired } ReadBarrier; end; { Count read lock acquisitions by thread: Inc(p^.RefCount,cNewReader) } Inc(p^.RefCount); end; procedure TMultiReadExclusiveWriteSynchronizer.Endread; var p: PMREWThreadInfo; begin p:=PMREWThreadInfo( GetThreadInfo(False) ); if (p<>nil) and ((p^.RefCount and cReadMask)<>0) then begin { Update per thread counter: Dec(p^.RefCount,cNewReader) } Dec(p^.RefCount); { if this is the last recursive call } if p^.RefCount=0 then begin { Thread no longer has an active lock } { If no more readers, wake writer in the ready-queue if any. Every queued thread requesting a write lock increments fwriterequests, and the first queued writer thread checks factivethreads is active (will be set already during lock promotion) } if System.InterlockedDecrement(factivethreads)=1 then begin { order w.r.t. access to factivethreads } ReadBarrier; if fwriterequests>0 then RTLEventSetEvent(fwaitingwriterlock); end; { remove reference to this thread } RemoveThread(p); end; end else raise TMREWException.Create('EndRead called before BeginRead'); end; function TMultiReadExclusiveWriteSynchronizer.ThreadIDtoIndex(aThreadID: TThreadID): integer; begin Result:= ( ptruint(aThreadID) xor (ptruint(aThreadID) shr 12) {$ifdef cpu64} xor (ptruint(aThreadID) shr 32) xor (ptruint(aThreadID) shr 36) xor (ptruint(aThreadID) shr 48) {$endif} ) and $FFFF; Result:=(Result xor (Result shr 4)) and $0F; // Return range 0..15 end; function TMultiReadExclusiveWriteSynchronizer.GetThreadInfo(AutoCreate: Boolean): Pointer; var p: PMREWThreadInfo; AThreadID: TThreadID; FreeSlot: Boolean; OldState: LongInt; Index: integer; begin FreeSlot:=False; AThreadID:=ThreadID; Index:=ThreadIDtoIndex( AThreadID ); p:=PMREWThreadInfo(fThreadList[Index]); while (p<>nil) and (p^.ThreadID<>AThreadID) do begin if p^.Active=cAvail then // Is slot available for use FreeSlot:=True; // Yes, remember in case we need it as this is a new thread p:=p^.Next; ReadBarrier; end; if p=nil then begin { count threads with locks } if FreeSlot then begin p:=fThreadList[Index]; while (p<>nil) do begin if p^.Active=cAvail then begin OldState:=InterlockedExchange( p^.Active, cInUse ); if OldState=cAvail then begin p^.ThreadID:=AThreadID; // Tag to thread Break; end; end; p:=p^.Next; ReadBarrier; end; end; if p=nil then begin p:=PMREWThreadInfo(AllocMem(SizeOf(TMREWThreadInfo))); p^.ThreadID:=AThreadID; p^.RefCount:=0; p^.Active:=cInUse; { Now insert into the chain header } p^.Next:=p; WriteBarrier; { other threads will spin (loop) after the InterlockedExchange until the field "next" is written, then this node is first in the forward linked list } p^.Next:=System.InterlockedExchange(fThreadList[Index],p); end; end; Result:=p; end; procedure TMultiReadExclusiveWriteSynchronizer.RemoveThread(AThreadInfo: Pointer); var p: PMREWThreadInfo; begin p:=PMREWThreadInfo(AThreadInfo); if p<>nil then begin { Prevent matching during GetThreadInfo } p^.ThreadID:=tthreadid(-1); WriteBarrier; { Mark slot available } p^.Active:=cAvail; end; end; {$endif FPC_HAS_FEATURE_THREADING}