{ $Id$ Copyright (c) 2000-2002 by Florian Klaempfl Type checking and register allocation for type converting nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ncnv; {$i fpcdefs.inc} interface uses node, symtype,types, nld; type ttypeconvnode = class(tunarynode) totype : ttype; convtype : tconverttype; constructor create(node : tnode;const t : ttype);virtual; constructor create_explicit(node : tnode;const t : ttype); function getcopy : tnode;override; function pass_1 : tnode;override; function det_resulttype:tnode;override; function docompare(p: tnode) : boolean; override; private function resulttype_cord_to_pointer : tnode; function resulttype_chararray_to_string : tnode; function resulttype_string_to_chararray : tnode; function resulttype_string_to_string : tnode; function resulttype_char_to_string : tnode; function resulttype_char_to_chararray : tnode; function resulttype_int_to_real : tnode; function resulttype_real_to_real : tnode; function resulttype_cchar_to_pchar : tnode; function resulttype_cstring_to_pchar : tnode; function resulttype_char_to_char : tnode; function resulttype_arrayconstructor_to_set : tnode; function resulttype_pchar_to_string : tnode; function resulttype_interface_to_guid : tnode; function resulttype_dynarray_to_openarray : tnode; function resulttype_call_helper(c : tconverttype) : tnode; protected function first_int_to_int : tnode;virtual; function first_cstring_to_pchar : tnode;virtual; function first_string_to_chararray : tnode;virtual; function first_char_to_string : tnode;virtual; function first_nothing : tnode;virtual; function first_array_to_pointer : tnode;virtual; function first_int_to_real : tnode;virtual; function first_real_to_real : tnode;virtual; function first_pointer_to_array : tnode;virtual; function first_cchar_to_pchar : tnode;virtual; function first_bool_to_int : tnode;virtual; function first_int_to_bool : tnode;virtual; function first_bool_to_bool : tnode;virtual; function first_proc_to_procvar : tnode;virtual; function first_load_smallset : tnode;virtual; function first_cord_to_pointer : tnode;virtual; function first_ansistring_to_pchar : tnode;virtual; function first_arrayconstructor_to_set : tnode;virtual; function first_class_to_intf : tnode;virtual; function first_char_to_char : tnode;virtual; function first_call_helper(c : tconverttype) : tnode; procedure second_int_to_int;virtual;abstract; procedure second_string_to_string;virtual;abstract; procedure second_cstring_to_pchar;virtual;abstract; procedure second_string_to_chararray;virtual;abstract; procedure second_array_to_pointer;virtual;abstract; procedure second_pointer_to_array;virtual;abstract; procedure second_chararray_to_string;virtual;abstract; procedure second_char_to_string;virtual;abstract; procedure second_int_to_real;virtual;abstract; procedure second_real_to_real;virtual;abstract; procedure second_cord_to_pointer;virtual;abstract; procedure second_proc_to_procvar;virtual;abstract; procedure second_bool_to_int;virtual;abstract; procedure second_int_to_bool;virtual;abstract; procedure second_bool_to_bool;virtual;abstract; procedure second_load_smallset;virtual;abstract; procedure second_ansistring_to_pchar;virtual;abstract; procedure second_pchar_to_string;virtual;abstract; procedure second_class_to_intf;virtual;abstract; procedure second_char_to_char;virtual;abstract; procedure second_nothing; virtual;abstract; end; ttypeconvnodeclass = class of ttypeconvnode; tasnode = class(tbinarynode) constructor create(l,r : tnode);virtual; function pass_1 : tnode;override; function det_resulttype:tnode;override; end; tasnodeclass = class of tasnode; tisnode = class(tbinarynode) constructor create(l,r : tnode);virtual; function pass_1 : tnode;override; function det_resulttype:tnode;override; procedure pass_2;override; end; tisnodeclass = class of tisnode; var ctypeconvnode : ttypeconvnodeclass; casnode : tasnodeclass; cisnode : tisnodeclass; procedure inserttypeconv(var p:tnode;const t:ttype); procedure inserttypeconv_explicit(var p:tnode;const t:ttype); procedure arrayconstructor_to_set(var p : tnode); implementation uses globtype,systems,tokens, cutils,verbose,globals,widestr, symconst,symdef,symsym,symtable, ncon,ncal,nset,nadd,ninl,nmem,nmat, cgbase, htypechk,pass_1,cpubase,cpuinfo; {***************************************************************************** Helpers *****************************************************************************} procedure inserttypeconv(var p:tnode;const t:ttype); begin if not assigned(p.resulttype.def) then begin resulttypepass(p); if codegenerror then exit; end; { don't insert obsolete type conversions } if is_equal(p.resulttype.def,t.def) and not ((p.resulttype.def.deftype=setdef) and (tsetdef(p.resulttype.def).settype <> tsetdef(t.def).settype)) then begin p.resulttype:=t; end else begin p:=ctypeconvnode.create(p,t); resulttypepass(p); end; end; procedure inserttypeconv_explicit(var p:tnode;const t:ttype); begin if not assigned(p.resulttype.def) then begin resulttypepass(p); if codegenerror then exit; end; { don't insert obsolete type conversions } if is_equal(p.resulttype.def,t.def) and not ((p.resulttype.def.deftype=setdef) and (tsetdef(p.resulttype.def).settype <> tsetdef(t.def).settype)) then begin p.resulttype:=t; end else begin p:=ctypeconvnode.create_explicit(p,t); resulttypepass(p); end; end; {***************************************************************************** Array constructor to Set Conversion *****************************************************************************} procedure arrayconstructor_to_set(var p : tnode); var constp : tsetconstnode; buildp, p2,p3,p4 : tnode; htype : ttype; constset : pconstset; constsetlo, constsethi : longint; procedure update_constsethi(t:ttype); begin if ((t.def.deftype=orddef) and (torddef(t.def).high>=constsethi)) then begin constsethi:=torddef(t.def).high; if htype.def=nil then begin if (constsethi>255) or (torddef(t.def).low<0) then htype:=u8bittype else htype:=t; end; if constsethi>255 then constsethi:=255; end else if ((t.def.deftype=enumdef) and (tenumdef(t.def).max>=constsethi)) then begin if htype.def=nil then htype:=t; constsethi:=tenumdef(t.def).max; end; end; procedure do_set(pos : longint); var mask,l : longint; begin if (pos>255) or (pos<0) then Message(parser_e_illegal_set_expr); if pos>constsethi then constsethi:=pos; if pos0 then Message(parser_e_illegal_set_expr); pconst32bitset(constset)^[l]:=pconst32bitset(constset)^[l] or mask; end; var l : Longint; lr,hr : TConstExprInt; hp : tarrayconstructornode; begin if p.nodetype<>arrayconstructorn then internalerror(200205105); new(constset); FillChar(constset^,sizeof(constset^),0); htype.reset; constsetlo:=0; constsethi:=0; constp:=csetconstnode.create(nil,htype); constp.value_set:=constset; buildp:=constp; hp:=tarrayconstructornode(p); if assigned(hp.left) then begin while assigned(hp) do begin p4:=nil; { will contain the tree to create the set } {split a range into p2 and p3 } if hp.left.nodetype=arrayconstructorrangen then begin p2:=tarrayconstructorrangenode(hp.left).left; p3:=tarrayconstructorrangenode(hp.left).right; tarrayconstructorrangenode(hp.left).left:=nil; tarrayconstructorrangenode(hp.left).right:=nil; end else begin p2:=hp.left; hp.left:=nil; p3:=nil; end; resulttypepass(p2); if assigned(p3) then resulttypepass(p3); if codegenerror then break; case p2.resulttype.def.deftype of enumdef, orddef: begin getrange(p2.resulttype.def,lr,hr); if assigned(p3) then begin { this isn't good, you'll get problems with type t010 = 0..10; ts = set of t010; var s : ts;b : t010 begin s:=[1,2,b]; end. if is_integer(p3^.resulttype.def) then begin inserttypeconv(p3,u8bitdef); end; } if assigned(htype.def) and not(is_equal(htype.def,p3.resulttype.def)) then begin aktfilepos:=p3.fileinfo; CGMessage(type_e_typeconflict_in_set); end else begin if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then begin if not(is_integer(p3.resulttype.def)) then htype:=p3.resulttype else begin inserttypeconv(p3,u8bittype); inserttypeconv(p2,u8bittype); end; for l:=tordconstnode(p2).value to tordconstnode(p3).value do do_set(l); p2.free; p3.free; end else begin update_constsethi(p2.resulttype); inserttypeconv(p2,htype); update_constsethi(p3.resulttype); inserttypeconv(p3,htype); if assigned(htype.def) then inserttypeconv(p3,htype) else inserttypeconv(p3,u8bittype); p4:=csetelementnode.create(p2,p3); end; end; end else begin { Single value } if p2.nodetype=ordconstn then begin if not(is_integer(p2.resulttype.def)) then update_constsethi(p2.resulttype) else inserttypeconv(p2,u8bittype); do_set(tordconstnode(p2).value); p2.free; end else begin update_constsethi(p2.resulttype); if assigned(htype.def) then inserttypeconv(p2,htype) else inserttypeconv(p2,u8bittype); p4:=csetelementnode.create(p2,nil); end; end; end; stringdef : begin { if we've already set elements which are constants } { throw an error } if ((htype.def=nil) and assigned(buildp)) or not(is_char(htype.def)) then CGMessage(type_e_typeconflict_in_set) else for l:=1 to length(pstring(tstringconstnode(p2).value_str)^) do do_set(ord(pstring(tstringconstnode(p2).value_str)^[l])); if htype.def=nil then htype:=cchartype; p2.free; end; else CGMessage(type_e_ordinal_expr_expected); end; { insert the set creation tree } if assigned(p4) then buildp:=caddnode.create(addn,buildp,p4); { load next and dispose current node } p2:=hp; hp:=tarrayconstructornode(tarrayconstructornode(p2).right); tarrayconstructornode(p2).right:=nil; p2.free; end; if (htype.def=nil) then htype:=u8bittype; end else begin { empty set [], only remove node } p.free; end; { set the initial set type } constp.resulttype.setdef(tsetdef.create(htype,constsethi)); { determine the resulttype for the tree } resulttypepass(buildp); { set the new tree } p:=buildp; end; {***************************************************************************** TTYPECONVNODE *****************************************************************************} constructor ttypeconvnode.create(node : tnode;const t:ttype); begin inherited create(typeconvn,node); convtype:=tc_not_possible; totype:=t; if t.def=nil then internalerror(200103281); set_file_line(node); end; constructor ttypeconvnode.create_explicit(node : tnode;const t:ttype); begin self.create(node,t); toggleflag(nf_explizit); end; function ttypeconvnode.getcopy : tnode; var n : ttypeconvnode; begin n:=ttypeconvnode(inherited getcopy); n.convtype:=convtype; getcopy:=n; end; function ttypeconvnode.resulttype_cord_to_pointer : tnode; var t : tnode; begin result:=nil; if left.nodetype=ordconstn then begin { check if we have a valid pointer constant (JM) } if (sizeof(pointer) > sizeof(TConstPtrUInt)) then if (sizeof(TConstPtrUInt) = 4) then begin if (tordconstnode(left).value < low(longint)) or (tordconstnode(left).value > high(cardinal)) then CGMessage(parser_e_range_check_error); end else if (sizeof(TConstPtrUInt) = 8) then begin if (tordconstnode(left).value < low(int64)) or (tordconstnode(left).value > high(qword)) then CGMessage(parser_e_range_check_error); end else internalerror(2001020801); t:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype); result:=t; end else internalerror(200104023); end; function ttypeconvnode.resulttype_chararray_to_string : tnode; begin result := ccallnode.createinternres( 'fpc_chararray_to_'+tstringdef(resulttype.def).stringtypname, ccallparanode.create(left,nil),resulttype); left := nil; end; function ttypeconvnode.resulttype_string_to_chararray : tnode; var arrsize: longint; begin with tarraydef(resulttype.def) do begin if highrange= arrsize) and (tstringdef(left.resulttype.def).string_typ=st_shortstring) then begin { handled separately } result := nil; exit; end; result := ccallnode.createinternres( 'fpc_'+tstringdef(left.resulttype.def).stringtypname+ '_to_chararray',ccallparanode.create(left,ccallparanode.create( cordconstnode.create(arrsize,s32bittype),nil)),resulttype); left := nil; end; function ttypeconvnode.resulttype_string_to_string : tnode; var procname: string[31]; stringpara : tcallparanode; pw : pcompilerwidestring; pc : pchar; begin result:=nil; if left.nodetype=stringconstn then begin { convert ascii 2 unicode } if (tstringdef(resulttype.def).string_typ=st_widestring) and (tstringconstnode(left).st_type in [st_ansistring,st_shortstring,st_longstring]) then begin initwidestring(pw); ascii2unicode(tstringconstnode(left).value_str,tstringconstnode(left).len,pw); ansistringdispose(tstringconstnode(left).value_str,tstringconstnode(left).len); pcompilerwidestring(tstringconstnode(left).value_str):=pw; end else { convert unicode 2 ascii } if (tstringconstnode(left).st_type=st_widestring) and (tstringdef(resulttype.def).string_typ in [st_ansistring,st_shortstring,st_longstring]) then begin pw:=pcompilerwidestring(tstringconstnode(left).value_str); getmem(pc,getlengthwidestring(pw)+1); unicode2ascii(pw,pc); donewidestring(pw); tstringconstnode(left).value_str:=pc; end; tstringconstnode(left).st_type:=tstringdef(resulttype.def).string_typ; tstringconstnode(left).resulttype:=resulttype; result:=left; left:=nil; end else begin { get the correct procedure name } procname := 'fpc_'+tstringdef(left.resulttype.def).stringtypname+ '_to_'+tstringdef(resulttype.def).stringtypname; { create parameter (and remove left node from typeconvnode } { since it's reused as parameter) } stringpara := ccallparanode.create(left,nil); left := nil; { when converting to shortstrings, we have to pass high(destination) too } if (tstringdef(resulttype.def).string_typ = st_shortstring) then stringpara.right := ccallparanode.create(cinlinenode.create( in_high_x,false,self.getcopy),nil); { and create the callnode } result := ccallnode.createinternres(procname,stringpara,resulttype); end; end; function ttypeconvnode.resulttype_char_to_string : tnode; var procname: string[31]; para : tcallparanode; hp : tstringconstnode; ws : pcompilerwidestring; begin result:=nil; if left.nodetype=ordconstn then begin if tstringdef(resulttype.def).string_typ=st_widestring then begin initwidestring(ws); concatwidestringchar(ws,tcompilerwidechar(chr(tordconstnode(left).value))); hp:=cstringconstnode.createwstr(ws); donewidestring(ws); end else hp:=cstringconstnode.createstr(chr(tordconstnode(left).value),tstringdef(resulttype.def).string_typ); result:=hp; end else { shortstrings are handled 'inline' } if tstringdef(resulttype.def).string_typ <> st_shortstring then begin { create the parameter } para := ccallparanode.create(left,nil); left := nil; { and the procname } procname := 'fpc_char_to_' +tstringdef(resulttype.def).stringtypname; { and finally the call } result := ccallnode.createinternres(procname,para,resulttype); end else begin { create word(byte(char) shl 8 or 1) for litte endian machines } { and word(byte(char) or 256) for big endian machines } left := ctypeconvnode.create(left,u8bittype); left.toggleflag(nf_explizit); if (target_info.endian = endian_little) then left := caddnode.create(orn, cshlshrnode.create(shln,left,cordconstnode.create(8,s32bittype)), cordconstnode.create(1,s32bittype)) else left := caddnode.create(orn,left, cordconstnode.create(1 shl 8,s32bittype)); left := ctypeconvnode.create(left,u16bittype); left.toggleflag(nf_explizit); resulttypepass(left); end; end; function ttypeconvnode.resulttype_char_to_chararray : tnode; begin if resulttype.def.size <> 1 then begin { convert first to string, then to chararray } inserttypeconv(left,cshortstringtype); inserttypeconv(left,resulttype); result:=left; left := nil; exit; end; result := nil; end; function ttypeconvnode.resulttype_char_to_char : tnode; var hp : tordconstnode; begin result:=nil; if left.nodetype=ordconstn then begin if (torddef(resulttype.def).typ=uchar) and (torddef(left.resulttype.def).typ=uwidechar) then begin hp:=cordconstnode.create( ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value))),cchartype); result:=hp; end else if (torddef(resulttype.def).typ=uwidechar) and (torddef(left.resulttype.def).typ=uchar) then begin hp:=cordconstnode.create( asciichar2unicode(chr(tordconstnode(left).value)),cwidechartype); result:=hp; end else internalerror(200105131); exit; end; end; function ttypeconvnode.resulttype_int_to_real : tnode; var t : trealconstnode; begin result:=nil; if left.nodetype=ordconstn then begin t:=crealconstnode.create(tordconstnode(left).value,resulttype); result:=t; exit; end; end; function ttypeconvnode.resulttype_real_to_real : tnode; var t : tnode; begin result:=nil; if left.nodetype=realconstn then begin t:=crealconstnode.create(trealconstnode(left).value_real,resulttype); result:=t; end; end; function ttypeconvnode.resulttype_cchar_to_pchar : tnode; begin result:=nil; if is_pwidechar(resulttype.def) then inserttypeconv(left,cwidestringtype) else inserttypeconv(left,cshortstringtype); { evaluate again, reset resulttype so the convert_typ will be calculated again and cstring_to_pchar will be used for futher conversion } result:=det_resulttype; end; function ttypeconvnode.resulttype_cstring_to_pchar : tnode; begin result:=nil; if is_pwidechar(resulttype.def) then inserttypeconv(left,cwidestringtype); end; function ttypeconvnode.resulttype_arrayconstructor_to_set : tnode; var hp : tnode; begin result:=nil; if left.nodetype<>arrayconstructorn then internalerror(5546); { remove typeconv node } hp:=left; left:=nil; { create a set constructor tree } arrayconstructor_to_set(hp); result:=hp; end; function ttypeconvnode.resulttype_pchar_to_string : tnode; begin result := ccallnode.createinternres( 'fpc_pchar_to_'+tstringdef(resulttype.def).stringtypname, ccallparanode.create(left,nil),resulttype); left := nil; end; function ttypeconvnode.resulttype_interface_to_guid : tnode; begin if tobjectdef(left.resulttype.def).isiidguidvalid then result:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid); end; function ttypeconvnode.resulttype_dynarray_to_openarray : tnode; begin { a dynamic array is a pointer to an array, so to convert it to } { an open array, we have to dereference it (JM) } result := ctypeconvnode.create(left,voidpointertype); { left is reused } left := nil; result.toggleflag(nf_explizit); result := cderefnode.create(result); result.resulttype := resulttype; end; function ttypeconvnode.resulttype_call_helper(c : tconverttype) : tnode; const resulttypeconvert : array[tconverttype] of pointer = ( {equal} nil, {not_possible} nil, { string_2_string } @ttypeconvnode.resulttype_string_to_string, { char_2_string } @ttypeconvnode.resulttype_char_to_string, { char_2_chararray } @ttypeconvnode.resulttype_char_to_chararray, { pchar_2_string } @ttypeconvnode.resulttype_pchar_to_string, { cchar_2_pchar } @ttypeconvnode.resulttype_cchar_to_pchar, { cstring_2_pchar } @ttypeconvnode.resulttype_cstring_to_pchar, { ansistring_2_pchar } nil, { string_2_chararray } @ttypeconvnode.resulttype_string_to_chararray, { chararray_2_string } @ttypeconvnode.resulttype_chararray_to_string, { array_2_pointer } nil, { pointer_2_array } nil, { int_2_int } nil, { int_2_bool } nil, { bool_2_bool } nil, { bool_2_int } nil, { real_2_real } @ttypeconvnode.resulttype_real_to_real, { int_2_real } @ttypeconvnode.resulttype_int_to_real, { proc_2_procvar } nil, { arrayconstructor_2_set } @ttypeconvnode.resulttype_arrayconstructor_to_set, { load_smallset } nil, { cord_2_pointer } @ttypeconvnode.resulttype_cord_to_pointer, { intf_2_string } nil, { intf_2_guid } @ttypeconvnode.resulttype_interface_to_guid, { class_2_intf } nil, { char_2_char } @ttypeconvnode.resulttype_char_to_char, { normal_2_smallset} nil, { dynarray_2_openarray} @resulttype_dynarray_to_openarray ); type tprocedureofobject = function : tnode of object; var r : packed record proc : pointer; obj : pointer; end; begin result:=nil; { this is a little bit dirty but it works } { and should be quite portable too } r.proc:=resulttypeconvert[c]; r.obj:=self; if assigned(r.proc) then result:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC} end; function ttypeconvnode.det_resulttype:tnode; var hp : tnode; currprocdef, aprocdef : tprocdef; begin result:=nil; resulttype:=totype; resulttypepass(left); if codegenerror then exit; { remove obsolete type conversions } if is_equal(left.resulttype.def,resulttype.def) then begin { becuase is_equal only checks the basetype for sets we need to check here if we are loading a smallset into a normalset } if (resulttype.def.deftype=setdef) and (left.resulttype.def.deftype=setdef) and ((tsetdef(resulttype.def).settype = smallset) xor (tsetdef(left.resulttype.def).settype = smallset)) then begin { constant sets can be converted by changing the type only } if (left.nodetype=setconstn) then begin tsetdef(left.resulttype.def).changesettype(tsetdef(resulttype.def).settype); result:=left; left:=nil; exit; end; if (tsetdef(resulttype.def).settype <> smallset) then convtype:=tc_load_smallset else convtype := tc_normal_2_smallset; exit; end else begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; end; aprocdef:=assignment_overloaded(left.resulttype.def,resulttype.def); if assigned(aprocdef) then begin procinfo^.flags:=procinfo^.flags or pi_do_call; hp:=ccallnode.create(ccallparanode.create(left,nil), overloaded_operators[_assignment],nil,nil); { tell explicitly which def we must use !! (PM) } tcallnode(hp).procdefinition:=aprocdef; left:=nil; result:=hp; exit; end; if isconvertable(left.resulttype.def,resulttype.def,convtype,left.nodetype,nf_explizit in flags)=0 then begin {Procedures have a resulttype.def of voiddef and functions of their own resulttype.def. They will therefore always be incompatible with a procvar. Because isconvertable cannot check for procedures we use an extra check for them.} if (m_tp_procvar in aktmodeswitches) then begin if (resulttype.def.deftype=procvardef) and (is_procsym_load(left) or is_procsym_call(left)) then begin if is_procsym_call(left) then begin currprocdef:=get_proc_2_procvar_def(tprocsym(tcallnode(left).symtableprocentry),tprocvardef(resulttype.def)); hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry), currprocdef,tcallnode(left).symtableproc); if (tcallnode(left).symtableprocentry.owner.symtabletype=objectsymtable) and assigned(tcallnode(left).methodpointer) then tloadnode(hp).set_mp(tcallnode(left).methodpointer.getcopy); resulttypepass(hp); left.free; left:=hp; aprocdef:=tprocdef(left.resulttype.def); end else begin if (left.nodetype<>addrn) then aprocdef:=tprocsym(tloadnode(left).symtableentry).defs^.def; end; convtype:=tc_proc_2_procvar; { Now check if the procedure we are going to assign to the procvar, is compatible with the procvar's type } if assigned(aprocdef) then begin if not proc_to_procvar_equal(aprocdef,tprocvardef(resulttype.def),false) then CGMessage2(type_e_incompatible_types,aprocdef.typename,resulttype.def.typename); end else CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); exit; end; end; if nf_explizit in flags then begin { check if the result could be in a register } if not(tstoreddef(resulttype.def).is_intregable) and not(tstoreddef(resulttype.def).is_fpuregable) then make_not_regable(left); { boolean to byte are special because the location can be different } if is_integer(resulttype.def) and is_boolean(left.resulttype.def) then begin convtype:=tc_bool_2_int; exit; end; { ansistring to pchar } if is_pchar(resulttype.def) and is_ansistring(left.resulttype.def) then begin convtype:=tc_ansistring_2_pchar; exit; end; { do common tc_equal cast } convtype:=tc_equal; { enum to ordinal will always be s32bit } if (left.resulttype.def.deftype=enumdef) and is_ordinal(resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if isconvertable(s32bittype.def,resulttype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { ordinal to enumeration } else if (resulttype.def.deftype=enumdef) and is_ordinal(left.resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(left.resulttype.def,s32bittype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { nil to ordinal node } else if (left.nodetype=niln) and is_ordinal(resulttype.def) then begin hp:=cordconstnode.create(0,resulttype); result:=hp; exit; end { constant pointer to ordinal } else if is_ordinal(resulttype.def) and (left.nodetype=pointerconstn) then begin hp:=cordconstnode.create(tpointerconstnode(left).value,resulttype); result:=hp; exit; end { class to class or object to object, with checkobject support } else if (resulttype.def.deftype=objectdef) and (left.resulttype.def.deftype=objectdef) then begin if (cs_check_object in aktlocalswitches) then begin if is_class_or_interface(resulttype.def) then begin { we can translate the typeconvnode to 'as' when typecasting to a class or interface } hp:=casnode.create(left,cloadvmtnode.create(ctypenode.create(resulttype))); left:=nil; result:=hp; exit; end; end else begin { check if the types are related } if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(resulttype.def)))) and (not(tobjectdef(resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then CGMessage2(type_w_classes_not_related,left.resulttype.def.typename,resulttype.def.typename); end; end {Are we typecasting an ordconst to a char?} else if is_char(resulttype.def) and is_ordinal(left.resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(left.resulttype.def,u8bittype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end {Are we typecasting an ordconst to a wchar?} else if is_widechar(resulttype.def) and is_ordinal(left.resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(left.resulttype.def,u16bittype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { char to ordinal } else if is_char(left.resulttype.def) and is_ordinal(resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(u8bittype.def,resulttype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { widechar to ordinal } else if is_widechar(left.resulttype.def) and is_ordinal(resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(u16bittype.def,resulttype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { only if the same size or formal def } { why do we allow typecasting of voiddef ?? (PM) } else begin if not( (left.resulttype.def.deftype=formaldef) or (left.resulttype.def.size=resulttype.def.size) or (is_void(left.resulttype.def) and (left.nodetype=derefn)) ) then CGMessage(cg_e_illegal_type_conversion); if ((left.resulttype.def.deftype=orddef) and (resulttype.def.deftype=pointerdef)) or ((resulttype.def.deftype=orddef) and (left.resulttype.def.deftype=pointerdef)) then CGMessage(cg_d_pointer_to_longint_conv_not_portable); end; { the conversion into a strutured type is only } { possible, if the source is not a register } if ((resulttype.def.deftype in [recorddef,stringdef,arraydef]) or ((resulttype.def.deftype=objectdef) and not(is_class(resulttype.def))) ) and (left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) { and it also works if the assignment is overloaded YES but this code is not executed if assignment is overloaded (PM) not assigned(assignment_overloaded(left.resulttype.def,resulttype.def))} then CGMessage(cg_e_illegal_type_conversion); end else CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; { tp7 procvar support, when right is not a procvardef and we got a loadn of a procvar then convert to a calln, the check for the result is already done in is_convertible, also no conflict with @procvar is here because that has an extra addrn } if (m_tp_procvar in aktmodeswitches) and (resulttype.def.deftype<>procvardef) and (left.resulttype.def.deftype=procvardef) and (left.nodetype=loadn) then begin hp:=ccallnode.create(nil,nil,nil,nil); tcallnode(hp).set_procvar(left); resulttypepass(hp); left:=hp; end; { remove typeconv after niln, but not when the result is a methodpointer. The typeconv of the methodpointer will then take care of updateing size of niln to OS_64 } if (left.nodetype=niln) and not((resulttype.def.deftype=procvardef) and (po_methodpointer in tprocvardef(resulttype.def).procoptions)) then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; { ordinal contants can be directly converted } if (left.nodetype=ordconstn) and is_ordinal(resulttype.def) then begin { replace the resulttype and recheck the range } left.resulttype:=resulttype; testrange(left.resulttype.def,tordconstnode(left).value,(nf_explizit in flags)); result:=left; left:=nil; exit; end; { fold nil to any pointer type } if (left.nodetype=niln) and (resulttype.def.deftype=pointerdef) then begin hp:=cnilnode.create; hp.resulttype:=resulttype; result:=hp; exit; end; { further, pointerconstn to any pointer is folded too } if (left.nodetype=pointerconstn) and (resulttype.def.deftype=pointerdef) then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; { now call the resulttype helper to do constant folding } result:=resulttype_call_helper(convtype); end; function ttypeconvnode.first_cord_to_pointer : tnode; begin result:=nil; internalerror(200104043); end; function ttypeconvnode.first_int_to_int : tnode; begin first_int_to_int:=nil; if (left.location.loc<>LOC_REGISTER) and (resulttype.def.size>left.resulttype.def.size) then location.loc:=LOC_REGISTER; if is_64bitint(resulttype.def) then registers32:=max(registers32,2) else registers32:=max(registers32,1); end; function ttypeconvnode.first_cstring_to_pchar : tnode; begin first_cstring_to_pchar:=nil; registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_string_to_chararray : tnode; begin first_string_to_chararray:=nil; registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_char_to_string : tnode; begin first_char_to_string:=nil; location.loc:=LOC_CREFERENCE; end; function ttypeconvnode.first_nothing : tnode; begin first_nothing:=nil; end; function ttypeconvnode.first_array_to_pointer : tnode; begin first_array_to_pointer:=nil; if registers32<1 then registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_int_to_real : tnode; begin first_int_to_real:=nil; {$ifdef m68k} if (cs_fp_emulation in aktmoduleswitches) or (tfloatdef(resulttype.def).typ=s32real) then begin if registers32<1 then registers32:=1; end else if registersfpu<1 then registersfpu:=1; {$else not m68k} if registersfpu<1 then registersfpu:=1; {$endif not m68k} location.loc:=LOC_FPUREGISTER; end; function ttypeconvnode.first_real_to_real : tnode; begin first_real_to_real:=nil; { comp isn't a floating type } {$ifdef i386} if (tfloatdef(resulttype.def).typ=s64comp) and (tfloatdef(left.resulttype.def).typ<>s64comp) and not (nf_explizit in flags) then CGMessage(type_w_convert_real_2_comp); {$endif} if registersfpu<1 then registersfpu:=1; location.loc:=LOC_FPUREGISTER; end; function ttypeconvnode.first_pointer_to_array : tnode; begin first_pointer_to_array:=nil; if registers32<1 then registers32:=1; location.loc:=LOC_REFERENCE; end; function ttypeconvnode.first_cchar_to_pchar : tnode; begin first_cchar_to_pchar:=nil; internalerror(200104021); end; function ttypeconvnode.first_bool_to_int : tnode; begin first_bool_to_int:=nil; { byte(boolean) or word(wordbool) or longint(longbool) must be accepted for var parameters } if (nf_explizit in flags) and (left.resulttype.def.size=resulttype.def.size) and (left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then exit; { when converting to 64bit, first convert to a 32bit int and then } { convert to a 64bit int (only necessary for 32bit processors) (JM) } if resulttype.def.size > sizeof(aword) then begin result := ctypeconvnode.create(left,u32bittype); result.toggleflag(nf_explizit); result := ctypeconvnode.create(result,resulttype); left := nil; firstpass(result); exit; end; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_int_to_bool : tnode; begin first_int_to_bool:=nil; { byte(boolean) or word(wordbool) or longint(longbool) must be accepted for var parameters } if (nf_explizit in flags) and (left.resulttype.def.size=resulttype.def.size) and (left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then exit; location.loc:=LOC_REGISTER; { need if bool to bool !! not very nice !! insertypeconv(left,s32bittype); left.explizit:=true; firstpass(left); } if registers32<1 then registers32:=1; end; function ttypeconvnode.first_bool_to_bool : tnode; begin first_bool_to_bool:=nil; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_char_to_char : tnode; begin first_char_to_char:=nil; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_proc_to_procvar : tnode; begin first_proc_to_procvar:=nil; if (left.location.loc<>LOC_REFERENCE) then CGMessage(cg_e_illegal_expression); registers32:=left.registers32; if registers32<1 then registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_load_smallset : tnode; var srsym: ttypesym; p: tcallparanode; begin if not searchsystype('FPC_SMALL_SET',srsym) then internalerror(200108313); p := ccallparanode.create(left,nil); { reused } left := nil; { convert parameter explicitely to fpc_small_set } p.left := ctypeconvnode.create(p.left,srsym.restype); p.left.toggleflag(nf_explizit); { create call, adjust resulttype } result := ccallnode.createinternres('fpc_set_load_small',p,resulttype); firstpass(result); end; function ttypeconvnode.first_ansistring_to_pchar : tnode; begin first_ansistring_to_pchar:=nil; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_arrayconstructor_to_set : tnode; begin first_arrayconstructor_to_set:=nil; internalerror(200104022); end; function ttypeconvnode.first_class_to_intf : tnode; begin first_class_to_intf:=nil; location.loc:=LOC_REFERENCE; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_call_helper(c : tconverttype) : tnode; const firstconvert : array[tconverttype] of pointer = ( @ttypeconvnode.first_nothing, {equal} @ttypeconvnode.first_nothing, {not_possible} nil, { removed in resulttype_string_to_string } @ttypeconvnode.first_char_to_string, @ttypeconvnode.first_nothing, { char_2_chararray, needs nothing extra } nil, { removed in resulttype_chararray_to_string } @ttypeconvnode.first_cchar_to_pchar, @ttypeconvnode.first_cstring_to_pchar, @ttypeconvnode.first_ansistring_to_pchar, @ttypeconvnode.first_string_to_chararray, nil, { removed in resulttype_chararray_to_string } @ttypeconvnode.first_array_to_pointer, @ttypeconvnode.first_pointer_to_array, @ttypeconvnode.first_int_to_int, @ttypeconvnode.first_int_to_bool, @ttypeconvnode.first_bool_to_bool, @ttypeconvnode.first_bool_to_int, @ttypeconvnode.first_real_to_real, @ttypeconvnode.first_int_to_real, @ttypeconvnode.first_proc_to_procvar, @ttypeconvnode.first_arrayconstructor_to_set, @ttypeconvnode.first_load_smallset, @ttypeconvnode.first_cord_to_pointer, @ttypeconvnode.first_nothing, @ttypeconvnode.first_nothing, @ttypeconvnode.first_class_to_intf, @ttypeconvnode.first_char_to_char, @ttypeconvnode.first_nothing, @ttypeconvnode.first_nothing ); type tprocedureofobject = function : tnode of object; var r : packed record proc : pointer; obj : pointer; end; begin { this is a little bit dirty but it works } { and should be quite portable too } r.proc:=firstconvert[c]; r.obj:=self; first_call_helper:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC} end; function ttypeconvnode.pass_1 : tnode; begin result:=nil; firstpass(left); if codegenerror then exit; { load the value_str from the left part } registers32:=left.registers32; registersfpu:=left.registersfpu; {$ifdef SUPPORT_MMX} registersmmx:=left.registersmmx; {$endif} location.loc:=left.location.loc; if nf_explizit in flags then begin { check if the result could be in a register } if not(tstoreddef(resulttype.def).is_intregable) and not(tstoreddef(resulttype.def).is_fpuregable) then make_not_regable(left); end; result:=first_call_helper(convtype); end; function ttypeconvnode.docompare(p: tnode) : boolean; begin docompare := inherited docompare(p) and (convtype = ttypeconvnode(p).convtype); end; {***************************************************************************** TISNODE *****************************************************************************} constructor tisnode.create(l,r : tnode); begin inherited create(isn,l,r); end; function tisnode.det_resulttype:tnode; var paras: tcallparanode; begin result:=nil; resulttypepass(left); resulttypepass(right); set_varstate(left,true); set_varstate(right,true); if codegenerror then exit; if (right.resulttype.def.deftype=classrefdef) then begin { left must be a class } if is_class(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related( tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and (not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related( tobjectdef(left.resulttype.def)))) then CGMessage2(type_e_classes_not_related,left.resulttype.def.typename, tclassrefdef(right.resulttype.def).pointertype.def.typename); end else CGMessage1(type_e_class_type_expected,left.resulttype.def.typename); { call fpc_do_is helper } paras := ccallparanode.create( left, ccallparanode.create( right,nil)); result := ccallnode.createintern('fpc_do_is',paras); left := nil; right := nil; end else if is_interface(right.resulttype.def) then begin { left is a class } if is_class(left.resulttype.def) then begin { the operands must be related } if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and (tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename); end { left is an interface } else if is_interface(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and (not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then CGMessage(type_e_mismatch); end else CGMessage1(type_e_class_type_expected,left.resulttype.def.typename); { call fpc_do_is helper } paras := ccallparanode.create( left, ccallparanode.create( right,nil)); result := ccallnode.createintern('fpc_do_is',paras); left := nil; right := nil; end else CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename); resulttype:=booltype; end; function tisnode.pass_1 : tnode; begin internalerror(200204254); result:=nil; end; { dummy pass_2, it will never be called, but we need one since } { you can't instantiate an abstract class } procedure tisnode.pass_2; begin end; {***************************************************************************** TASNODE *****************************************************************************} constructor tasnode.create(l,r : tnode); begin inherited create(asn,l,r); end; function tasnode.det_resulttype:tnode; begin result:=nil; resulttypepass(right); resulttypepass(left); set_varstate(right,true); set_varstate(left,true); if codegenerror then exit; if (right.resulttype.def.deftype=classrefdef) then begin { left must be a class } if is_class(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related( tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and (not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related( tobjectdef(left.resulttype.def)))) then CGMessage2(type_e_classes_not_related,left.resulttype.def.typename, tclassrefdef(right.resulttype.def).pointertype.def.typename); end else CGMessage1(type_e_class_type_expected,left.resulttype.def.typename); resulttype:=tclassrefdef(right.resulttype.def).pointertype; end else if is_interface(right.resulttype.def) then begin { left is a class } if is_class(left.resulttype.def) then begin { the operands must be related } if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and (tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename); end { left is an interface } else if is_interface(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and (not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename); end else CGMessage1(type_e_class_type_expected,left.resulttype.def.typename); resulttype:=right.resulttype; end else CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename); end; function tasnode.pass_1 : tnode; begin firstpass(left); firstpass(right); if codegenerror then exit; left_right_max; location.loc:=left.location.loc; result:=nil; end; begin ctypeconvnode:=ttypeconvnode; casnode:=tasnode; cisnode:=tisnode; end. { $Log$ Revision 1.58 2002-05-18 13:34:09 peter * readded missing revisions Revision 1.57 2002/05/16 19:46:37 carl + defines.inc -> fpcdefs.inc to avoid conflicts if compiling by hand + try to fix temp allocation (still in ifdef) + generic constructor calls + start of tassembler / tmodulebase class cleanup Revision 1.55 2002/05/12 16:53:07 peter * moved entry and exitcode to ncgutil and cgobj * foreach gets extra argument for passing local data to the iterator function * -CR checks also class typecasts at runtime by changing them into as * fixed compiler to cycle with the -CR option * fixed stabs with elf writer, finally the global variables can be watched * removed a lot of routines from cga unit and replaced them by calls to cgobj * u32bit-s32bit updates for and,or,xor nodes. When one element is u32bit then the other is typecasted also to u32bit without giving a rangecheck warning/error. * fixed pascal calling method with reversing also the high tree in the parast, detected by tcalcst3 test Revision 1.54 2002/04/25 20:16:38 peter * moved more routines from cga/n386util Revision 1.53 2002/04/23 19:16:34 peter * add pinline unit that inserts compiler supported functions using one or more statements * moved finalize and setlength from ninl to pinline Revision 1.52 2002/04/21 19:02:03 peter * removed newn and disposen nodes, the code is now directly inlined from pexpr * -an option that will write the secondpass nodes to the .s file, this requires EXTDEBUG define to actually write the info * fixed various internal errors and crashes due recent code changes Revision 1.51 2002/04/06 18:10:42 jonas * several powerpc-related additions and fixes Revision 1.50 2002/04/04 19:05:58 peter * removed unused units * use tlocation.size in cg.a_*loc*() routines Revision 1.49 2002/04/02 17:11:28 peter * tlocation,treference update * LOC_CONSTANT added for better constant handling * secondadd splitted in multiple routines * location_force_reg added for loading a location to a register of a specified size * secondassignment parses now first the right and then the left node (this is compatible with Kylix). This saves a lot of push/pop especially with string operations * adapted some routines to use the new cg methods Revision 1.48 2002/02/03 09:30:03 peter * more fixes for protected handling }