{ Copyright (c) 1998-2002 by Florian Klaempfl Does parsing types for Free Pascal This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ptype; {$i fpcdefs.inc} interface uses globtype,cclasses, symtype,symdef,symbase; const { forward types should only be possible inside a TYPE statement } typecanbeforward : boolean = false; var { hack, which allows to use the current parsed } { object type as function argument type } testcurobject : byte; { reads a type identifier } procedure id_type(var def : tdef;isforwarddef:boolean); { reads a string, file type or a type identifier } procedure single_type(var def:tdef;isforwarddef:boolean); { reads any type declaration, where the resulting type will get name as type identifier } procedure read_named_type(var def:tdef;const name : TIDString;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean); { reads any type declaration } procedure read_anon_type(var def : tdef;parseprocvardir:boolean); { generate persistent type information like VMT, RTTI and inittables } procedure write_persistent_type_info(st:tsymtable); implementation uses { common } cutils, { global } globals,tokens,verbose,constexp, systems, { target } paramgr,procinfo, { symtable } symconst,symsym,symtable, defutil,defcmp, { modules } fmodule, { pass 1 } node,ncgrtti,nobj, nmat,nadd,ncal,nset,ncnv,ninl,ncon,nld,nflw, { parser } scanner, pbase,pexpr,pdecsub,pdecvar,pdecobj; procedure generate_specialization(var tt:tdef); var st : TSymtable; srsym : tsym; pt2 : tnode; first, err : boolean; i : longint; sym : tsym; old_block_type : tblock_type; genericdef : tstoreddef; generictype : ttypesym; generictypelist : TFPObjectList; oldsymtablestack : tsymtablestack; hmodule : tmodule; pu : tused_unit; uspecializename, specializename : string; vmtbuilder : TVMTBuilder; onlyparsepara : boolean; begin { retrieve generic def that we are going to replace } genericdef:=tstoreddef(tt); tt:=nil; onlyparsepara:=false; if not(df_generic in genericdef.defoptions) then begin Message(parser_e_special_onlygenerics); tt:=generrordef; onlyparsepara:=true; end; { Only need to record the tokens, then we don't know the type yet } if parse_generic then begin tt:=cundefinedtype; onlyparsepara:=true; end; { Only parse the parameters for recovery or for recording in genericbuf } if onlyparsepara then begin consume(_LSHARPBRACKET); repeat pt2:=factor(false); pt2.free; until not try_to_consume(_COMMA); consume(_RSHARPBRACKET); exit; end; consume(_LSHARPBRACKET); old_block_type:=block_type; block_type:=bt_specialize; { Parse generic parameters, for each undefineddef in the symtable of the genericdef we need to have a new def } err:=false; first:=true; generictypelist:=TFPObjectList.create(false); case genericdef.typ of procdef : st:=genericdef.GetSymtable(gs_para); objectdef, recorddef : st:=genericdef.GetSymtable(gs_record); end; if not assigned(st) then internalerror(200511182); { Parse type parameters } if not assigned(genericdef.typesym) then internalerror(200710173); specializename:=genericdef.typesym.realname; for i:=0 to st.SymList.Count-1 do begin sym:=tsym(st.SymList[i]); if (sym.typ=typesym) and (ttypesym(sym).typedef.typ=undefineddef) then begin if not first then consume(_COMMA) else first:=false; pt2:=factor(false); if pt2.nodetype=typen then begin if df_generic in pt2.resultdef.defoptions then Message(parser_e_no_generics_as_params); generictype:=ttypesym.create(sym.realname,pt2.resultdef); generictypelist.add(generictype); if not assigned(pt2.resultdef.typesym) then internalerror(200710172); specializename:=specializename+'$'+pt2.resultdef.typesym.realname; end else begin Message(type_e_type_id_expected); err:=true; end; pt2.free; end; end; uspecializename:=upper(specializename); { force correct error location if too much type parameters are passed } if token<>_RSHARPBRACKET then consume(_RSHARPBRACKET); { Special case if we are referencing the current defined object } if assigned(aktobjectdef) and (aktobjectdef.objname^=uspecializename) then tt:=aktobjectdef; { Can we reuse an already specialized type? } if not assigned(tt) then begin srsym:=tsym(tsymtable(current_module.localsymtable).find(uspecializename)); if assigned(srsym) then begin if srsym.typ<>typesym then internalerror(200710171); tt:=ttypesym(srsym).typedef; end; end; if not assigned(tt) then begin { Setup symtablestack at definition time to get types right, however this is not perfect, we should probably record the resolved symbols } oldsymtablestack:=symtablestack; symtablestack:=tsymtablestack.create; if not assigned(genericdef) then internalerror(200705151); hmodule:=find_module_from_symtable(genericdef.owner); if hmodule=nil then internalerror(200705152); pu:=tused_unit(hmodule.used_units.first); while assigned(pu) do begin if not assigned(pu.u.globalsymtable) then internalerror(200705153); symtablestack.push(pu.u.globalsymtable); pu:=tused_unit(pu.next); end; if assigned(hmodule.globalsymtable) then symtablestack.push(hmodule.globalsymtable); { hacky, but necessary to insert the newly generated class properly } symtablestack.push(oldsymtablestack.top); { Reparse the original type definition } if not err then begin { Firsta new typesym so we can reuse this specialization and references to this specialization can be handled } srsym:=ttypesym.create(specializename,generrordef); current_module.localsymtable.insert(srsym); if not assigned(genericdef.generictokenbuf) then internalerror(200511171); current_scanner.startreplaytokens(genericdef.generictokenbuf); read_named_type(tt,specializename,genericdef,generictypelist,false); ttypesym(srsym).typedef:=tt; tt.typesym:=srsym; { Consume the semicolon if it is also recorded } try_to_consume(_SEMICOLON); { Build VMT indexes for classes } if (tt.typ=objectdef) then begin vmtbuilder:=TVMTBuilder.Create(tobjectdef(tt)); vmtbuilder.generate_vmt; vmtbuilder.free; end; end; { Restore symtablestack } symtablestack.free; symtablestack:=oldsymtablestack; end; generictypelist.free; consume(_RSHARPBRACKET); block_type:=old_block_type; end; procedure id_type(var def : tdef;isforwarddef:boolean); { reads a type definition } { to a appropriating tdef, s gets the name of } { the type to allow name mangling } var is_unit_specific : boolean; pos : tfileposinfo; srsym : tsym; srsymtable : TSymtable; s,sorg : TIDString; t : ttoken; begin s:=pattern; sorg:=orgpattern; pos:=current_tokenpos; { use of current parsed object: - classes can be used also in classes - objects can be parameters } if assigned(aktobjectdef) and (aktobjectdef.objname^=pattern) and ( (testcurobject=2) or is_class_or_interface(aktobjectdef) )then begin consume(_ID); def:=aktobjectdef; exit; end; { Use the special searchsym_type that ignores records,objects and parameters } searchsym_type(s,srsym,srsymtable); { handle unit specification like System.Writeln } is_unit_specific:=try_consume_unitsym(srsym,srsymtable,t); consume(t); { Types are first defined with an error def before assigning the real type so check if it's an errordef. if so then give an error. Only check for typesyms in the current symbol table as forwarddef are not resolved directly } if assigned(srsym) and (srsym.typ=typesym) and (ttypesym(srsym).typedef.typ=errordef) then begin Message1(type_e_type_is_not_completly_defined,ttypesym(srsym).realname); def:=generrordef; exit; end; { are we parsing a possible forward def ? } if isforwarddef and not(is_unit_specific) then begin def:=tforwarddef.create(s,pos); exit; end; { unknown sym ? } if not assigned(srsym) then begin Message1(sym_e_id_not_found,sorg); def:=generrordef; exit; end; { type sym ? } if (srsym.typ<>typesym) then begin Message(type_e_type_id_expected); def:=generrordef; exit; end; { Give an error when referring to an errordef } if (ttypesym(srsym).typedef.typ=errordef) then begin Message(sym_e_error_in_type_def); def:=generrordef; exit; end; def:=ttypesym(srsym).typedef; end; procedure single_type(var def:tdef;isforwarddef:boolean); var t2 : tdef; dospecialize, again : boolean; begin dospecialize:=false; repeat again:=false; case token of _STRING: string_dec(def); _FILE: begin consume(_FILE); if try_to_consume(_OF) then begin single_type(t2,false); def:=tfiledef.createtyped(t2); end else def:=cfiletype; end; _ID: begin if try_to_consume(_SPECIALIZE) then begin dospecialize:=true; again:=true; end else id_type(def,isforwarddef); end; else begin message(type_e_type_id_expected); def:=generrordef; end; end; until not again; if dospecialize then generate_specialization(def) else begin if (df_generic in def.defoptions) then begin Message(parser_e_no_generics_as_types); def:=generrordef; end; end; end; { reads a record declaration } function record_dec : tdef; var recst : trecordsymtable; storetypecanbeforward : boolean; old_object_option : tsymoptions; begin { create recdef } recst:=trecordsymtable.create(current_settings.packrecords); record_dec:=trecorddef.create(recst); { insert in symtablestack } symtablestack.push(recst); { parse record } consume(_RECORD); old_object_option:=current_object_option; current_object_option:=[sp_public]; storetypecanbeforward:=typecanbeforward; { for tp7 don't allow forward types } if m_tp7 in current_settings.modeswitches then typecanbeforward:=false; read_record_fields([vd_record]); consume(_END); typecanbeforward:=storetypecanbeforward; current_object_option:=old_object_option; { make the record size aligned } recst.addalignmentpadding; { restore symtable stack } symtablestack.pop(recst); if trecorddef(record_dec).is_packed and record_dec.needs_inittable then Message(type_e_no_packed_inittable); end; { reads a type definition and returns a pointer to it } procedure read_named_type(var def : tdef;const name : TIDString;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean); var pt : tnode; tt2 : tdef; aktenumdef : tenumdef; s : TIDString; l,v : TConstExprInt; oldpackrecords : longint; defpos,storepos : tfileposinfo; procedure expr_type; var pt1,pt2 : tnode; lv,hv : TConstExprInt; old_block_type : tblock_type; dospecialize : boolean; begin old_block_type:=block_type; dospecialize:=false; { use of current parsed object: - classes can be used also in classes - objects can be parameters } if (token=_ID) and assigned(aktobjectdef) and (aktobjectdef.objname^=pattern) and ( (testcurobject=2) or is_class_or_interface(aktobjectdef) )then begin consume(_ID); def:=aktobjectdef; exit; end; { Generate a specialization? } if try_to_consume(_SPECIALIZE) then dospecialize:=true; { we can't accept a equal in type } pt1:=comp_expr(false); if not dospecialize and try_to_consume(_POINTPOINT) then begin { get high value of range } pt2:=comp_expr(false); { make both the same type or give an error. This is not done when both are integer values, because typecasting between -3200..3200 will result in a signed-unsigned conflict and give a range check error (PFV) } if not(is_integer(pt1.resultdef) and is_integer(pt2.resultdef)) then inserttypeconv(pt1,pt2.resultdef); { both must be evaluated to constants now } if (pt1.nodetype=ordconstn) and (pt2.nodetype=ordconstn) then begin lv:=tordconstnode(pt1).value; hv:=tordconstnode(pt2).value; { Check bounds } if hvqword(high(int64)))) then message(type_e_cant_eval_constant_expr) else begin { All checks passed, create the new def } case pt1.resultdef.typ of enumdef : def:=tenumdef.create_subrange(tenumdef(pt1.resultdef),lv.svalue,hv.svalue); orddef : begin if is_char(pt1.resultdef) then def:=torddef.create(uchar,lv,hv) else if is_boolean(pt1.resultdef) then def:=torddef.create(bool8bit,lv,hv) else if is_signed(pt1.resultdef) then def:=torddef.create(range_to_basetype(lv,hv),lv,hv) else def:=torddef.create(range_to_basetype(lv,hv),lv,hv); end; end; end; end else Message(sym_e_error_in_type_def); pt2.free; end else begin { a simple type renaming or generic specialization } if (pt1.nodetype=typen) then begin def:=ttypenode(pt1).resultdef; if dospecialize then generate_specialization(def) else begin if (df_generic in def.defoptions) then begin Message(parser_e_no_generics_as_types); def:=generrordef; end; end; end else Message(sym_e_error_in_type_def); end; pt1.free; block_type:=old_block_type; end; procedure set_dec; begin consume(_SET); consume(_OF); read_anon_type(tt2,true); if assigned(tt2) then begin case tt2.typ of { don't forget that min can be negativ PM } enumdef : if (tenumdef(tt2).min>=0) and (tenumdef(tt2).max<=255) then // !! def:=tsetdef.create(tt2,tenumdef(tt2.def).min,tenumdef(tt2.def).max)) def:=tsetdef.create(tt2,tenumdef(tt2).min,tenumdef(tt2).max) else Message(sym_e_ill_type_decl_set); orddef : begin if (torddef(tt2).ordtype<>uvoid) and (torddef(tt2).ordtype<>uwidechar) and (torddef(tt2).low>=0) then // !! def:=tsetdef.create(tt2,torddef(tt2.def).low,torddef(tt2.def).high)) if Torddef(tt2).high>int64(high(byte)) then message(sym_e_ill_type_decl_set) else def:=tsetdef.create(tt2,torddef(tt2).low.svalue,torddef(tt2).high.svalue) else Message(sym_e_ill_type_decl_set); end; else Message(sym_e_ill_type_decl_set); end; end else def:=generrordef; end; procedure array_dec(is_packed: boolean); var lowval, highval : TConstExprInt; indexdef : tdef; hdef : tdef; arrdef : tarraydef; procedure setdefdecl(def:tdef); begin case def.typ of enumdef : begin lowval:=tenumdef(def).min; highval:=tenumdef(def).max; if (m_fpc in current_settings.modeswitches) and (tenumdef(def).has_jumps) then Message(type_e_array_index_enums_with_assign_not_possible); indexdef:=def; end; orddef : begin if torddef(def).ordtype in [uchar, u8bit,u16bit, s8bit,s16bit,s32bit, {$ifdef cpu64bit} u32bit,s64bit, {$endif cpu64bit} bool8bit,bool16bit,bool32bit,bool64bit, uwidechar] then begin lowval:=torddef(def).low; highval:=torddef(def).high; indexdef:=def; end else Message1(parser_e_type_cant_be_used_in_array_index,def.GetTypeName); end; else Message(sym_e_error_in_type_def); end; end; begin arrdef:=nil; consume(_ARRAY); { open array? } if try_to_consume(_LECKKLAMMER) then begin { defaults } indexdef:=generrordef; lowval:=int64(low(aint)); highval:=high(aint); repeat { read the expression and check it, check apart if the declaration is an enum declaration because that needs to be parsed by readtype (PFV) } if token=_LKLAMMER then begin read_anon_type(hdef,true); setdefdecl(hdef); end else begin pt:=expr; if pt.nodetype=typen then setdefdecl(pt.resultdef) else begin if (pt.nodetype=rangen) then begin if (trangenode(pt).left.nodetype=ordconstn) and (trangenode(pt).right.nodetype=ordconstn) then begin { make both the same type or give an error. This is not done when both are integer values, because typecasting between -3200..3200 will result in a signed-unsigned conflict and give a range check error (PFV) } if not(is_integer(trangenode(pt).left.resultdef) and is_integer(trangenode(pt).left.resultdef)) then inserttypeconv(trangenode(pt).left,trangenode(pt).right.resultdef); lowval:=tordconstnode(trangenode(pt).left).value; highval:=tordconstnode(trangenode(pt).right).value; if highval high(aint)) then begin Message(parser_e_array_range_out_of_bounds); lowval :=0; highval:=0; end; if is_integer(trangenode(pt).left.resultdef) then range_to_type(lowval,highval,indexdef) else indexdef:=trangenode(pt).left.resultdef; end else Message(type_e_cant_eval_constant_expr); end else Message(sym_e_error_in_type_def) end; pt.free; end; { if the array is already created add the new arrray as element of the existing array, otherwise create a new array } if assigned(arrdef) then begin arrdef.elementdef:=tarraydef.create(lowval.svalue,highval.svalue,indexdef); arrdef:=tarraydef(arrdef.elementdef); end else begin arrdef:=tarraydef.create(lowval.svalue,highval.svalue,indexdef); def:=arrdef; end; if is_packed then include(arrdef.arrayoptions,ado_IsBitPacked); if token=_COMMA then consume(_COMMA) else break; until false; consume(_RECKKLAMMER); end else begin if is_packed then Message(parser_e_packed_dynamic_open_array); arrdef:=tarraydef.create(0,-1,s32inttype); include(arrdef.arrayoptions,ado_IsDynamicArray); def:=arrdef; end; consume(_OF); read_anon_type(tt2,true); { set element type of the last array definition } if assigned(arrdef) then begin arrdef.elementdef:=tt2; if is_packed and tt2.needs_inittable then Message(type_e_no_packed_inittable); end; end; var p : tnode; pd : tabstractprocdef; is_func, enumdupmsg, first : boolean; newtype : ttypesym; oldlocalswitches : tlocalswitches; bitpacking: boolean; begin def:=nil; case token of _STRING,_FILE: begin single_type(def,false); end; _LKLAMMER: begin consume(_LKLAMMER); first := true; { allow negativ value_str } l:=int64(-1); enumdupmsg:=false; aktenumdef:=tenumdef.create; repeat s:=orgpattern; defpos:=current_tokenpos; consume(_ID); { only allow assigning of specific numbers under fpc mode } if not(m_tp7 in current_settings.modeswitches) and ( { in fpc mode also allow := to be compatible with previous 1.0.x versions } ((m_fpc in current_settings.modeswitches) and try_to_consume(_ASSIGNMENT)) or try_to_consume(_EQUAL) ) then begin oldlocalswitches:=current_settings.localswitches; include(current_settings.localswitches,cs_allow_enum_calc); p:=comp_expr(true); current_settings.localswitches:=oldlocalswitches; if (p.nodetype=ordconstn) then begin { we expect an integer or an enum of the same type } if is_integer(p.resultdef) or is_char(p.resultdef) or equal_defs(p.resultdef,aktenumdef) then v:=tordconstnode(p).value else IncompatibleTypes(p.resultdef,s32inttype); end else Message(parser_e_illegal_expression); p.free; { please leave that a note, allows type save } { declarations in the win32 units ! } if (not first) and (v<=l) and (not enumdupmsg) then begin Message(parser_n_duplicate_enum); enumdupmsg:=true; end; l:=v; end else inc(l.svalue); first := false; storepos:=current_tokenpos; current_tokenpos:=defpos; tstoredsymtable(aktenumdef.owner).insert(tenumsym.create(s,aktenumdef,l.svalue)); current_tokenpos:=storepos; until not try_to_consume(_COMMA); def:=aktenumdef; consume(_RKLAMMER); end; _ARRAY: begin array_dec(false); end; _SET: begin set_dec; end; _CARET: begin consume(_CARET); single_type(tt2,typecanbeforward); def:=tpointerdef.create(tt2); end; _RECORD: begin def:=record_dec; end; _PACKED, _BITPACKED: begin bitpacking := (cs_bitpacking in current_settings.localswitches) or (token = _BITPACKED); consume(token); if token=_ARRAY then array_dec(bitpacking) else if token=_SET then set_dec else begin oldpackrecords:=current_settings.packrecords; if (not bitpacking) or (token in [_CLASS,_OBJECT]) then current_settings.packrecords:=1 else current_settings.packrecords:=bit_alignment; if token in [_CLASS,_OBJECT] then def:=object_dec(name,genericdef,genericlist,nil) else def:=record_dec; current_settings.packrecords:=oldpackrecords; end; end; _DISPINTERFACE, _CLASS, _CPPCLASS, _INTERFACE, _OBJECT: begin def:=object_dec(name,genericdef,genericlist,nil); end; _PROCEDURE, _FUNCTION: begin is_func:=(token=_FUNCTION); consume(token); pd:=tprocvardef.create(normal_function_level); if token=_LKLAMMER then parse_parameter_dec(pd); if is_func then begin consume(_COLON); single_type(pd.returndef,false); end; if token=_OF then begin consume(_OF); consume(_OBJECT); include(pd.procoptions,po_methodpointer); end; def:=pd; { possible proc directives } if parseprocvardir then begin if check_proc_directive(true) then begin newtype:=ttypesym.create('unnamed',def); parse_var_proc_directives(tsym(newtype)); newtype.typedef:=nil; def.typesym:=nil; newtype.free; end; { Add implicit hidden parameters and function result } handle_calling_convention(pd); end; end; else expr_type; end; if def=nil then def:=generrordef; end; procedure read_anon_type(var def : tdef;parseprocvardir:boolean); begin read_named_type(def,'',nil,nil,parseprocvardir); end; procedure write_persistent_type_info(st:tsymtable); var i : longint; def : tdef; vmtwriter : TVMTWriter; begin for i:=0 to st.DefList.Count-1 do begin def:=tdef(st.DefList[i]); case def.typ of recorddef : write_persistent_type_info(trecorddef(def).symtable); objectdef : begin { Skip generics and forward defs } if (df_generic in def.defoptions) or (oo_is_forward in tobjectdef(def).objectoptions) then continue; write_persistent_type_info(tobjectdef(def).symtable); { Write also VMT if not done yet } if not(ds_vmt_written in def.defstates) then begin vmtwriter:=TVMTWriter.create(tobjectdef(def)); if is_interface(tobjectdef(def)) then vmtwriter.writeinterfaceids; if (oo_has_vmt in tobjectdef(def).objectoptions) then vmtwriter.writevmt; vmtwriter.free; include(def.defstates,ds_vmt_written); end; end; procdef : begin if assigned(tprocdef(def).localst) and (tprocdef(def).localst.symtabletype=localsymtable) then write_persistent_type_info(tprocdef(def).localst); if assigned(tprocdef(def).parast) then write_persistent_type_info(tprocdef(def).parast); end; end; { generate always persistent tables for types in the interface so it can be reused in other units and give always the same pointer location. } { Init } if ( assigned(def.typesym) and (st.symtabletype=globalsymtable) ) or def.needs_inittable or (ds_init_table_used in def.defstates) then RTTIWriter.write_rtti(def,initrtti); { RTTI } if ( assigned(def.typesym) and (st.symtabletype=globalsymtable) ) or (ds_rtti_table_used in def.defstates) then RTTIWriter.write_rtti(def,fullrtti); end; end; end.