{ $Id$ This file is part of the Free Pascal run time library. Copyright (c) 1999-2000 by Florian Klaempfl member of the Free Pascal development team See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} { This unit is an equivalent to the Delphi math unit (with some improvements) About assembler usage: ---------------------- I used as few as possible assembler to allow an easy port to other processors. Today, I think it's wasted time to write assembler because different versions of a family of processors need different implementations. To improve performance, I changed all integer arguments and functions results to longint, because 16 bit instructions are lethal for a modern intel processor. (FK) What's to do: o a lot of function :), search for !!!! o some statistical functions o all financial functions o optimizations } unit math; interface {$MODE objfpc} uses sysutils; const { Ranges of the IEEE floating point types, including denormals } MinSingle = 1.5e-45; MaxSingle = 3.4e+38; MinDouble = 5.0e-324; MaxDouble = 1.7e+308; MinExtended = 3.4e-4932; MaxExtended = 1.1e+4932; MinComp = -9.223372036854775807e+18; MaxComp = 9.223372036854775807e+18; type { the original delphi functions use extended as argument, } { but I would prefer double, because 8 bytes is a very } { natural size for the processor } { WARNING : changing float type will } { break all assembler code PM } float = extended; PFloat = ^Float; PInteger = ^Integer; tpaymenttime = (ptendofperiod,ptstartofperiod); einvalidargument = class(ematherror); TValueRelationship = -1..1; const EqualsValue = 0; LessThanValue = Low(TValueRelationship); GreaterThanValue = High(TValueRelationship); { Min/max determination } function MinIntValue(const Data: array of Integer): Integer; function MaxIntValue(const Data: array of Integer): Integer; { Extra, not present in Delphi, but used frequently } function Min(a, b: Integer): Integer; function Max(a, b: Integer): Integer; function Min(a, b: Cardinal): Cardinal; function Max(a, b: Cardinal): Cardinal; function Min(a, b: Int64): Int64; function Max(a, b: Int64): Int64; function Min(a, b: Single): Single; function Max(a, b: Single): Single; function Min(a, b: Double): Double; function Max(a, b: Double): Double; function Min(a, b: Extended): Extended; function Max(a, b: Extended): Extended; { angle conversion } function degtorad(deg : float) : float; function radtodeg(rad : float) : float; function gradtorad(grad : float) : float; function radtograd(rad : float) : float; function degtograd(deg : float) : float; function gradtodeg(grad : float) : float; { one cycle are 2*Pi rad } function cycletorad(cycle : float) : float; function radtocycle(rad : float) : float; { trigoniometric functions } function tan(x : float) : float; function cotan(x : float) : float; procedure sincos(theta : float;var sinus,cosinus : float); { inverse functions } function arccos(x : float) : float; function arcsin(x : float) : float; { calculates arctan(x/y) and returns an angle in the correct quadrant } function arctan2(x,y : float) : float; { hyperbolic functions } function cosh(x : float) : float; function sinh(x : float) : float; function tanh(x : float) : float; { area functions } { delphi names: } function arccosh(x : float) : float; function arcsinh(x : float) : float; function arctanh(x : float) : float; { IMHO the function should be called as follows (FK) } function arcosh(x : float) : float; function arsinh(x : float) : float; function artanh(x : float) : float; { triangle functions } { returns the length of the hypotenuse of a right triangle } { if x and y are the other sides } function hypot(x,y : float) : float; { logarithm functions } function log10(x : float) : float; function log2(x : float) : float; function logn(n,x : float) : float; { returns natural logarithm of x+1 } function lnxp1(x : float) : float; { exponential functions } function power(base,exponent : float) : float; { base^exponent } function intpower(base : float;exponent : longint) : float; { number converting } { rounds x towards positive infinity } function ceil(x : float) : longint; { rounds x towards negative infinity } function floor(x : float) : longint; { misc. functions } { splits x into mantissa and exponent (to base 2) } procedure Frexp(X: float; var Mantissa: float; var Exponent: integer); { returns x*(2^p) } function ldexp(x : float;p : longint) : float; { statistical functions } function mean(const data : array of float) : float; function sum(const data : array of float) : float; function mean(const data : PFloat; Const N : longint) : float; function sum(const data : PFloat; Const N : Longint) : float; function sumofsquares(const data : array of float) : float; function sumofsquares(const data : PFloat; Const N : Integer) : float; { calculates the sum and the sum of squares of data } procedure sumsandsquares(const data : array of float; var sum,sumofsquares : float); procedure sumsandsquares(const data : PFloat; Const N : Integer; var sum,sumofsquares : float); function minvalue(const data : array of float) : float; function minvalue(const data : array of integer) : Integer; function minvalue(const data : PFloat; Const N : Integer) : float; function MinValue(const Data : PInteger; Const N : Integer): Integer; function maxvalue(const data : array of float) : float; function maxvalue(const data : array of integer) : Integer; function maxvalue(const data : PFloat; Const N : Integer) : float; function maxvalue(const data : PInteger; Const N : Integer) : Integer; { calculates the standard deviation } function stddev(const data : array of float) : float; function stddev(const data : PFloat; Const N : Integer) : float; { calculates the mean and stddev } procedure meanandstddev(const data : array of float; var mean,stddev : float); procedure meanandstddev(const data : PFloat; Const N : Longint;var mean,stddev : float); function variance(const data : array of float) : float; function totalvariance(const data : array of float) : float; function variance(const data : PFloat; Const N : Integer) : float; function totalvariance(const data : PFloat; Const N : Integer) : float; { returns random values with gaussian distribution } function randg(mean,stddev : float) : float; { I don't know what the following functions do: } function popnstddev(const data : array of float) : float; function popnstddev(const data : PFloat; Const N : Integer) : float; function popnvariance(const data : PFloat; Const N : Integer) : float; function popnvariance(const data : array of float) : float; procedure momentskewkurtosis(const data : array of float; var m1,m2,m3,m4,skew,kurtosis : float); procedure momentskewkurtosis(const data : PFloat; Const N : Integer; var m1,m2,m3,m4,skew,kurtosis : float); { geometrical function } { returns the euclidean L2 norm } function norm(const data : array of float) : float; function norm(const data : PFloat; Const N : Integer) : float; implementation ResourceString SMathError = 'Math Error : %s'; SInvalidArgument = 'Invalid argument'; Procedure DoMathError(Const S : String); begin Raise EMathError.CreateFmt(SMathError,[S]); end; Procedure InvalidArgument; begin Raise EInvalidArgument.Create(SInvalidArgument); end; function degtorad(deg : float) : float; begin degtorad:=deg*(pi/180.0); end; function radtodeg(rad : float) : float; begin radtodeg:=rad*(180.0/pi); end; function gradtorad(grad : float) : float; begin gradtorad:=grad*(pi/200.0); end; function radtograd(rad : float) : float; begin radtograd:=rad*(200.0/pi); end; function degtograd(deg : float) : float; begin degtograd:=deg*(200.0/180.0); end; function gradtodeg(grad : float) : float; begin gradtodeg:=grad*(180.0/200.0); end; function cycletorad(cycle : float) : float; begin cycletorad:=(2*pi)*cycle; end; function radtocycle(rad : float) : float; begin { avoid division } radtocycle:=rad*(1/(2*pi)); end; function tan(x : float) : float; begin Tan:=Sin(x)/Cos(x) end; function cotan(x : float) : float; begin cotan:=Cos(X)/Sin(X); end; procedure sincos(theta : float;var sinus,cosinus : float); begin {$ifndef i386} sinus:=sin(theta); cosinus:=cos(theta); {$else} asm fldt theta fsincos fwait movl cosinus,%eax fstpt (%eax) movl sinus,%eax fstpt (%eax) end; {$endif} end; { Sign, ArcSin and ArcCos from Arjan van Dijk (arjan.vanDijk@User.METAIR.WAU.NL) } function sign(x : float) : float; begin if x > 0 then sign := 1.0 else if x < 0 then sign := -1.0 else sign := 0.0; end; function arcsin(x : float) : float; begin if abs(x) > 1 then InvalidArgument else if abs(x) < 0.5 then arcsin := arctan(x/sqrt(1-sqr(x))) else arcsin := sign(x) * (pi*0.5 - arctan(sqrt(1 / sqr(x) - 1))); end; function Arccos(x : Float) : Float; begin arccos := pi*0.5 - arcsin(x); end; function arctan2( x,y : float) : float; {$ifndef i386} begin ArcTan2:=ArcTan(x/y); {$else} { without the assembler keyword, you have to store the result to } { __result at the end of the assembler block (JM) } assembler; asm fldt X fldt Y fpatan //leave // ret $20 This is wrong for 4 byte aligned OS !! {$endif} end; function cosh(x : float) : float; var temp : float; begin temp:=exp(x); cosh:=0.5*(temp+1.0/temp); end; function sinh(x : float) : float; var temp : float; begin temp:=exp(x); sinh:=0.5*(temp-1.0/temp); end; Const MaxTanh = 5678.22249441322; // Ln(MaxExtended)/2 function tanh(x : float) : float; var Temp : float; begin if x>MaxTanh then exit(1.0) else if x<-MaxTanh then exit (-1.0); temp:=exp(-2*x); tanh:=(1-temp)/(1+temp) end; function arccosh(x : float) : float; begin arccosh:=arcosh(x); end; function arcsinh(x : float) : float; begin arcsinh:=arsinh(x); end; function arctanh(x : float) : float; begin if x>1 then InvalidArgument; arctanh:=artanh(x); end; function arcosh(x : float) : float; begin if x<1 then InvalidArgument; arcosh:=Ln(x+Sqrt(x*x-1)); end; function arsinh(x : float) : float; begin arsinh:=Ln(x+Sqrt(1+x*x)); end; function artanh(x : float) : float; begin If abs(x)>1 then InvalidArgument; artanh:=(Ln((1+x)/(1-x)))*0.5; end; function hypot(x,y : float) : float; begin hypot:=Sqrt(x*x+y*y) end; function log10(x : float) : float; begin log10:=ln(x)/ln(10); end; function log2(x : float) : float; begin log2:=ln(x)/ln(2) end; function logn(n,x : float) : float; begin if n<0 then InvalidArgument; logn:=ln(x)/ln(n); end; function lnxp1(x : float) : float; begin if x<-1 then InvalidArgument; lnxp1:=ln(1+x); end; function power(base,exponent : float) : float; begin If Exponent=0.0 then Result:=1.0 else If base>0.0 then Power:=exp(exponent * ln (base)) else if base=0.0 then Result:=0.0 else InvalidArgument end; function intpower(base : float;exponent : longint) : float; var i : longint; begin i:=abs(exponent); intpower:=1.0; while i>0 do begin while (i and 1)=0 do begin i:=i shr 1; base:=sqr(base); end; i:=i-1; intpower:=intpower*base; end; if exponent<0 then intpower:=1.0/intpower; end; function ceil(x : float) : longint; begin Ceil:=Trunc(x); If Frac(x)>0 then Ceil:=Ceil+1; end; function floor(x : float) : longint; begin Floor:=Trunc(x); If Frac(x)<0 then Floor := Floor-1; end; procedure Frexp(X: float; var Mantissa: float; var Exponent: integer); begin Exponent :=0; if (abs(x)<0.5) then While (abs(x)<0.5) do begin x := x*2; Dec(Exponent); end else While (abs(x)>1) do begin x := x/2; Inc(Exponent); end; mantissa := x; end; function ldexp(x : float;p : longint) : float; begin ldexp:=x*intpower(2.0,p); end; function mean(const data : array of float) : float; begin Result:=Mean(@data[0],High(Data)+1); end; function mean(const data : PFloat; Const N : longint) : float; begin mean:=sum(Data,N); mean:=mean/N; end; function sum(const data : array of float) : float; begin Result:=Sum(@Data[0],High(Data)+1); end; function sum(const data : PFloat;Const N : longint) : float; var i : longint; begin sum:=0.0; for i:=0 to N-1 do sum:=sum+data[i]; end; function sumofsquares(const data : array of float) : float; begin Result:=sumofsquares(@data[0],High(Data)+1); end; function sumofsquares(const data : PFloat; Const N : Integer) : float; var i : longint; begin sumofsquares:=0.0; for i:=0 to N-1 do sumofsquares:=sumofsquares+sqr(data[i]); end; procedure sumsandsquares(const data : array of float; var sum,sumofsquares : float); begin sumsandsquares (@Data[0],High(Data)+1,Sum,sumofsquares); end; procedure sumsandsquares(const data : PFloat; Const N : Integer; var sum,sumofsquares : float); var i : Integer; temp : float; begin sumofsquares:=0.0; sum:=0.0; for i:=0 to N-1 do begin temp:=data[i]; sumofsquares:=sumofsquares+sqr(temp); sum:=sum+temp; end; end; function stddev(const data : array of float) : float; begin Result:=Stddev(@Data[0],High(Data)+1) end; function stddev(const data : PFloat; Const N : Integer) : float; begin StdDev:=Sqrt(Variance(Data,N)); end; procedure meanandstddev(const data : array of float; var mean,stddev : float); begin Meanandstddev(@Data[0],High(Data)+1,Mean,stddev); end; procedure meanandstddev(const data : PFloat; Const N : Longint;var mean,stddev : float); Var I : longint; begin Mean:=0; StdDev:=0; For I:=0 to N-1 do begin Mean:=Mean+Data[i]; StdDev:=StdDev+Sqr(Data[i]); end; Mean:=Mean/N; StdDev:=(StdDev-N*Sqr(Mean)); If N>1 then StdDev:=Sqrt(Stddev/(N-1)) else StdDev:=0; end; function variance(const data : array of float) : float; begin Variance:=Variance(@Data[0],High(Data)+1); end; function variance(const data : PFloat; Const N : Integer) : float; begin If N=1 then Result:=0 else Result:=TotalVariance(Data,N)/(N-1); end; function totalvariance(const data : array of float) : float; begin Result:=TotalVariance(@Data[0],High(Data)+1); end; function totalvariance(const data : Pfloat;Const N : Integer) : float; var S,SS : Float; begin If N=1 then Result:=0 else begin SumsAndSquares(Data,N,S,SS); Result := SS-Sqr(S)/N; end; end; function randg(mean,stddev : float) : float; Var U1,S2 : Float; begin repeat u1:= 2*random-1; S2:=Sqr(U1)+sqr(2*random-1); until s2<1; randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean; end; function popnstddev(const data : array of float) : float; begin PopnStdDev:=Sqrt(PopnVariance(@Data[0],High(Data)+1)); end; function popnstddev(const data : PFloat; Const N : Integer) : float; begin PopnStdDev:=Sqrt(PopnVariance(Data,N)); end; function popnvariance(const data : array of float) : float; begin popnvariance:=popnvariance(@data[0],high(Data)+1); end; function popnvariance(const data : PFloat; Const N : Integer) : float; begin PopnVariance:=TotalVariance(Data,N)/N; end; procedure momentskewkurtosis(const data : array of float; var m1,m2,m3,m4,skew,kurtosis : float); begin momentskewkurtosis(@Data[0],High(Data)+1,m1,m2,m3,m4,skew,kurtosis); end; procedure momentskewkurtosis(const data : PFloat; Const N : Integer; var m1,m2,m3,m4,skew,kurtosis : float); Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float; I : Longint; begin invN:=1.0/N; s:=0; ss:=0; sq:=0; sc:=0; for i:=0 to N-1 do begin temp:=Data[i]; { faster } S:=S+temp; acc:=temp*temp; ss:=ss+acc; Acc:=acc*temp; Sc:=sc+acc; acc:=acc*temp; sq:=sq+acc; end; M1:=s*invN; M1S:=M1*M1; S2N:=SS*invN; S3N:=SC*invN; M2:=S2N-M1S; M3:=S3N-(M1*3*S2N) + 2*M1S*M1; M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S)); Skew:=M3*power(M2,-3/2); Kurtosis:=M4 / Sqr(M2); end; function norm(const data : array of float) : float; begin norm:=Norm(@data[0],High(Data)+1); end; function norm(const data : PFloat; Const N : Integer) : float; begin norm:=sqrt(sumofsquares(data,N)); end; function MinIntValue(const Data: array of Integer): Integer; var I: Integer; begin Result := Data[Low(Data)]; For I := Succ(Low(Data)) To High(Data) Do If Data[I] < Result Then Result := Data[I]; end; function MinValue(const Data: array of Integer): Integer; begin Result:=MinValue(Pinteger(@Data[0]),High(Data)+1) end; function MinValue(const Data: PInteger; Const N : Integer): Integer; var I: Integer; begin Result := Data[0]; For I := 1 To N-1 do If Data[I] < Result Then Result := Data[I]; end; function minvalue(const data : array of float) : float; begin Result:=minvalue(PFloat(@data[0]),High(Data)+1); end; function minvalue(const data : PFloat; Const N : Integer) : float; var i : longint; begin { get an initial value } minvalue:=data[0]; for i:=1 to N-1 do if data[i] Result Then Result := Data[I]; end; function maxvalue(const data : array of float) : float; begin Result:=maxvalue(PFloat(@data[0]),High(Data)+1); end; function maxvalue(const data : PFloat; Const N : Integer) : float; var i : longint; begin { get an initial value } maxvalue:=data[0]; for i:=1 to N-1 do if data[i]>maxvalue then maxvalue:=data[i]; end; function MaxValue(const Data: array of Integer): Integer; begin Result:=MaxValue(PInteger(@Data[0]),High(Data)+1) end; function maxvalue(const data : PInteger; Const N : Integer) : Integer; var i : longint; begin { get an initial value } maxvalue:=data[0]; for i:=1 to N-1 do if data[i]>maxvalue then maxvalue:=data[i]; end; function Min(a, b: Integer): Integer; begin if a < b then Result := a else Result := b; end; function Max(a, b: Integer): Integer; begin if a > b then Result := a else Result := b; end; function Min(a, b: Cardinal): Cardinal; begin if a < b then Result := a else Result := b; end; function Max(a, b: Cardinal): Cardinal; begin if a > b then Result := a else Result := b; end; function Min(a, b: Int64): Int64; begin if a < b then Result := a else Result := b; end; function Max(a, b: Int64): Int64; begin if a > b then Result := a else Result := b; end; function Min(a, b: Single): Single; begin if a < b then Result := a else Result := b; end; function Max(a, b: Single): Single; begin if a > b then Result := a else Result := b; end; function Min(a, b: Double): Double; begin if a < b then Result := a else Result := b; end; function Max(a, b: Double): Double; begin if a > b then Result := a else Result := b; end; function Min(a, b: Extended): Extended; begin if a < b then Result := a else Result := b; end; function Max(a, b: Extended): Extended; begin if a > b then Result := a else Result := b; end; end. { $Log$ Revision 1.6 2001-12-20 03:51:44 carl * Corrected prototype of frexp() and added routine (taken fron genmath.inc) tested against Delphi 3 Revision 1.5 2001/06/04 18:45:58 peter * added constant Revision 1.4 2000/07/30 10:01:04 sg * Made some modifications suggested by Markus Kaemmerer: - MaxTanh is now the exact value Ln(MaxExtended)/2 - The 'for' loops in MinValue and MaxValue can start with the second element instead of the first one - Added more overloaded versions of Min and Max functions Revision 1.3 2000/07/29 18:07:45 sg * Applied patches by Markus Kaemmerer: - Added ranges of the IEEE floating point types, including denormals - in sincos function: The arguments are of type Extended, so they need 't' as size suffix in FPU instructions, and not 'l'! Revision 1.2 2000/07/13 11:33:51 michael + removed logs }