{ $Id$ Copyright (c) 1997-98 by Jonas Maebe This unit contains the data flow analyzer and several helper procedures and functions. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {$ifDef TP} {$UnDef JumpAnal} {$Endif TP} Unit DAOpt386; Interface Uses GlobType, CObjects,Aasm, cpubase,cpuasm; Type TRegArray = Array[R_EAX..R_BL] of TRegister; TRegSet = Set of R_EAX..R_BL; TRegInfo = Record NewRegsEncountered, OldRegsEncountered: TRegSet; RegsLoadedForRef: TRegSet; New2OldReg: TRegArray; End; {possible actions on an operand: read, write or modify (= read & write)} TOpAction = (OpAct_Read, OpAct_Write, OpAct_Modify, OpAct_Unknown); {*********************** Procedures and Functions ************************} Procedure InsertLLItem(AsmL: PAasmOutput; prev, foll, new_one: PLinkedList_Item); Function Reg32(Reg: TRegister): TRegister; Function RefsEquivalent(Const R1, R2: TReference; Var RegInfo: TRegInfo; OpAct: TOpAction): Boolean; Function RefsEqual(Const R1, R2: TReference): Boolean; Function IsGP32Reg(Reg: TRegister): Boolean; Function RegInRef(Reg: TRegister; Const Ref: TReference): Boolean; Function RegInInstruction(Reg: TRegister; p1: Pai): Boolean; Function RegModifiedByInstruction(Reg: TRegister; p1: Pai): Boolean; Function GetNextInstruction(Current: Pai; Var Next: Pai): Boolean; Function GetLastInstruction(Current: Pai; Var Last: Pai): Boolean; Procedure SkipHead(var P: Pai); Procedure UpdateUsedRegs(Var UsedRegs: TRegSet; p: Pai); Function RegsEquivalent(OldReg, NewReg: TRegister; Var RegInfo: TRegInfo; OpAct: TopAction): Boolean; Function InstructionsEquivalent(p1, p2: Pai; Var RegInfo: TRegInfo): Boolean; Function OpsEqual(const o1,o2:toper): Boolean; Function DFAPass1(AsmL: PAasmOutput; BlockStart: Pai): Pai; Function DFAPass2( {$ifdef statedebug} AsmL: PAasmOutPut; {$endif statedebug} BlockStart, BlockEnd: Pai): Boolean; Procedure ShutDownDFA; Function FindLabel(L: PasmLabel; Var hp: Pai): Boolean; {******************************* Constants *******************************} Const {ait_* types which don't result in executable code or which don't influence the way the program runs/behaves} SkipInstr = [ait_comment, ait_symbol {$ifdef GDB} ,ait_stabs, ait_stabn, ait_stab_function_name {$endif GDB} {$ifndef alignreg} ,ait_align {$endif alignreg} ,ait_regalloc, ait_tempalloc ]; {Possible register content types} con_Unknown = 0; con_ref = 1; con_const = 2; {********************************* Types *********************************} type {the possible states of a flag} TFlagContents = (F_Unknown, F_NotSet, F_Set); TContent = Packed Record {start and end of block instructions that defines the content of this register. If Typ = con_const, then Longint(StartMod) = value of the constant)} StartMod: pai; {starts at 0, gets increased everytime the register is written to} WState: Byte; {starts at 0, gets increased everytime the register is read from} RState: Byte; {how many instructions starting with StarMod does the block consist of} NrOfMods: Byte; {the type of the content of the register: unknown, memory, constant} Typ: Byte; End; {Contents of the integer registers} TRegContent = Array[R_EAX..R_EDI] Of TContent; {contents of the FPU registers} TRegFPUContent = Array[R_ST..R_ST7] Of TContent; {information record with the contents of every register. Every Pai object gets one of these assigned: a pointer to it is stored in the OptInfo field} TPaiProp = Record Regs: TRegContent; { FPURegs: TRegFPUContent;} {currently not yet used} {allocated Registers} UsedRegs: TRegSet; {status of the direction flag} DirFlag: TFlagContents; {can this instruction be removed?} CanBeRemoved: Boolean; End; PPaiProp = ^TPaiProp; {$IfNDef TP} TPaiPropBlock = Array[1..250000] Of TPaiProp; PPaiPropBlock = ^TPaiPropBlock; {$EndIf TP} TInstrSinceLastMod = Array[R_EAX..R_EDI] Of Byte; TLabelTableItem = Record PaiObj: Pai; {$IfDef JumpAnal} InstrNr: Longint; RefsFound: Word; JmpsProcessed: Word {$EndIf JumpAnal} End; {$IfDef tp} TLabelTable = Array[0..10000] Of TLabelTableItem; {$Else tp} TLabelTable = Array[0..2500000] Of TLabelTableItem; {$Endif tp} PLabelTable = ^TLabelTable; {******************************* Variables *******************************} Var {the amount of PaiObjects in the current assembler list} NrOfPaiObjs: Longint; {$IfNDef TP} {Array which holds all TPaiProps} PaiPropBlock: PPaiPropBlock; {$EndIf TP} LoLab, HiLab, LabDif: Longint; LTable: PLabelTable; {*********************** End of Interface section ************************} Implementation Uses globals, systems, strings, verbose, hcodegen; Type TRefCompare = function(const r1, r2: TReference): Boolean; Var {How many instructions are between the current instruction and the last one that modified the register} NrOfInstrSinceLastMod: TInstrSinceLastMod; {************************ Create the Label table ************************} Function FindLoHiLabels(Var LowLabel, HighLabel, LabelDif: Longint; BlockStart: Pai): Pai; {Walks through the paasmlist to find the lowest and highest label number} Var LabelFound: Boolean; P: Pai; Begin LabelFound := False; LowLabel := MaxLongint; HighLabel := 0; P := BlockStart; While Assigned(P) And ((P^.typ <> Ait_Marker) Or (Pai_Marker(P)^.Kind <> AsmBlockStart)) Do Begin If (Pai(p)^.typ = ait_label) Then If (Pai_Label(p)^.l^.is_used) Then Begin LabelFound := True; If (Pai_Label(p)^.l^.labelnr < LowLabel) Then LowLabel := Pai_Label(p)^.l^.labelnr; If (Pai_Label(p)^.l^.labelnr > HighLabel) Then HighLabel := Pai_Label(p)^.l^.labelnr; End; GetNextInstruction(p, p); End; FindLoHiLabels := p; If LabelFound Then LabelDif := HighLabel+1-LowLabel Else LabelDif := 0; End; Function FindRegAlloc(Reg: TRegister; StartPai: Pai): Boolean; {Returns true if a ait_alloc object for Reg is found in the block of Pai's starting with StartPai and ending with the next "real" instruction} Begin FindRegAlloc:=False; Repeat While Assigned(StartPai) And ((StartPai^.typ in (SkipInstr - [ait_regAlloc])) Or ((StartPai^.typ = ait_label) and Not(Pai_Label(StartPai)^.l^.Is_Used))) Do StartPai := Pai(StartPai^.Next); If Assigned(StartPai) And (StartPai^.typ = ait_regAlloc) and (PairegAlloc(StartPai)^.allocation) Then Begin if PairegAlloc(StartPai)^.Reg = Reg then begin FindRegAlloc:=true; exit; end; StartPai := Pai(StartPai^.Next); End else exit; Until false; End; Procedure BuildLabelTableAndFixRegAlloc(AsmL: PAasmOutput; Var LabelTable: PLabelTable; LowLabel: Longint; Var LabelDif: Longint; BlockStart, BlockEnd: Pai); {Builds a table with the locations of the labels in the paasmoutput. Also fixes some RegDeallocs like "# %eax released; push (%eax)"} Var p, hp1, hp2: Pai; UsedRegs: TRegSet; Begin UsedRegs := []; If (LabelDif <> 0) Then Begin {$IfDef TP} If (MaxAvail >= LabelDif*SizeOf(Pai)) Then Begin {$EndIf TP} GetMem(LabelTable, LabelDif*SizeOf(TLabelTableItem)); FillChar(LabelTable^, LabelDif*SizeOf(TLabelTableItem), 0); p := BlockStart; While (P <> BlockEnd) Do Begin Case p^.typ Of ait_Label: If Pai_Label(p)^.l^.is_used Then LabelTable^[Pai_Label(p)^.l^.labelnr-LowLabel].PaiObj := p; ait_regAlloc: begin if PairegAlloc(p)^.Allocation then Begin If Not(PaiRegAlloc(p)^.Reg in UsedRegs) Then UsedRegs := UsedRegs + [PaiRegAlloc(p)^.Reg] Else Begin hp1 := p; hp2 := nil; While GetLastInstruction(hp1, hp1) And Not(RegInInstruction(PaiRegAlloc(p)^.Reg, hp1)) Do hp2 := hp1; If hp2 <> nil Then Begin hp1 := New(PaiRegAlloc, DeAlloc(PaiRegAlloc(p)^.Reg)); InsertLLItem(AsmL, hp2, hp2^.next, hp1); End; End; End else Begin UsedRegs := UsedRegs - [PaiRegAlloc(p)^.Reg]; hp1 := p; hp2 := nil; While Not(FindRegAlloc(PaiRegAlloc(p)^.Reg, Pai(hp1^.Next))) And GetNextInstruction(hp1, hp1) And RegInInstruction(PaiRegAlloc(p)^.Reg, hp1) Do hp2 := hp1; If hp2 <> nil Then Begin hp1 := Pai(p^.previous); AsmL^.Remove(p); InsertLLItem(AsmL, hp2, Pai(hp2^.Next), p); p := hp1; End; End; end; End; P := Pai(p^.Next); While Assigned(p) And (p^.typ in (SkipInstr - [ait_regalloc])) Do P := Pai(P^.Next); End; {$IfDef TP} End Else LabelDif := 0; {$EndIf TP} End; End; {************************ Search the Label table ************************} Function FindLabel(L: PasmLabel; Var hp: Pai): Boolean; {searches for the specified label starting from hp as long as the encountered instructions are labels, to be able to optimize constructs like jne l2 jmp l2 jmp l3 and l1: l1: l2: l2:} Var TempP: Pai; Begin TempP := hp; While Assigned(TempP) and (TempP^.typ In SkipInstr + [ait_label]) Do If (TempP^.typ <> ait_Label) Or (pai_label(TempP)^.l <> L) Then GetNextInstruction(TempP, TempP) Else Begin hp := TempP; FindLabel := True; exit End; FindLabel := False; End; {************************ Some general functions ************************} Function TCh2Reg(Ch: TInsChange): TRegister; {converts a TChange variable to a TRegister} Begin If (Ch <= Ch_REDI) Then TCh2Reg := TRegister(Byte(Ch)) Else If (Ch <= Ch_WEDI) Then TCh2Reg := TRegister(Byte(Ch) - Byte(Ch_REDI)) Else If (Ch <= Ch_RWEDI) Then TCh2Reg := TRegister(Byte(Ch) - Byte(Ch_WEDI)) Else If (Ch <= Ch_MEDI) Then TCh2Reg := TRegister(Byte(Ch) - Byte(Ch_RWEDI)) Else InternalError($db) End; Function Reg32(Reg: TRegister): TRegister; {Returns the 32 bit component of Reg if it exists, otherwise Reg is returned} Begin Reg32 := Reg; If (Reg >= R_AX) Then If (Reg <= R_DI) Then Reg32 := Reg16ToReg32(Reg) Else If (Reg <= R_BL) Then Reg32 := Reg8toReg32(Reg); End; { inserts new_one between prev and foll } Procedure InsertLLItem(AsmL: PAasmOutput; prev, foll, new_one: PLinkedList_Item); Begin If Assigned(prev) Then If Assigned(foll) Then Begin If Assigned(new_one) Then Begin new_one^.previous := prev; new_one^.next := foll; prev^.next := new_one; foll^.previous := new_one; Pai(new_one)^.fileinfo := Pai(foll)^.fileinfo; End; End Else AsmL^.Concat(new_one) Else If Assigned(Foll) Then AsmL^.Insert(new_one) End; {********************* Compare parts of Pai objects *********************} Function RegsSameSize(Reg1, Reg2: TRegister): Boolean; {returns true if Reg1 and Reg2 are of the same size (so if they're both 8bit, 16bit or 32bit)} Begin If (Reg1 <= R_EDI) Then RegsSameSize := (Reg2 <= R_EDI) Else If (Reg1 <= R_DI) Then RegsSameSize := (Reg2 in [R_AX..R_DI]) Else If (Reg1 <= R_BL) Then RegsSameSize := (Reg2 in [R_AL..R_BL]) Else RegsSameSize := False End; Procedure AddReg2RegInfo(OldReg, NewReg: TRegister; Var RegInfo: TRegInfo); {updates the ???RegsEncountered and ???2???Reg fields of RegInfo. Assumes that OldReg and NewReg have the same size (has to be chcked in advance with RegsSameSize) and that neither equals R_NO} Begin With RegInfo Do Begin NewRegsEncountered := NewRegsEncountered + [NewReg]; OldRegsEncountered := OldRegsEncountered + [OldReg]; New2OldReg[NewReg] := OldReg; Case OldReg Of R_EAX..R_EDI: Begin NewRegsEncountered := NewRegsEncountered + [Reg32toReg16(NewReg)]; OldRegsEncountered := OldRegsEncountered + [Reg32toReg16(OldReg)]; New2OldReg[Reg32toReg16(NewReg)] := Reg32toReg16(OldReg); If (NewReg in [R_EAX..R_EBX]) And (OldReg in [R_EAX..R_EBX]) Then Begin NewRegsEncountered := NewRegsEncountered + [Reg32toReg8(NewReg)]; OldRegsEncountered := OldRegsEncountered + [Reg32toReg8(OldReg)]; New2OldReg[Reg32toReg8(NewReg)] := Reg32toReg8(OldReg); End; End; R_AX..R_DI: Begin NewRegsEncountered := NewRegsEncountered + [Reg16toReg32(NewReg)]; OldRegsEncountered := OldRegsEncountered + [Reg16toReg32(OldReg)]; New2OldReg[Reg16toReg32(NewReg)] := Reg16toReg32(OldReg); If (NewReg in [R_AX..R_BX]) And (OldReg in [R_AX..R_BX]) Then Begin NewRegsEncountered := NewRegsEncountered + [Reg16toReg8(NewReg)]; OldRegsEncountered := OldRegsEncountered + [Reg16toReg8(OldReg)]; New2OldReg[Reg16toReg8(NewReg)] := Reg16toReg8(OldReg); End; End; R_AL..R_BL: Begin NewRegsEncountered := NewRegsEncountered + [Reg8toReg32(NewReg)] + [Reg8toReg16(NewReg)]; OldRegsEncountered := OldRegsEncountered + [Reg8toReg32(OldReg)] + [Reg8toReg16(OldReg)]; New2OldReg[Reg8toReg32(NewReg)] := Reg8toReg32(OldReg); End; End; End; End; Procedure AddOp2RegInfo(const o:Toper; Var RegInfo: TRegInfo); Begin Case o.typ Of Top_Reg: If (o.reg <> R_NO) Then AddReg2RegInfo(o.reg, o.reg, RegInfo); Top_Ref: Begin If o.ref^.base <> R_NO Then AddReg2RegInfo(o.ref^.base, o.ref^.base, RegInfo); If o.ref^.index <> R_NO Then AddReg2RegInfo(o.ref^.index, o.ref^.index, RegInfo); End; End; End; Function RegsEquivalent(OldReg, NewReg: TRegister; Var RegInfo: TRegInfo; OPAct: TOpAction): Boolean; Begin If Not((OldReg = R_NO) Or (NewReg = R_NO)) Then If RegsSameSize(OldReg, NewReg) Then With RegInfo Do {here we always check for the 32 bit component, because it is possible that the 8 bit component has not been set, event though NewReg already has been processed. This happens if it has been compared with a register that doesn't have an 8 bit component (such as EDI). In that case the 8 bit component is still set to R_NO and the comparison in the Else-part will fail} If (Reg32(OldReg) in OldRegsEncountered) Then If (Reg32(NewReg) in NewRegsEncountered) Then RegsEquivalent := (OldReg = New2OldReg[NewReg]) { If we haven't encountered the new register yet, but we have encountered the old one already, the new one can only be correct if it's being written to (and consequently the old one is also being written to), otherwise movl -8(%ebp), %eax and movl -8(%ebp), %eax movl (%eax), %eax movl (%edx), %edx are considered equivalent} Else If (OpAct = OpAct_Write) Then Begin AddReg2RegInfo(OldReg, NewReg, RegInfo); RegsEquivalent := True End Else Regsequivalent := False Else If Not(Reg32(NewReg) in NewRegsEncountered) Then Begin AddReg2RegInfo(OldReg, NewReg, RegInfo); RegsEquivalent := True End Else RegsEquivalent := False Else RegsEquivalent := False Else RegsEquivalent := OldReg = NewReg End; Function RefsEquivalent(Const R1, R2: TReference; var RegInfo: TRegInfo; OpAct: TOpAction): Boolean; Begin If R1.is_immediate Then RefsEquivalent := R2.is_immediate and (R1.Offset = R2.Offset) Else RefsEquivalent := (R1.Offset+R1.OffsetFixup = R2.Offset+R2.OffsetFixup) And RegsEquivalent(R1.Base, R2.Base, RegInfo, OpAct) And RegsEquivalent(R1.Index, R2.Index, RegInfo, OpAct) And (R1.Segment = R2.Segment) And (R1.ScaleFactor = R2.ScaleFactor) And (R1.Symbol = R2.Symbol); End; Function RefsEqual(Const R1, R2: TReference): Boolean; Begin If R1.is_immediate Then RefsEqual := R2.is_immediate and (R1.Offset = R2.Offset) Else RefsEqual := (R1.Offset+R1.OffsetFixup = R2.Offset+R2.OffsetFixup) And (R1.Segment = R2.Segment) And (R1.Base = R2.Base) And (R1.Index = R2.Index) And (R1.ScaleFactor = R2.ScaleFactor) And (R1.Symbol=R2.Symbol); End; Function IsGP32Reg(Reg: TRegister): Boolean; {Checks if the register is a 32 bit general purpose register} Begin If (Reg >= R_EAX) and (Reg <= R_EBX) Then IsGP32Reg := True Else IsGP32reg := False End; Function RegInRef(Reg: TRegister; Const Ref: TReference): Boolean; Begin {checks whether Ref contains a reference to Reg} Reg := Reg32(Reg); RegInRef := (Ref.Base = Reg) Or (Ref.Index = Reg) End; Function RegInInstruction(Reg: TRegister; p1: Pai): Boolean; {checks if Reg is used by the instruction p1} Var Counter: Longint; TmpResult: Boolean; Begin TmpResult := False; If (Pai(p1)^.typ = ait_instruction) Then Begin Reg := Reg32(Reg); Counter := 0; Repeat Case Paicpu(p1)^.oper[Counter].typ Of Top_Reg: TmpResult := Reg = Reg32(Paicpu(p1)^.oper[Counter].reg); Top_Ref: TmpResult := RegInRef(Reg, Paicpu(p1)^.oper[Counter].ref^); End; Inc(Counter) Until (Counter = 3) or TmpResult; End; RegInInstruction := TmpResult End; {Function RegInOp(Reg: TRegister; const o:toper): Boolean; Begin RegInOp := False; Case opt Of top_reg: RegInOp := Reg = o.reg; top_ref: RegInOp := (Reg = o.ref^.Base) Or (Reg = o.ref^.Index); End; End;} (* Function RegModifiedByInstruction(Reg: TRegister; p1: Pai): Boolean; {returns true if Reg is modified by the instruction p1. P1 is assumed to be of the type ait_instruction} Var hp: Pai; Begin If GetLastInstruction(p1, hp) Then RegModifiedByInstruction := PPAiProp(p1^.OptInfo)^.Regs[Reg].WState <> PPAiProp(hp^.OptInfo)^.Regs[Reg].WState Else RegModifiedByInstruction := True; End; *) Function RegModifiedByInstruction(Reg: TRegister; p1: Pai): Boolean; Var InstrProp: TInsProp; TmpResult: Boolean; Cnt: Byte; Begin TmpResult := False; Reg := Reg32(Reg); If (p1^.typ = ait_instruction) Then Case paicpu(p1)^.opcode of A_IMUL: With paicpu(p1)^ Do TmpResult := ((ops = 1) and (reg = R_EAX)) or ((ops = 2) and (Reg32(oper[1].reg) = reg)) or ((ops = 3) and (Reg32(oper[2].reg) = reg)); A_DIV, A_IDIV, A_MUL: With paicpu(p1)^ Do TmpResult := (Reg = R_EAX) or (Reg = R_EDX); Else Begin Cnt := 1; InstrProp := InsProp[paicpu(p1)^.OpCode]; While (Cnt <= MaxCh) And (InstrProp.Ch[Cnt] <> Ch_None) And Not(TmpResult) Do Begin Case InstrProp.Ch[Cnt] Of Ch_WEAX..Ch_MEDI: TmpResult := Reg = TCh2Reg(InstrProp.Ch[Cnt]); Ch_RWOp1,Ch_WOp1{$ifdef arithopt},C_Mop1{$endif arithopt}: TmpResult := (paicpu(p1)^.oper[0].typ = top_reg) and (Reg32(paicpu(p1)^.oper[0].reg) = reg); Ch_RWOp2,Ch_WOp2{$ifdef arithopt},C_Mop2{$endif arithopt}: TmpResult := (paicpu(p1)^.oper[1].typ = top_reg) and (Reg32(paicpu(p1)^.oper[1].reg) = reg); Ch_RWOp3,Ch_WOp3{$ifdef arithopt},C_Mop3{$endif arithopt}: TmpResult := (paicpu(p1)^.oper[2].typ = top_reg) and (Reg32(paicpu(p1)^.oper[2].reg) = reg); Ch_FPU: TmpResult := Reg in [R_ST..R_ST7,R_MM0..R_MM7]; Ch_ALL: TmpResult := true; End; Inc(Cnt) End End End; RegModifiedByInstruction := TmpResult End; {********************* GetNext and GetLastInstruction *********************} Function GetNextInstruction(Current: Pai; Var Next: Pai): Boolean; {skips ait_regalloc, ait_regdealloc and ait_stab* objects and puts the next pai object in Next. Returns false if there isn't any} Begin Repeat If (Current^.typ = ait_marker) And (Pai_Marker(Current)^.Kind = AsmBlockStart) Then Begin GetNextInstruction := False; Next := Nil; Exit End; Current := Pai(Current^.Next); While Assigned(Current) And ((Current^.typ In SkipInstr) or ((Current^.typ = ait_label) And Not(Pai_Label(Current)^.l^.is_used))) Do Current := Pai(Current^.Next); If Assigned(Current) And (Current^.typ = ait_Marker) And (Pai_Marker(Current)^.Kind = NoPropInfoStart) Then Begin While Assigned(Current) And ((Current^.typ <> ait_Marker) Or (Pai_Marker(Current)^.Kind <> NoPropInfoEnd)) Do Current := Pai(Current^.Next); End; Until Not(Assigned(Current)) Or (Current^.typ <> ait_Marker) Or (Pai_Marker(Current)^.Kind <> NoPropInfoEnd); Next := Current; If Assigned(Current) And Not((Current^.typ In SkipInstr) or ((Current^.typ = ait_label) And Not(Pai_Label(Current)^.l^.is_used))) Then GetNextInstruction := True Else Begin GetNextInstruction := False; Next := nil; End; End; Function GetLastInstruction(Current: Pai; Var Last: Pai): Boolean; {skips the ait-types in SkipInstr puts the previous pai object in Last. Returns false if there isn't any} Begin Repeat Current := Pai(Current^.previous); While Assigned(Current) And (((Current^.typ = ait_Marker) And Not(Pai_Marker(Current)^.Kind in [AsmBlockEnd,NoPropInfoEnd])) or (Current^.typ In SkipInstr) or ((Current^.typ = ait_label) And Not(Pai_Label(Current)^.l^.is_used))) Do Current := Pai(Current^.previous); If Assigned(Current) And (Current^.typ = ait_Marker) And (Pai_Marker(Current)^.Kind = NoPropInfoEnd) Then Begin While Assigned(Current) And ((Current^.typ <> ait_Marker) Or (Pai_Marker(Current)^.Kind <> NoPropInfoStart)) Do Current := Pai(Current^.previous); End; Until Not(Assigned(Current)) Or (Current^.typ <> ait_Marker) Or (Pai_Marker(Current)^.Kind <> NoPropInfoStart); If Not(Assigned(Current)) or (Current^.typ In SkipInstr) or ((Current^.typ = ait_label) And Not(Pai_Label(Current)^.l^.is_used)) or ((Current^.typ = ait_Marker) And (Pai_Marker(Current)^.Kind = AsmBlockEnd)) Then Begin Last := nil; GetLastInstruction := False End Else Begin Last := Current; GetLastInstruction := True; End; End; Procedure SkipHead(var P: Pai); Var OldP: Pai; Begin Repeat OldP := P; If (P^.typ in SkipInstr) Or ((P^.typ = ait_marker) And (Pai_Marker(P)^.Kind = AsmBlockEnd)) Then GetNextInstruction(P, P) Else If ((P^.Typ = Ait_Marker) And (Pai_Marker(P)^.Kind = NoPropInfoStart)) Then {a marker of the NoPropInfoStart can't be the first instruction of a paasmoutput list} GetNextInstruction(Pai(P^.Previous),P); If (P^.Typ = Ait_Marker) And (Pai_Marker(P)^.Kind = AsmBlockStart) Then Begin P := Pai(P^.Next); While (P^.typ <> Ait_Marker) Or (Pai_Marker(P)^.Kind <> AsmBlockEnd) Do P := Pai(P^.Next) End; Until P = OldP End; {******************* The Data Flow Analyzer functions ********************} Procedure UpdateUsedRegs(Var UsedRegs: TRegSet; p: Pai); {updates UsedRegs with the RegAlloc Information coming after P} Begin Repeat While Assigned(p) And ((p^.typ in (SkipInstr - [ait_RegAlloc])) or ((p^.typ = ait_label) And Not(Pai_Label(p)^.l^.is_used))) Do p := Pai(p^.next); While Assigned(p) And (p^.typ=ait_RegAlloc) Do Begin if pairegalloc(p)^.allocation then UsedRegs := UsedRegs + [PaiRegAlloc(p)^.Reg] else UsedRegs := UsedRegs - [PaiRegAlloc(p)^.Reg]; p := pai(p^.next); End; Until Not(Assigned(p)) Or (Not(p^.typ in SkipInstr) And Not((p^.typ = ait_label) And Not(Pai_Label(p)^.l^.is_used))); End; (*Function FindZeroreg(p: Pai; Var Result: TRegister): Boolean; {Finds a register which contains the constant zero} Var Counter: TRegister; Begin Counter := R_EAX; FindZeroReg := True; While (Counter <= R_EDI) And ((PPaiProp(p^.OptInfo)^.Regs[Counter].Typ <> Con_Const) or (PPaiProp(p^.OptInfo)^.Regs[Counter].StartMod <> Pointer(0))) Do Inc(Byte(Counter)); If (PPaiProp(p^.OptInfo)^.Regs[Counter].Typ = Con_Const) And (PPaiProp(p^.OptInfo)^.Regs[Counter].StartMod = Pointer(0)) Then Result := Counter Else FindZeroReg := False; End;*) Procedure IncState(Var S: Byte); {Increases S by 1, wraps around at $ffff to 0 (so we won't get overflow errors} Begin If (s <> $ff) Then Inc(s) Else s := 0 End; Function RegInSequence(Reg: TRegister; Const Content: TContent): Boolean; {checks the whole sequence of Content (so StartMod and and the next NrOfMods Pai objects) to see whether Reg is used somewhere, without it being loaded with something else first} Var p: Pai; Counter: Byte; TmpResult: Boolean; RegsChecked: TRegSet; Begin RegsChecked := []; p := Content.StartMod; TmpResult := False; Counter := 1; While Not(TmpResult) And (Counter <= Content.NrOfMods) Do Begin If (p^.typ = ait_instruction) and ((Paicpu(p)^.opcode = A_MOV) or (Paicpu(p)^.opcode = A_MOVZX) or (Paicpu(p)^.opcode = A_MOVSX)) Then Begin If (Paicpu(p)^.oper[0].typ = top_ref) Then With Paicpu(p)^.oper[0].ref^ Do If (Base = procinfo^.FramePointer) And (Index = R_NO) Then Begin RegsChecked := RegsChecked + [Reg32(Paicpu(p)^.oper[1].reg)]; If Reg = Reg32(Paicpu(p)^.oper[1].reg) Then Break; End Else Begin If (Base = Reg) And Not(Base In RegsChecked) Then TmpResult := True; If Not(TmpResult) And (Index = Reg) And Not(Index In RegsChecked) Then TmpResult := True; End End Else TmpResult := RegInInstruction(Reg, p); Inc(Counter); GetNextInstruction(p,p) End; RegInSequence := TmpResult End; Procedure DestroyReg(p1: PPaiProp; Reg: TRegister; doIncState:Boolean); {Destroys the contents of the register Reg in the PPaiProp p1, as well as the contents of registers are loaded with a memory location based on Reg. doIncState is false when this register has to be destroyed not because it's contents are directly modified/overwritten, but because of an indirect action (ie. this register holds the contents of a variable and the value of the variable in memory is changed } Var TmpWState, TmpRState: Byte; Counter: TRegister; Begin Reg := Reg32(Reg); NrOfInstrSinceLastMod[Reg] := 0; If (Reg >= R_EAX) And (Reg <= R_EDI) Then Begin With p1^.Regs[Reg] Do Begin if doIncState then IncState(WState); TmpWState := WState; TmpRState := RState; FillChar(p1^.Regs[Reg], SizeOf(TContent), 0); WState := TmpWState; RState := TmpRState; End; For Counter := R_EAX to R_EDI Do With p1^.Regs[Counter] Do If (Typ = Con_Ref) And RegInSequence(Reg, p1^.Regs[Counter]) Then Begin if doIncState then IncState(WState); TmpWState := WState; TmpRState := RState; FillChar(p1^.Regs[Counter], SizeOf(TContent), 0); WState := TmpWState; RState := TmpRState; End; End; End; {Procedure AddRegsToSet(p: Pai; Var RegSet: TRegSet); Begin If (p^.typ = ait_instruction) Then Begin Case Paicpu(p)^.oper[0].typ Of top_reg: If Not(Paicpu(p)^.oper[0].reg in [R_NO,R_ESP,procinfo^.FramePointer]) Then RegSet := RegSet + [Paicpu(p)^.oper[0].reg]; top_ref: With TReference(Paicpu(p)^.oper[0]^) Do Begin If Not(Base in [procinfo^.FramePointer,R_NO,R_ESP]) Then RegSet := RegSet + [Base]; If Not(Index in [procinfo^.FramePointer,R_NO,R_ESP]) Then RegSet := RegSet + [Index]; End; End; Case Paicpu(p)^.oper[1].typ Of top_reg: If Not(Paicpu(p)^.oper[1].reg in [R_NO,R_ESP,procinfo^.FramePointer]) Then If RegSet := RegSet + [TRegister(TwoWords(Paicpu(p)^.oper[1]).Word1]; top_ref: With TReference(Paicpu(p)^.oper[1]^) Do Begin If Not(Base in [procinfo^.FramePointer,R_NO,R_ESP]) Then RegSet := RegSet + [Base]; If Not(Index in [procinfo^.FramePointer,R_NO,R_ESP]) Then RegSet := RegSet + [Index]; End; End; End; End;} Function OpsEquivalent(const o1, o2: toper; Var RegInfo: TRegInfo; OpAct: TopAction): Boolean; Begin {checks whether the two ops are equivalent} OpsEquivalent := False; if o1.typ=o2.typ then Case o1.typ Of Top_Reg: OpsEquivalent :=RegsEquivalent(o1.reg,o2.reg, RegInfo, OpAct); Top_Ref: OpsEquivalent := RefsEquivalent(o1.ref^, o2.ref^, RegInfo, OpAct); Top_Const: OpsEquivalent := o1.val = o2.val; Top_None: OpsEquivalent := True End; End; Function OpsEqual(const o1,o2:toper): Boolean; Begin {checks whether the two ops are equal} OpsEqual := False; if o1.typ=o2.typ then Case o1.typ Of Top_Reg : OpsEqual:=o1.reg=o2.reg; Top_Ref : OpsEqual := RefsEqual(o1.ref^, o2.ref^); Top_Const : OpsEqual:=o1.val=o2.val; Top_Symbol : OpsEqual:=(o1.sym=o2.sym) and (o1.symofs=o2.symofs); Top_None : OpsEqual := True End; End; Function InstructionsEquivalent(p1, p2: Pai; Var RegInfo: TRegInfo): Boolean; {$ifdef csdebug} var hp: pai; {$endif csdebug} Begin {checks whether two Paicpu instructions are equal} If Assigned(p1) And Assigned(p2) And (Pai(p1)^.typ = ait_instruction) And (Pai(p1)^.typ = ait_instruction) And (Paicpu(p1)^.opcode = Paicpu(p2)^.opcode) And (Paicpu(p1)^.oper[0].typ = Paicpu(p2)^.oper[0].typ) And (Paicpu(p1)^.oper[1].typ = Paicpu(p2)^.oper[1].typ) And (Paicpu(p1)^.oper[2].typ = Paicpu(p2)^.oper[2].typ) Then {both instructions have the same structure: " , "} If ((Paicpu(p1)^.opcode = A_MOV) or (Paicpu(p1)^.opcode = A_MOVZX) or (Paicpu(p1)^.opcode = A_MOVSX)) And (Paicpu(p1)^.oper[0].typ = top_ref) {then .oper[1]t = top_reg} Then If Not(RegInRef(Paicpu(p1)^.oper[1].reg, Paicpu(p1)^.oper[0].ref^)) Then {the "old" instruction is a load of a register with a new value, not with a value based on the contents of this register (so no "mov (reg), reg")} If Not(RegInRef(Paicpu(p2)^.oper[1].reg, Paicpu(p2)^.oper[0].ref^)) And RefsEqual(Paicpu(p1)^.oper[0].ref^, Paicpu(p2)^.oper[0].ref^) Then {the "new" instruction is also a load of a register with a new value, and this value is fetched from the same memory location} Begin With Paicpu(p2)^.oper[0].ref^ Do Begin If Not(Base in [procinfo^.FramePointer, R_NO, R_ESP]) {it won't do any harm if the register is already in RegsLoadedForRef} Then RegInfo.RegsLoadedForRef := RegInfo.RegsLoadedForRef + [Base]; If Not(Index in [procinfo^.FramePointer, R_NO, R_ESP]) Then RegInfo.RegsLoadedForRef := RegInfo.RegsLoadedForRef + [Index]; End; {add the registers from the reference (.oper[0]) to the RegInfo, all registers from the reference are the same in the old and in the new instruction sequence} AddOp2RegInfo(Paicpu(p1)^.oper[0], RegInfo); {the registers from .oper[1] have to be equivalent, but not necessarily equal} InstructionsEquivalent := RegsEquivalent(Paicpu(p1)^.oper[1].reg, Paicpu(p2)^.oper[1].reg, RegInfo, OpAct_Write); End {the registers are loaded with values from different memory locations. If this was allowed, the instructions "mov -4(esi),eax" and "mov -4(ebp),eax" would be considered equivalent} Else InstructionsEquivalent := False Else {load register with a value based on the current value of this register} Begin With Paicpu(p2)^.oper[0].ref^ Do Begin If Not(Base in [procinfo^.FramePointer, Reg32(Paicpu(p2)^.oper[1].reg),R_NO,R_ESP]) {it won't do any harm if the register is already in RegsLoadedForRef} Then Begin RegInfo.RegsLoadedForRef := RegInfo.RegsLoadedForRef + [Base]; {$ifdef csdebug} Writeln(att_reg2str[base], ' added'); {$endif csdebug} end; If Not(Index in [procinfo^.FramePointer, Reg32(Paicpu(p2)^.oper[1].reg),R_NO,R_ESP]) Then Begin RegInfo.RegsLoadedForRef := RegInfo.RegsLoadedForRef + [Index]; {$ifdef csdebug} Writeln(att_reg2str[index], ' added'); {$endif csdebug} end; End; If Not(Reg32(Paicpu(p2)^.oper[1].reg) In [procinfo^.FramePointer,R_NO,R_ESP]) Then Begin RegInfo.RegsLoadedForRef := RegInfo.RegsLoadedForRef - [Reg32(Paicpu(p2)^.oper[1].reg)]; {$ifdef csdebug} Writeln(att_reg2str[Reg32(Paicpu(p2)^.oper[1].reg)], ' removed'); {$endif csdebug} end; InstructionsEquivalent := OpsEquivalent(Paicpu(p1)^.oper[0], Paicpu(p2)^.oper[0], RegInfo, OpAct_Read) And OpsEquivalent(Paicpu(p1)^.oper[1], Paicpu(p2)^.oper[1], RegInfo, OpAct_Write) End Else {an instruction <> mov, movzx, movsx} begin {$ifdef csdebug} hp := new(pai_asm_comment,init(strpnew('checking if equivalent'))); hp^.previous := p2; hp^.next := p2^.next; p2^.next^.previous := hp; p2^.next := hp; {$endif csdebug} InstructionsEquivalent := OpsEquivalent(Paicpu(p1)^.oper[0], Paicpu(p2)^.oper[0], RegInfo, OpAct_Unknown) And OpsEquivalent(Paicpu(p1)^.oper[1], Paicpu(p2)^.oper[1], RegInfo, OpAct_Unknown) And OpsEquivalent(Paicpu(p1)^.oper[2], Paicpu(p2)^.oper[2], RegInfo, OpAct_Unknown) end {the instructions haven't even got the same structure, so they're certainly not equivalent} Else begin {$ifdef csdebug} hp := new(pai_asm_comment,init(strpnew('different opcodes/format'))); hp^.previous := p2; hp^.next := p2^.next; p2^.next^.previous := hp; p2^.next := hp; {$endif csdebug} InstructionsEquivalent := False; end; {$ifdef csdebug} hp := new(pai_asm_comment,init(strpnew('instreq: '+tostr(byte(instructionsequivalent))))); hp^.previous := p2; hp^.next := p2^.next; p2^.next^.previous := hp; p2^.next := hp; {$endif csdebug} End; (* Function InstructionsEqual(p1, p2: Pai): Boolean; Begin {checks whether two Paicpu instructions are equal} InstructionsEqual := Assigned(p1) And Assigned(p2) And ((Pai(p1)^.typ = ait_instruction) And (Pai(p1)^.typ = ait_instruction) And (Paicpu(p1)^.opcode = Paicpu(p2)^.opcode) And (Paicpu(p1)^.oper[0].typ = Paicpu(p2)^.oper[0].typ) And (Paicpu(p1)^.oper[1].typ = Paicpu(p2)^.oper[1].typ) And OpsEqual(Paicpu(p1)^.oper[0].typ, Paicpu(p1)^.oper[0], Paicpu(p2)^.oper[0]) And OpsEqual(Paicpu(p1)^.oper[1].typ, Paicpu(p1)^.oper[1], Paicpu(p2)^.oper[1])) End; *) Procedure ReadReg(p: PPaiProp; Reg: TRegister); Begin Reg := Reg32(Reg); If Reg in [R_EAX..R_EDI] Then IncState(p^.Regs[Reg].RState) End; Procedure ReadRef(p: PPaiProp; Ref: PReference); Begin If Ref^.Base <> R_NO Then ReadReg(p, Ref^.Base); If Ref^.Index <> R_NO Then ReadReg(p, Ref^.Index); End; Procedure ReadOp(P: PPaiProp;const o:toper); Begin Case o.typ Of top_reg: ReadReg(P, o.reg); top_ref: ReadRef(P, o.ref); top_symbol : ; End; End; Function RefInInstruction(Const Ref: TReference; p: Pai; RefsEq: TRefCompare): Boolean; {checks whehter Ref is used in P} Var TmpResult: Boolean; Begin TmpResult := False; If (p^.typ = ait_instruction) Then Begin If (Paicpu(p)^.oper[0].typ = Top_Ref) Then TmpResult := RefsEq(Ref, Paicpu(p)^.oper[0].ref^); If Not(TmpResult) And (Paicpu(p)^.oper[1].typ = Top_Ref) Then TmpResult := RefsEq(Ref, Paicpu(p)^.oper[1].ref^); If Not(TmpResult) And (Paicpu(p)^.oper[2].typ = Top_Ref) Then TmpResult := RefsEq(Ref, Paicpu(p)^.oper[2].ref^); End; RefInInstruction := TmpResult; End; Function RefInSequence(Const Ref: TReference; Content: TContent; RefsEq: TRefCompare): Boolean; {checks the whole sequence of Content (so StartMod and and the next NrOfMods Pai objects) to see whether Ref is used somewhere} Var p: Pai; Counter: Byte; TmpResult: Boolean; Begin p := Content.StartMod; TmpResult := False; Counter := 1; While Not(TmpResult) And (Counter <= Content.NrOfMods) Do Begin If (p^.typ = ait_instruction) And RefInInstruction(Ref, p, RefsEq) Then TmpResult := True; Inc(Counter); GetNextInstruction(p,p) End; RefInSequence := TmpResult End; Function ArrayRefsEq(const r1, r2: TReference): Boolean;{$ifdef tp}far;{$endif} Begin ArrayRefsEq := (R1.Offset+R1.OffsetFixup = R2.Offset+R2.OffsetFixup) And (R1.Segment = R2.Segment) And (R1.Symbol=R2.Symbol) And ((Assigned(R1.Symbol)) Or (R1.Base = R2.Base)) End; Procedure DestroyRefs(p: pai; Const Ref: TReference; WhichReg: TRegister); {destroys all registers which possibly contain a reference to Ref, WhichReg is the register whose contents are being written to memory (if this proc is called because of a "mov?? %reg, (mem)" instruction)} Var RefsEq: TRefCompare; Counter: TRegister; Begin WhichReg := Reg32(WhichReg); If (Ref.base = procinfo^.FramePointer) or Assigned(Ref.Symbol) Then Begin If (Ref.Index = R_NO) And (Not(Assigned(Ref.Symbol)) or (Ref.base = R_NO)) Then { local variable which is not an array } RefsEq := {$ifdef fpc}@{$endif}RefsEqual Else { local variable which is an array } RefsEq := {$ifdef fpc}@{$endif}ArrayRefsEq; {write something to a parameter, a local or global variable, so * with uncertain optimizations on: - destroy the contents of registers whose contents have somewhere a "mov?? (Ref), %reg". WhichReg (this is the register whose contents are being written to memory) is not destroyed if it's StartMod is of that form and NrOfMods = 1 (so if it holds ref, but is not a pointer based on Ref) * with uncertain optimizations off: - also destroy registers that contain any pointer} For Counter := R_EAX to R_EDI Do With PPaiProp(p^.OptInfo)^.Regs[Counter] Do Begin If (typ = Con_Ref) And ((Not(cs_UncertainOpts in aktglobalswitches) And (NrOfMods <> 1) ) Or (RefInSequence(Ref,PPaiProp(p^.OptInfo)^.Regs[Counter],RefsEq) And ((Counter <> WhichReg) Or ((NrOfMods <> 1) And {StarMod is always of the type ait_instruction} (Paicpu(StartMod)^.oper[0].typ = top_ref) And RefsEq(Paicpu(StartMod)^.oper[0].ref^, Ref) ) ) ) ) Then DestroyReg(PPaiProp(p^.OptInfo), Counter, false) End End Else {write something to a pointer location, so * with uncertain optimzations on: - do not destroy registers which contain a local/global variable or a parameter, except if DestroyRefs is called because of a "movsl" * with uncertain optimzations off: - destroy every register which contains a memory location } For Counter := R_EAX to R_EDI Do With PPaiProp(p^.OptInfo)^.Regs[Counter] Do If (typ = Con_Ref) And (Not(cs_UncertainOpts in aktglobalswitches) Or {for movsl} (Ref.Base = R_EDI) Or {don't destroy if reg contains a parameter, local or global variable} Not((NrOfMods = 1) And (Paicpu(StartMod)^.oper[0].typ = top_ref) And ((Paicpu(StartMod)^.oper[0].ref^.base = procinfo^.FramePointer) Or Assigned(Paicpu(StartMod)^.oper[0].ref^.Symbol) ) ) ) Then DestroyReg(PPaiProp(p^.OptInfo), Counter, false) End; Procedure DestroyAllRegs(p: PPaiProp); Var Counter: TRegister; Begin {initializes/desrtoys all registers} For Counter := R_EAX To R_EDI Do Begin ReadReg(p, Counter); DestroyReg(p, Counter, true); End; p^.DirFlag := F_Unknown; End; Procedure DestroyOp(PaiObj: Pai; const o:Toper); Begin Case o.typ Of top_reg: DestroyReg(PPaiProp(PaiObj^.OptInfo), o.reg, true); top_ref: Begin ReadRef(PPaiProp(PaiObj^.OptInfo), o.ref); DestroyRefs(PaiObj, o.ref^, R_NO); End; top_symbol:; End; End; Function DFAPass1(AsmL: PAasmOutput; BlockStart: Pai): Pai; {gathers the RegAlloc data... still need to think about where to store it to avoid global vars} Var BlockEnd: Pai; Begin BlockEnd := FindLoHiLabels(LoLab, HiLab, LabDif, BlockStart); BuildLabelTableAndFixRegAlloc(AsmL, LTable, LoLab, LabDif, BlockStart, BlockEnd); DFAPass1 := BlockEnd; End; {$ifdef arithopt} Procedure AddInstr2RegContents({$ifdef statedebug} asml: paasmoutput; {$endif} p: paicpu; reg: TRegister); {$ifdef statedebug} var hp: pai; {$endif statedebug} Begin Reg := Reg32(Reg); With PPaiProp(p^.optinfo)^.Regs[reg] Do If (Typ = Con_Ref) Then Begin IncState(WState); {also store how many instructions are part of the sequence in the first instructions PPaiProp, so it can be easily accessed from within CheckSequence} Inc(NrOfMods, NrOfInstrSinceLastMod[Reg]); PPaiProp(Pai(StartMod)^.OptInfo)^.Regs[Reg].NrOfMods := NrOfMods; NrOfInstrSinceLastMod[Reg] := 0; {$ifdef StateDebug} hp := new(pai_asm_comment,init(strpnew(att_reg2str[reg]+': '+tostr(PPaiProp(p^.optinfo)^.Regs[reg].WState) + ' -- ' + tostr(PPaiProp(p^.optinfo)^.Regs[reg].nrofmods)))); InsertLLItem(AsmL, p, p^.next, hp); {$endif StateDebug} End Else Begin DestroyReg(PPaiProp(p^.optinfo), Reg, true); {$ifdef StateDebug} hp := new(pai_asm_comment,init(strpnew(att_reg2str[reg]+': '+tostr(PPaiProp(p^.optinfo)^.Regs[reg].WState)))); InsertLLItem(AsmL, p, p^.next, hp); {$endif StateDebug} End End; Procedure AddInstr2OpContents({$ifdef statedebug} asml: paasmoutput; {$endif} p: paicpu; const oper: TOper); Begin If oper.typ = top_reg Then AddInstr2RegContents({$ifdef statedebug} asml, {$endif}p, oper.reg) Else Begin ReadOp(PPaiProp(p^.optinfo), oper); DestroyOp(p, oper); End End; {$endif arithopt} Procedure DoDFAPass2( {$Ifdef StateDebug} AsmL: PAasmOutput; {$endif statedebug} BlockStart, BlockEnd: Pai); {Analyzes the Data Flow of an assembler list. Starts creating the reg contents for the instructions starting with p. Returns the last pai which has been processed} Var CurProp: PPaiProp; {$ifdef AnalyzeLoops} TmpState: Byte; {$endif AnalyzeLoops} Cnt, InstrCnt : Longint; InstrProp: TInsProp; UsedRegs: TRegSet; p, hp : Pai; TmpRef: TReference; TmpReg: TRegister; Begin p := BlockStart; UsedRegs := []; UpdateUsedregs(UsedRegs, p); SkipHead(P); BlockStart := p; InstrCnt := 1; FillChar(NrOfInstrSinceLastMod, SizeOf(NrOfInstrSinceLastMod), 0); While (P <> BlockEnd) Do Begin {$IfDef TP} New(CurProp); {$Else TP} CurProp := @PaiPropBlock^[InstrCnt]; {$EndIf TP} If (p <> BlockStart) Then Begin {$ifdef JumpAnal} If (p^.Typ <> ait_label) Then {$endif JumpAnal} Begin GetLastInstruction(p, hp); CurProp^.Regs := PPaiProp(hp^.OptInfo)^.Regs; CurProp^.DirFlag := PPaiProp(hp^.OptInfo)^.DirFlag; End End Else Begin FillChar(CurProp^, SizeOf(CurProp^), 0); { For TmpReg := R_EAX to R_EDI Do CurProp^.Regs[TmpReg].WState := 1;} End; CurProp^.UsedRegs := UsedRegs; CurProp^.CanBeRemoved := False; UpdateUsedRegs(UsedRegs, Pai(p^.Next)); {$ifdef TP} PPaiProp(p^.OptInfo) := CurProp; {$Endif TP} For TmpReg := R_EAX To R_EDI Do Inc(NrOfInstrSinceLastMod[TmpReg]); Case p^.typ Of ait_label: {$Ifndef JumpAnal} If (Pai_label(p)^.l^.is_used) Then DestroyAllRegs(CurProp); {$Else JumpAnal} Begin If (Pai_Label(p)^.is_used) Then With LTable^[Pai_Label(p)^.l^.labelnr-LoLab] Do {$IfDef AnalyzeLoops} If (RefsFound = Pai_Label(p)^.l^.RefCount) {$Else AnalyzeLoops} If (JmpsProcessed = Pai_Label(p)^.l^.RefCount) {$EndIf AnalyzeLoops} Then {all jumps to this label have been found} {$IfDef AnalyzeLoops} If (JmpsProcessed > 0) Then {$EndIf AnalyzeLoops} {we've processed at least one jump to this label} Begin If (GetLastInstruction(p, hp) And Not(((hp^.typ = ait_instruction)) And (paicpu_labeled(hp)^.is_jmp)) Then {previous instruction not a JMP -> the contents of the registers after the previous intruction has been executed have to be taken into account as well} For TmpReg := R_EAX to R_EDI Do Begin If (CurProp^.Regs[TmpReg].WState <> PPaiProp(hp^.OptInfo)^.Regs[TmpReg].WState) Then DestroyReg(CurProp, TmpReg, true) End End {$IfDef AnalyzeLoops} Else {a label from a backward jump (e.g. a loop), no jump to this label has already been processed} If GetLastInstruction(p, hp) And Not(hp^.typ = ait_instruction) And (paicpu_labeled(hp)^.opcode = A_JMP)) Then {previous instruction not a jmp, so keep all the registers' contents from the previous instruction} Begin CurProp^.Regs := PPaiProp(hp^.OptInfo)^.Regs; CurProp^.DirFlag := PPaiProp(hp^.OptInfo)^.DirFlag; End Else {previous instruction a jmp and no jump to this label processed yet} Begin hp := p; Cnt := InstrCnt; {continue until we find a jump to the label or a label which has already been processed} While GetNextInstruction(hp, hp) And Not((hp^.typ = ait_instruction) And (paicpu(hp)^.is_jmp) and (pasmlabel(paicpu(hp)^.oper[0].sym)^.labelnr = Pai_Label(p)^.l^.labelnr)) And Not((hp^.typ = ait_label) And (LTable^[Pai_Label(hp)^.l^.labelnr-LoLab].RefsFound = Pai_Label(hp)^.l^.RefCount) And (LTable^[Pai_Label(hp)^.l^.labelnr-LoLab].JmpsProcessed > 0)) Do Inc(Cnt); If (hp^.typ = ait_label) Then {there's a processed label after the current one} Begin CurProp^.Regs := PaiPropBlock^[Cnt].Regs; CurProp^.DirFlag := PaiPropBlock^[Cnt].DirFlag; End Else {there's no label anymore after the current one, or they haven't been processed yet} Begin GetLastInstruction(p, hp); CurProp^.Regs := PPaiProp(hp^.OptInfo)^.Regs; CurProp^.DirFlag := PPaiProp(hp^.OptInfo)^.DirFlag; DestroyAllRegs(PPaiProp(hp^.OptInfo)) End End {$EndIf AnalyzeLoops} Else {not all references to this label have been found, so destroy all registers} Begin GetLastInstruction(p, hp); CurProp^.Regs := PPaiProp(hp^.OptInfo)^.Regs; CurProp^.DirFlag := PPaiProp(hp^.OptInfo)^.DirFlag; DestroyAllRegs(CurProp) End; End; {$EndIf JumpAnal} {$ifdef GDB} ait_stabs, ait_stabn, ait_stab_function_name:; {$endif GDB} ait_align: ; { may destroy flags !!! } ait_instruction: Begin if paicpu(p)^.is_jmp then begin {$IfNDef JumpAnal} ; {$Else JumpAnal} With LTable^[pasmlabel(paicpu(p)^.oper[0].sym)^.labelnr-LoLab] Do If (RefsFound = pasmlabel(paicpu(p)^.oper[0].sym)^.RefCount) Then Begin If (InstrCnt < InstrNr) Then {forward jump} If (JmpsProcessed = 0) Then {no jump to this label has been processed yet} Begin PaiPropBlock^[InstrNr].Regs := CurProp^.Regs; PaiPropBlock^[InstrNr].DirFlag := CurProp^.DirFlag; Inc(JmpsProcessed); End Else Begin For TmpReg := R_EAX to R_EDI Do If (PaiPropBlock^[InstrNr].Regs[TmpReg].WState <> CurProp^.Regs[TmpReg].WState) Then DestroyReg(@PaiPropBlock^[InstrNr], TmpReg, true); Inc(JmpsProcessed); End {$ifdef AnalyzeLoops} Else { backward jump, a loop for example} { If (JmpsProcessed > 0) Or Not(GetLastInstruction(PaiObj, hp) And (hp^.typ = ait_labeled_instruction) And (paicpu_labeled(hp)^.opcode = A_JMP)) Then} {instruction prior to label is not a jmp, or at least one jump to the label has yet been processed} Begin Inc(JmpsProcessed); For TmpReg := R_EAX to R_EDI Do If (PaiPropBlock^[InstrNr].Regs[TmpReg].WState <> CurProp^.Regs[TmpReg].WState) Then Begin TmpState := PaiPropBlock^[InstrNr].Regs[TmpReg].WState; Cnt := InstrNr; While (TmpState = PaiPropBlock^[Cnt].Regs[TmpReg].WState) Do Begin DestroyReg(@PaiPropBlock^[Cnt], TmpReg, true); Inc(Cnt); End; While (Cnt <= InstrCnt) Do Begin Inc(PaiPropBlock^[Cnt].Regs[TmpReg].WState); Inc(Cnt) End End; End { Else } {instruction prior to label is a jmp and no jumps to the label have yet been processed} { Begin Inc(JmpsProcessed); For TmpReg := R_EAX to R_EDI Do Begin TmpState := PaiPropBlock^[InstrNr].Regs[TmpReg].WState; Cnt := InstrNr; While (TmpState = PaiPropBlock^[Cnt].Regs[TmpReg].WState) Do Begin PaiPropBlock^[Cnt].Regs[TmpReg] := CurProp^.Regs[TmpReg]; Inc(Cnt); End; TmpState := PaiPropBlock^[InstrNr].Regs[TmpReg].WState; While (TmpState = PaiPropBlock^[Cnt].Regs[TmpReg].WState) Do Begin DestroyReg(@PaiPropBlock^[Cnt], TmpReg, true); Inc(Cnt); End; While (Cnt <= InstrCnt) Do Begin Inc(PaiPropBlock^[Cnt].Regs[TmpReg].WState); Inc(Cnt) End End End} {$endif AnalyzeLoops} End; {$EndIf JumpAnal} end else begin InstrProp := InsProp[Paicpu(p)^.opcode]; Case Paicpu(p)^.opcode Of A_MOV, A_MOVZX, A_MOVSX: Begin Case Paicpu(p)^.oper[0].typ Of Top_Reg: Case Paicpu(p)^.oper[1].typ Of Top_Reg: Begin DestroyReg(CurProp, Paicpu(p)^.oper[1].reg, true); ReadReg(CurProp, Paicpu(p)^.oper[0].reg); { CurProp^.Regs[Paicpu(p)^.oper[1].reg] := CurProp^.Regs[Paicpu(p)^.oper[0].reg]; If (CurProp^.Regs[Paicpu(p)^.oper[1].reg].ModReg = R_NO) Then CurProp^.Regs[Paicpu(p)^.oper[1].reg].ModReg := Paicpu(p)^.oper[0].reg;} End; Top_Ref: Begin ReadReg(CurProp, Paicpu(p)^.oper[0].reg); ReadRef(CurProp, Paicpu(p)^.oper[1].ref); DestroyRefs(p, Paicpu(p)^.oper[1].ref^, Paicpu(p)^.oper[0].reg); End; End; Top_Ref: Begin {destination is always a register in this case} ReadRef(CurProp, Paicpu(p)^.oper[0].ref); ReadReg(CurProp, Paicpu(p)^.oper[1].reg); TmpReg := Reg32(Paicpu(p)^.oper[1].reg); If RegInRef(TmpReg, Paicpu(p)^.oper[0].ref^) And (CurProp^.Regs[TmpReg].Typ = Con_Ref) Then Begin With CurProp^.Regs[TmpReg] Do Begin IncState(WState); {also store how many instructions are part of the sequence in the first instructions PPaiProp, so it can be easily accessed from within CheckSequence} Inc(NrOfMods, NrOfInstrSinceLastMod[TmpReg]); PPaiProp(Pai(StartMod)^.OptInfo)^.Regs[TmpReg].NrOfMods := NrOfMods; NrOfInstrSinceLastMod[TmpReg] := 0; End; End Else Begin DestroyReg(CurProp, TmpReg, true); If Not(RegInRef(TmpReg, Paicpu(p)^.oper[0].ref^)) Then With CurProp^.Regs[TmpReg] Do Begin Typ := Con_Ref; StartMod := p; NrOfMods := 1; End End; {$ifdef StateDebug} hp := new(pai_asm_comment,init(strpnew(att_reg2str[TmpReg]+': '+tostr(CurProp^.Regs[TmpReg].WState)))); InsertLLItem(AsmL, p, p^.next, hp); {$endif StateDebug} End; Top_Const: Begin Case Paicpu(p)^.oper[1].typ Of Top_Reg: Begin TmpReg := Reg32(Paicpu(p)^.oper[1].reg); With CurProp^.Regs[TmpReg] Do Begin DestroyReg(CurProp, TmpReg, true); typ := Con_Const; StartMod := p; End End; Top_Ref: Begin ReadRef(CurProp, Paicpu(p)^.oper[1].ref); DestroyRefs(P, Paicpu(p)^.oper[1].ref^, R_NO); End; End; End; End; End; A_DIV, A_IDIV, A_MUL: Begin ReadOp(Curprop, Paicpu(p)^.oper[0]); ReadReg(CurProp,R_EAX); If (Paicpu(p)^.OpCode = A_IDIV) or (Paicpu(p)^.OpCode = A_DIV) Then ReadReg(CurProp,R_EDX); DestroyReg(CurProp, R_EAX, true); DestroyReg(CurProp, R_EDX, true) End; A_IMUL: Begin ReadOp(CurProp,Paicpu(p)^.oper[0]); ReadOp(CurProp,Paicpu(p)^.oper[1]); If (Paicpu(p)^.oper[2].typ = top_none) Then If (Paicpu(p)^.oper[1].typ = top_none) Then Begin ReadReg(CurProp,R_EAX); DestroyReg(CurProp, R_EAX, true); DestroyReg(CurProp, R_EDX, true) End Else {$ifdef arithopt} AddInstr2OpContents(Paicpu(p), Paicpu(p)^.oper[1]) {$else arithopt} DestroyOp(p, Paicpu(p)^.oper[1]) {$endif arithopt} Else {$ifdef arithopt} AddInstr2OpContents(Paicpu(p), Paicpu(p)^.oper[2]); {$else arithopt} DestroyOp(p, Paicpu(p)^.oper[2]); {$endif arithopt} End; A_XOR: Begin ReadOp(CurProp, Paicpu(p)^.oper[0]); ReadOp(CurProp, Paicpu(p)^.oper[1]); If (Paicpu(p)^.oper[0].typ = top_reg) And (Paicpu(p)^.oper[1].typ = top_reg) And (Paicpu(p)^.oper[0].reg = Paicpu(p)^.oper[1].reg) Then Begin DestroyReg(CurProp, Paicpu(p)^.oper[0].reg, true); CurProp^.Regs[Reg32(Paicpu(p)^.oper[0].reg)].typ := Con_Const; CurProp^.Regs[Reg32(Paicpu(p)^.oper[0].reg)].StartMod := Pointer(0) End Else DestroyOp(p, Paicpu(p)^.oper[1]); End Else Begin Cnt := 1; While (Cnt <= MaxCh) And (InstrProp.Ch[Cnt] <> Ch_None) Do Begin Case InstrProp.Ch[Cnt] Of Ch_REAX..Ch_REDI: ReadReg(CurProp,TCh2Reg(InstrProp.Ch[Cnt])); Ch_WEAX..Ch_RWEDI: Begin If (InstrProp.Ch[Cnt] >= Ch_RWEAX) Then ReadReg(CurProp, TCh2Reg(InstrProp.Ch[Cnt])); DestroyReg(CurProp, TCh2Reg(InstrProp.Ch[Cnt]), true); End; {$ifdef arithopt} Ch_MEAX..Ch_MEDI: AddInstr2RegContents({$ifdef statedebug} asml, {$endif} Paicpu(p), TCh2Reg(InstrProp.Ch[Cnt])); {$endif arithopt} Ch_CDirFlag: CurProp^.DirFlag := F_NotSet; Ch_SDirFlag: CurProp^.DirFlag := F_Set; Ch_Rop1: ReadOp(CurProp, Paicpu(p)^.oper[0]); Ch_Rop2: ReadOp(CurProp, Paicpu(p)^.oper[1]); Ch_ROp3: ReadOp(CurProp, Paicpu(p)^.oper[2]); Ch_Wop1..Ch_RWop1: Begin If (InstrProp.Ch[Cnt] in [Ch_RWop1]) Then ReadOp(CurProp, Paicpu(p)^.oper[0]); DestroyOp(p, Paicpu(p)^.oper[0]); End; {$ifdef arithopt} Ch_Mop1: AddInstr2OpContents({$ifdef statedebug} asml, {$endif} Paicpu(p), Paicpu(p)^.oper[0]); {$endif arithopt} Ch_Wop2..Ch_RWop2: Begin If (InstrProp.Ch[Cnt] = Ch_RWop2) Then ReadOp(CurProp, Paicpu(p)^.oper[1]); DestroyOp(p, Paicpu(p)^.oper[1]); End; {$ifdef arithopt} Ch_Mop2: AddInstr2OpContents({$ifdef statedebug} asml, {$endif} Paicpu(p), Paicpu(p)^.oper[1]); {$endif arithopt} Ch_WOp3..Ch_RWOp3: Begin If (InstrProp.Ch[Cnt] = Ch_RWOp3) Then ReadOp(CurProp, Paicpu(p)^.oper[2]); DestroyOp(p, Paicpu(p)^.oper[2]); End; {$ifdef arithopt} Ch_Mop3: AddInstr2OpContents({$ifdef statedebug} asml, {$endif} Paicpu(p), Paicpu(p)^.oper[2]); {$endif arithopt} Ch_WMemEDI: Begin ReadReg(CurProp, R_EDI); FillChar(TmpRef, SizeOf(TmpRef), 0); TmpRef.Base := R_EDI; DestroyRefs(p, TmpRef, R_NO) End; Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU: Else Begin DestroyAllRegs(CurProp); End; End; Inc(Cnt); End End; end; End; End Else Begin DestroyAllRegs(CurProp); End; End; Inc(InstrCnt); GetNextInstruction(p, p); End; End; Function InitDFAPass2(BlockStart, BlockEnd: Pai): Boolean; {reserves memory for the PPaiProps in one big memory block when not using TP, returns False if not enough memory is available for the optimizer in all cases} Var p: Pai; Count: Longint; { TmpStr: String; } Begin P := BlockStart; SkipHead(P); NrOfPaiObjs := 0; While (P <> BlockEnd) Do Begin {$IfDef JumpAnal} Case P^.Typ Of ait_label: Begin If (Pai_Label(p)^.l^.is_used) Then LTable^[Pai_Label(P)^.l^.labelnr-LoLab].InstrNr := NrOfPaiObjs End; ait_instruction: begin if paicpu(p)^.is_jmp then begin If (pasmlabel(paicpu(P)^.oper[0].sym)^.labelnr >= LoLab) And (pasmlabel(paicpu(P)^.oper[0].sym)^.labelnr <= HiLab) Then Inc(LTable^[pasmlabel(paicpu(P)^.oper[0].sym)^.labelnr-LoLab].RefsFound); end; end; { ait_instruction: Begin If (Paicpu(p)^.opcode = A_PUSH) And (Paicpu(p)^.oper[0].typ = top_symbol) And (PCSymbol(Paicpu(p)^.oper[0])^.offset = 0) Then Begin TmpStr := StrPas(PCSymbol(Paicpu(p)^.oper[0])^.symbol); If} End; {$EndIf JumpAnal} Inc(NrOfPaiObjs); GetNextInstruction(p, p); End; {$IfDef TP} If (MemAvail < (SizeOf(TPaiProp)*NrOfPaiObjs)) Or (NrOfPaiObjs = 0) {this doesn't have to be one contiguous block} Then InitDFAPass2 := False Else InitDFAPass2 := True; {$Else} {Uncomment the next line to see how much memory the reloading optimizer needs} { Writeln((NrOfPaiObjs*(((SizeOf(TPaiProp)+3)div 4)*4)));} {no need to check mem/maxavail, we've got as much virtual memory as we want} If NrOfPaiObjs <> 0 Then Begin InitDFAPass2 := True; GetMem(PaiPropBlock, NrOfPaiObjs*(((SizeOf(TPaiProp)+3)div 4)*4)); p := BlockStart; SkipHead(p); For Count := 1 To NrOfPaiObjs Do Begin PPaiProp(p^.OptInfo) := @PaiPropBlock^[Count]; GetNextInstruction(p, p); End; End Else InitDFAPass2 := False; {$EndIf TP} End; Function DFAPass2( {$ifdef statedebug} AsmL: PAasmOutPut; {$endif statedebug} BlockStart, BlockEnd: Pai): Boolean; Begin If InitDFAPass2(BlockStart, BlockEnd) Then Begin DoDFAPass2( {$ifdef statedebug} asml, {$endif statedebug} BlockStart, BlockEnd); DFAPass2 := True End Else DFAPass2 := False; End; Procedure ShutDownDFA; Begin If LabDif <> 0 Then FreeMem(LTable, LabDif*SizeOf(TLabelTableItem)); End; End. { $Log$ Revision 1.70 1999-11-14 11:25:38 jonas * fixed stupid typo in previous commit :( Revision 1.69 1999/11/13 19:01:51 jonas * div, idiv and mul destroy edx!! Revision 1.68 1999/11/07 14:57:09 jonas * much more complete/waterproof RegModifiedByInstruction() Revision 1.67 1999/11/06 14:34:20 peter * truncated log to 20 revs Revision 1.66 1999/11/05 16:01:46 jonas + first implementation of choosing least used register for alignment code (not yet working, between ifdef alignreg) Revision 1.65 1999/10/27 16:11:28 peter * insns.dat is used to generate all i386*.inc files Revision 1.64 1999/10/23 14:44:24 jonas * finally got around making GetNextInstruction return false when the current pai object is a AsmBlockStart marker * changed a loop in aopt386 which was incompatible with this change Revision 1.63 1999/10/14 14:57:52 florian - removed the hcodegen use in the new cg, use cgbase instead Revision 1.62 1999/10/07 16:07:35 jonas * small bugfix in ArrayRefsEq Revision 1.61 1999/09/29 13:49:53 jonas * writing to a position in an array now only destroys registers containing a reference pointing somewhere in that array (since my last fix, it behaved like a write to a pointer location) Revision 1.60 1999/09/27 23:44:50 peter * procinfo is now a pointer * support for result setting in sub procedure Revision 1.59 1999/09/21 15:46:58 jonas * fixed bug in destroyrefs (indexes are now handled as pointers) Revision 1.58 1999/09/05 12:37:50 jonas * fixed typo's in -darithopt Revision 1.57 1999/08/25 12:00:00 jonas * changed pai386, paippc and paiapha (same for tai*) to paicpu (taicpu) Revision 1.56 1999/08/18 13:25:54 jonas * minor fixes regarding the reading of operands Revision 1.55 1999/08/12 14:36:03 peter + KNI instructions Revision 1.54 1999/08/05 15:01:52 jonas * fix in -darithopt code (sometimes crashed on 8/16bit regs) Revision 1.53 1999/08/04 00:22:59 florian * renamed i386asm and i386base to cpuasm and cpubase Revision 1.52 1999/08/02 14:35:21 jonas * bugfix in DestroyRefs Revision 1.51 1999/08/02 12:12:53 jonas * also add arithmetic operations to instruction sequences contained in registers (compile with -darithopt, very nice!) Revision 1.50 1999/07/30 18:18:51 jonas * small bugfix in instructionsequal * small bugfix in reginsequence * made regininstruction a bit more logical Revision 1.48 1999/07/01 18:21:21 jonas * removed unused AsmL parameter from FindLoHiLabels Revision 1.47 1999/05/27 19:44:24 peter * removed oldasm * plabel -> pasmlabel * -a switches to source writing automaticly * assembler readers OOPed * asmsymbol automaticly external * jumptables and other label fixes for asm readers Revision 1.46 1999/05/08 20:40:02 jonas * seperate OPTimizer INFO pointer field in tai object * fix to GetLastInstruction that sometimes caused a crash }