{ Copyright (c) 1998-2002 by Carl Eric Codere and Peter Vreman Handles the common x86 assembler reader routines This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } { Contains the common x86 (i386 and x86-64) assembler reader routines. } unit rax86; {$i fpcdefs.inc} interface uses aasmbase,aasmtai,aasmdata,aasmcpu, cpubase,rautils,cclasses; { Parser helpers } function is_prefix(t:tasmop):boolean; function is_override(t:tasmop):boolean; Function CheckPrefix(prefixop,op:tasmop): Boolean; Function CheckOverride(overrideop,op:tasmop): Boolean; Procedure FWaitWarning; type Tx86Operand=class(TOperand) opsize : topsize; vopext : smallint; // bitmask: vector-operand extention AVX512 (e.g. vaddps xmm0 {k1} {z}) vbcst : byte; Procedure SetSize(_size:longint;force:boolean);override; Procedure SetCorrectSize(opcode:tasmop);override; Function CheckOperand(ins : TInstruction): boolean; override; { handles the @Code symbol } Procedure SetupCode; { handles the @Data symbol } Procedure SetupData; constructor create; override; end; { Operands are always in AT&T order. Intel reader attaches them right-to-left, then shifts to start with 1 } { Tx86Instruction } Tx86Instruction=class(TInstruction) opsize : topsize; constructor Create(optype : tcoperand);override; { Operand sizes } procedure AddReferenceSizes; virtual; procedure SetInstructionOpsize; procedure CheckOperandSizes; procedure CheckNonCommutativeOpcodes; { Additional actions required by specific reader } procedure FixupOpcode;virtual; { opcode adding } function ConcatInstruction(p : TAsmList) : tai;override; function getstring(aAddMemRefSize: boolean = true): string; { returns true, if the opcode might have an extension as used by AVX512 } function MightHaveExtension : boolean; end; const AsmPrefixes = 8{$ifdef i8086}+2{$endif i8086}; AsmPrefix : array[0..AsmPrefixes-1] of TasmOP =( A_LOCK,A_REP,A_REPE,A_REPNE,A_REPNZ,A_REPZ,A_XACQUIRE,A_XRELEASE{$ifdef i8086},A_REPC,A_REPNC{$endif i8086} ); AsmOverrides = 6; AsmOverride : array[0..AsmOverrides-1] of TasmOP =( A_SEGCS,A_SEGES,A_SEGDS,A_SEGFS,A_SEGGS,A_SEGSS ); CondAsmOps=3; CondAsmOp:array[0..CondAsmOps-1] of TasmOp=( A_CMOVcc, A_Jcc, A_SETcc ); CondAsmOpStr:array[0..CondAsmOps-1] of string[4]=( 'CMOV','J','SET' ); implementation uses globtype,globals,systems,verbose, procinfo, cgbase,cgutils, itcpugas,cgx86, cutils; {***************************************************************************** Parser Helpers *****************************************************************************} function is_prefix(t:tasmop):boolean; var i : longint; Begin is_prefix:=false; for i:=1 to AsmPrefixes do if t=AsmPrefix[i-1] then begin is_prefix:=true; exit; end; end; function is_override(t:tasmop):boolean; var i : longint; Begin is_override:=false; for i:=1 to AsmOverrides do if t=AsmOverride[i-1] then begin is_override:=true; exit; end; end; Function CheckPrefix(prefixop,op:tasmop): Boolean; { Checks if the prefix is valid with the following opcode } { return false if not, otherwise true } Begin CheckPrefix := TRUE; (* Case prefix of A_REP,A_REPNE,A_REPE: Case opcode Of A_SCASB,A_SCASW,A_SCASD, A_INS,A_OUTS,A_MOVS,A_CMPS,A_LODS,A_STOS:; Else Begin CheckPrefix := FALSE; exit; end; end; { case } A_LOCK: Case opcode Of A_BT,A_BTS,A_BTR,A_BTC,A_XCHG,A_ADD,A_OR,A_ADC,A_SBB,A_AND,A_SUB, A_XOR,A_NOT,A_NEG,A_INC,A_DEC:; Else Begin CheckPrefix := FALSE; Exit; end; end; { case } A_NONE: exit; { no prefix here } else CheckPrefix := FALSE; end; { end case } *) end; Function CheckOverride(overrideop,op:tasmop): Boolean; { Check if the override is valid, and if so then } { update the instr variable accordingly. } Begin CheckOverride := true; { Case instr.getinstruction of A_MOVS,A_XLAT,A_CMPS: Begin CheckOverride := TRUE; Message(assem_e_segment_override_not_supported); end end } end; Procedure FWaitWarning; begin if (target_info.system=system_i386_GO32V2) and (cs_fp_emulation in current_settings.moduleswitches) then Message(asmr_w_fwait_emu_prob); end; {***************************************************************************** TX86Operand *****************************************************************************} Procedure Tx86Operand.SetSize(_size:longint;force:boolean); begin inherited SetSize(_size,force); { OS_64 will be set to S_L and be fixed later in SetCorrectSize } // multimedia register case _size of 16: size := OS_M128; 32: size := OS_M256; 64: size := OS_M512; end; {$ifdef i8086} { allows e.g. using 32-bit registers in i8086 inline asm } if size in [OS_32,OS_S32] then opsize:=S_L else {$endif i8086} opsize:=TCGSize2Opsize[size]; end; Procedure Tx86Operand.SetCorrectSize(opcode:tasmop); begin if gas_needsuffix[opcode]=attsufFPU then begin case size of OS_32 : opsize:=S_FS; OS_64 : opsize:=S_FL; else ; end; end else if gas_needsuffix[opcode]=attsufFPUint then begin case size of OS_16 : opsize:=S_IS; OS_32 : opsize:=S_IL; OS_64 : opsize:=S_IQ; else ; end; end else if gas_needsuffix[opcode] in [AttSufMM, AttSufMMX, AttSufMMS] then begin if (opr.typ=OPR_Reference) then begin case size of OS_32 : size := OS_M32; OS_64 : size := OS_M64; else ; end; end; end else begin if size=OS_64 then opsize:=S_Q; end; end; Function Tx86Operand.CheckOperand(ins : TInstruction): boolean; var ErrorRefStr: string; begin result:=true; if (opr.typ=OPR_Reference) then begin if not hasvar then begin if (getsupreg(opr.ref.base)=RS_EBP) and (opr.ref.offset>0) then begin if current_settings.asmmode in asmmodes_x86_intel then begin case getsubreg(opr.ref.base) of R_SUBW: ErrorRefStr:='[BP+offset]'; R_SUBD: ErrorRefStr:='[EBP+offset]'; R_SUBQ: ErrorRefStr:='[RBP+offset]'; else internalerror(2019061001); end; end else begin case getsubreg(opr.ref.base) of R_SUBW: ErrorRefStr:='+offset(%bp)'; R_SUBD: ErrorRefStr:='+offset(%ebp)'; R_SUBQ: ErrorRefStr:='+offset(%rbp)'; else internalerror(2019061002); end; end; if current_procinfo.procdef.proccalloption=pocall_register then message1(asmr_w_no_direct_ebp_for_parameter,ErrorRefStr) else message1(asmr_w_direct_ebp_for_parameter_regcall,ErrorRefStr); end else if (getsupreg(opr.ref.base)=RS_EBP) and (opr.ref.offset<0) then begin if current_settings.asmmode in asmmodes_x86_intel then begin case getsubreg(opr.ref.base) of R_SUBW: ErrorRefStr:='[BP-offset]'; R_SUBD: ErrorRefStr:='[EBP-offset]'; R_SUBQ: ErrorRefStr:='[RBP-offset]'; else internalerror(2019061003); end; end else begin case getsubreg(opr.ref.base) of R_SUBW: ErrorRefStr:='-offset(%bp)'; R_SUBD: ErrorRefStr:='-offset(%ebp)'; R_SUBQ: ErrorRefStr:='-offset(%rbp)'; else internalerror(2019061004); end; end; message1(asmr_w_direct_ebp_neg_offset,ErrorRefStr); end else if ((ins.opcode<>A_LEA) and (getsupreg(opr.ref.base)=RS_ESP) and (getsubreg(opr.ref.base)<>R_SUBW) and (opr.ref.offset<0)) or ((ins.opcode=A_LEA) and (getsupreg(ins.operands[2].opr.reg)<>RS_ESP) and (getsupreg(opr.ref.base)=RS_ESP) and (getsubreg(opr.ref.base)<>R_SUBW) and (opr.ref.offset<0)) then begin if current_settings.asmmode in asmmodes_x86_intel then begin case getsubreg(opr.ref.base) of R_SUBD: ErrorRefStr:='[ESP-offset]'; R_SUBQ: ErrorRefStr:='[RSP-offset]'; else internalerror(2019061005); end; end else begin case getsubreg(opr.ref.base) of R_SUBD: ErrorRefStr:='-offset(%esp)'; R_SUBQ: ErrorRefStr:='-offset(%rsp)'; else internalerror(2019061006); end; end; message1(asmr_w_direct_esp_neg_offset,ErrorRefStr); end; end; if (cs_create_pic in current_settings.moduleswitches) and assigned(opr.ref.symbol) and not assigned(opr.ref.relsymbol) then begin if not(opr.ref.refaddr in [addr_pic,addr_pic_no_got]) then begin if (opr.ref.symbol.name <> '_GLOBAL_OFFSET_TABLE_') then begin message(asmr_e_need_pic_ref); result:=false; end else opr.ref.refaddr:=addr_pic; end else begin {$ifdef x86_64} { should probably be extended to i386, but there the situation is more complex and ELF-style PIC still need to be tested/debugged } if (opr.ref.symbol.bind in [AB_LOCAL,AB_PRIVATE_EXTERN]) and (opr.ref.refaddr=addr_pic) then message(asmr_w_useless_got_for_local) else if (opr.ref.symbol.bind in [AB_GLOBAL,AB_EXTERNAL,AB_COMMON,AB_WEAK_EXTERNAL]) and (opr.ref.refaddr=addr_pic_no_got) then message(asmr_w_global_access_without_got); {$endif x86_64} end; end; end; end; procedure Tx86Operand.SetupCode; begin {$ifdef i8086} opr.typ:=OPR_SYMBOL; opr.symofs:=0; opr.symbol:=current_asmdata.RefAsmSymbol(current_procinfo.procdef.mangledname,AT_FUNCTION); opr.symseg:=true; opr.sym_farproc_entry:=false; {$else i8086} Message(asmr_w_CODE_and_DATA_not_supported); {$endif i8086} end; procedure Tx86Operand.SetupData; begin {$ifdef i8086} InitRef; if current_settings.x86memorymodel=mm_huge then opr.ref.refaddr:=addr_fardataseg else opr.ref.refaddr:=addr_dgroup; {$else i8086} Message(asmr_w_CODE_and_DATA_not_supported); {$endif i8086} end; constructor Tx86Operand.create; begin inherited; vopext := 0; vbcst := 0; end; {***************************************************************************** T386Instruction *****************************************************************************} constructor Tx86Instruction.Create(optype : tcoperand); begin inherited Create(optype); Opsize:=S_NO; end; { this will add the sizes for references like [esi] which do not have the size set yet, it will take only the size if the other operand is a register } procedure Tx86Instruction.AddReferenceSizes; var operand2,i,j,k : longint; s : tasmsymbol; so : aint; ExistsMemRefNoSize: boolean; ExistsMemRef: boolean; ExistsConstNoSize: boolean; ExistConst: boolean; ExistsLocalSymSize: boolean; ExistsBCST: boolean; memrefsize: integer; memopsize: integer; memoffset: asizeint; vbcst: byte; mmregs: Set of TSubregister; multiplicator: integer; bcst1,bcst2: string; function ScanLowestOpsize(aValue: int64): int64; var i: integer; begin result := 0; if aValue and OT_BITS8 = OT_BITS8 then result := 8 else if aValue and OT_BITS16 = OT_BITS16 then result := 16 else if aValue and OT_BITS32 = OT_BITS32 then result := 32 else if aValue and OT_BITS64 = OT_BITS64 then result := 64 else if aValue and OT_BITS128 = OT_BITS128 then result := 128 else if aValue and OT_BITS256 = OT_BITS256 then result := 256 else if aValue and OT_BITS512 = OT_BITS512 then result := 512; end; begin ExistsMemRefNoSize := false; ExistsMemRef := false; ExistsConstNoSize := false; ExistsLocalSymSize := false; ExistsBCST := false; // EXIST A MEMORY- OR CONSTANT-OPERAND WITHOUT SIZE ? for i := 1 to ops do begin if operands[i].Opr.Typ in [OPR_REFERENCE, OPR_LOCAL] then begin ExistsMemRef := true; ExistsBCST := (MemRefInfo(opcode).ExistsSSEAVX) and (tx86operand(operands[i]).vbcst <> 0); if (tx86operand(operands[i]).opsize = S_NO) then begin ExistsMemRefNoSize := true; case operands[i].opr.Typ of OPR_LOCAL: ExistsLocalSymSize := tx86operand(operands[i]).opr.localsym.getsize > 0; OPR_REFERENCE: ExistsLocalSymSize := true; else ; end; end; end else if operands[i].Opr.Typ in [OPR_CONSTANT] then begin ExistsConstNoSize := tx86operand(operands[i]).opsize = S_NO; end; end; // ONLY SUPPORTED OPCODES WITH SSE- OR AVX-REGISTERS if (ExistsMemRef) and (MemRefInfo(opcode).ExistsSSEAVX) then begin // 1. WE HAVE AN SSE- OR AVX-OPCODE WITH MEMORY OPERAND if (not(ExistsMemRefNoSize)) or (ExistsLocalSymSize) then begin // 2. WE KNOWN THE MEMORYSIZE OF THE MEMORY-OPERAND OR WE CAN // CALC THE MEMORYSIZE // 3. CALC THE SIZE OF THE MEMORYOPERAND BY OPCODE-DEFINITION // 4. COMPARE THE SIZE FROM OPCODE-DEFINITION AND THE REAL MEMORY-OPERAND-SIZE // - validate memory-reference-size for i := 1 to ops do begin if (operands[i].Opr.Typ in [OPR_REFERENCE, OPR_LOCAL]) then begin memrefsize := -1; if ExistsBCST then begin case MemRefInfo(opcode).MemRefSizeBCST of msbBCST32: memrefsize := 32; msbBCST64: memrefsize := 64; else Internalerror(2019081015); end; end else case MemRefInfo(opcode).MemRefSize of msiMem8: memrefsize := 8; msiMem16: memrefsize := 16; msiMem32: memrefsize := 32; msiMem64: memrefsize := 64; msiMem128: memrefsize := 128; msiMem256: memrefsize := 256; msiMem512: memrefsize := 512; msiMemRegx16y32: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 16; R_SUBMMY: memrefsize := 32; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx16y32z64: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 16; R_SUBMMY: memrefsize := 32; R_SUBMMZ: memrefsize := 64; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx32y64: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 32; R_SUBMMY: memrefsize := 64; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx32y64z128: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 32; R_SUBMMY: memrefsize := 64; R_SUBMMZ: memrefsize := 128; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx64y128: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 64; R_SUBMMY: memrefsize := 128; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx64y256: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 64; R_SUBMMY: memrefsize := 256; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx64y128z256: begin begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 64; R_SUBMMY: memrefsize := 128; R_SUBMMZ: memrefsize := 256; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; end; msiMemRegx64y256z512: begin begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: memrefsize := 64; R_SUBMMY: memrefsize := 256; R_SUBMMZ: memrefsize := 512; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; end; msiMemRegSize: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin if (tx86operand(operands[j]).opsize <> S_NO) and (tx86operand(operands[j]).size <> OS_NO) then begin case tx86operand(operands[j]).opsize of S_B : memrefsize := 8; S_W : memrefsize := 16; S_L : memrefsize := 32; S_Q : memrefsize := 64; S_XMM : memrefsize := 128; S_YMM : memrefsize := 256; S_ZMM : memrefsize := 512; else Internalerror(2019081010); end; break; end; end; end; end; msiMemRegConst128, msiMemRegConst256, msiMemRegConst512: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_CONSTANT then begin for k := 1 to ops do begin if operands[k].Opr.Typ = OPR_REGISTER then begin if (tx86operand(operands[k]).opsize <> S_NO) and (tx86operand(operands[k]).size <> OS_NO) then begin case tx86operand(operands[k]).opsize of S_B : memrefsize := 8; S_W : memrefsize := 16; S_L : memrefsize := 32; S_Q : memrefsize := 64; S_XMM : memrefsize := 128; S_YMM : memrefsize := 256; S_ZMM : memrefsize := 512; else Internalerror(777200); end; break; end; end; end; break; end; end; // no exists const-operand if memrefsize = -1 then begin case MemRefInfo(opcode).MemRefSize of msiMemRegConst128: memrefsize := 128; msiMemRegConst256: memrefsize := 256; msiMemRegConst512: memrefsize := 512; else Internalerror(2019081012); end; end; end; msiXMem32, msiYMem32, msiZMem32, msiXMem64, msiYMem64, msiZMem64: ; // ignore; gather/scatter opcodes haven a fixed element-size, not a fixed memory-size // the vector-register have indices with base of the memory-address in the memory-operand msiMultipleMinSize8, msiMultipleMinSize16, msiMultipleMinSize32, msiMultipleMinSize64, msiMultipleMinSize128, msiMultipleMinSize256, msiMultipleMinSize512: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin memrefsize := ScanLowestOpsize(MemRefInfo(opcode).RegXMMSizeMask); break; end; R_SUBMMY: begin memrefsize := ScanLowestOpsize(MemRefInfo(opcode).RegYMMSizeMask); break; end; R_SUBMMZ: begin memrefsize := ScanLowestOpsize(MemRefInfo(opcode).RegZMMSizeMask); break; end; else; end; end; end; if memrefsize = -1 then begin case MemRefInfo(opcode).MemRefSize of msiMultipleMinSize8: memrefsize := 8; msiMultipleMinSize16: memrefsize := 16; msiMultipleMinSize32: memrefsize := 32; msiMultipleMinSize64: memrefsize := 64; msiMultipleMinSize128: memrefsize := 128; msiMultipleMinSize256: memrefsize := 256; msiMultipleMinSize512: memrefsize := 512; else; end; end; end; msiNoSize, msiNoMemRef, msiUnknown, msiUnsupported, msiVMemMultiple, msiVMemRegSize, msiMultiple: ; else Internalerror(2020111001); end; if memrefsize > -1 then begin // CALC REAL-MEMORY-OPERAND-SIZE AND A POSSIBLE OFFSET // OFFSET: // e.g. PAND XMM0, [RAX + 16] =>> OFFSET = 16 BYTES // PAND XMM0, [RAX + a.b + 10] =>> OFFSET = 10 BYTES (a = record-variable) memopsize := 0; case operands[i].opr.typ of OPR_LOCAL: memopsize := operands[i].opr.localvarsize * 8; OPR_REFERENCE: if operands[i].opr.ref.refaddr = addr_pic then memopsize := sizeof(pint) * 8 else memopsize := operands[i].opr.varsize * 8; else ; end; //if memopsize = 0 then memopsize := topsize2memsize[tx86operand(operands[i]).opsize]; if memopsize = 0 then begin {$ifdef i386} { 64-bit operands are allowed for SSE and AVX instructions, so go by the byte size instead for these families of opcodes } if (MemRefInfo(opcode).ExistsSSEAVX) then begin memopsize := tx86operand(operands[i]).typesize * 8; if tx86operand(operands[i]).typesize = 8 then { Will be S_L otherwise and won't be corrected in time } tx86operand(operands[i]).opsize := S_Q; end else {$endif i386} memopsize := topsize2memsize[tx86operand(operands[i]).opsize]; end; if (memopsize > 0) and (memrefsize > 0) then begin memoffset := 0; case operands[i].opr.typ of OPR_LOCAL: memoffset := operands[i].opr.localconstoffset; OPR_REFERENCE: memoffset := operands[i].opr.constoffset; else ; end; if ((operands[i].opr.ref.base=NR_ESP) or (operands[i].opr.ref.index=NR_ESP)) and (memoffset < 0) then begin Message2(asmr_w_check_mem_operand_negative_offset, //std_op2str[opcode], getstring(false), ToStr(memoffset)); end else if ((tx86operand(operands[i]).hastype) and (memopsize < memrefsize)) or (memopsize < (memrefsize + memoffset * 8)) then begin if memopsize < memrefsize then begin if memoffset = 0 then begin Message3(asmr_w_check_mem_operand_size3, getstring(false), ToStr(memopsize), ToStr(memrefsize) ); end else begin Message4(asmr_w_check_mem_operand_size_offset, getstring(false), ToStr(memopsize), ToStr(memrefsize), ToStr(memoffset) ); end; end; end; end; end; end; end; end; end; if (ExistsMemRefNoSize or ExistsConstNoSize) and (MemRefInfo(opcode).ExistsSSEAVX) then begin for i := 1 to ops do begin if (tx86operand(operands[i]).opsize = S_NO) then begin case operands[i].Opr.Typ of OPR_REFERENCE, OPR_LOCAL: begin if ExistsBCST then begin case MemRefInfo(opcode).MemRefSizeBCST of msbBCST32: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_32; end; msbBCST64: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; end; else Internalerror(2019081017); end; end else case MemRefInfo(opcode).MemRefSize of msiMem8: begin tx86operand(operands[i]).opsize := S_B; tx86operand(operands[i]).size := OS_8; end; msiMultipleMinSize8: begin tx86operand(operands[i]).opsize := S_B; tx86operand(operands[i]).size := OS_8; Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"8 bit memory operand"'); end; msiMem16: begin tx86operand(operands[i]).opsize := S_W; tx86operand(operands[i]).size := OS_16; end; msiMultipleMinSize16: begin tx86operand(operands[i]).opsize := S_W; tx86operand(operands[i]).size := OS_16; Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"16 bit memory operand"'); end; msiMem32: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_32; end; msiMultipleMinSize32: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_32; Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"32 bit memory operand"'); end; msiMem64: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; end; msiMultipleMinSize64: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"64 bit memory operand"'); end; msiMem128: begin tx86operand(operands[i]).opsize := S_XMM; tx86operand(operands[i]).size := OS_M128; end; msiMultipleMinSize128: begin tx86operand(operands[i]).opsize := S_XMM; tx86operand(operands[i]).size := OS_M128; Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"128 bit memory operand"'); end; msiMem256: begin tx86operand(operands[i]).opsize := S_YMM; tx86operand(operands[i]).size := OS_M256; opsize := S_YMM; end; msiMultipleMinSize256: begin tx86operand(operands[i]).opsize := S_YMM; tx86operand(operands[i]).size := OS_M256; opsize := S_YMM; Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"256 bit memory operand"'); end; msiMem512: begin tx86operand(operands[i]).opsize := S_ZMM; tx86operand(operands[i]).size := OS_M512; opsize := S_ZMM; end; msiMultipleMinSize512: begin tx86operand(operands[i]).opsize := S_ZMM; tx86operand(operands[i]).size := OS_M512; opsize := S_ZMM; Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"512 bit memory operand"'); end; msiMemRegSize: begin // mem-ref-size = register size for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin if (tx86operand(operands[j]).opsize <> S_NO) and (tx86operand(operands[j]).size <> OS_NO) then begin tx86operand(operands[i]).opsize := tx86operand(operands[j]).opsize; tx86operand(operands[i]).size := tx86operand(operands[j]).size; break; end else Message(asmr_e_unable_to_determine_reference_size); end; end; end; msiMemRegx16y32: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_W; tx86operand(operands[i]).size := OS_M16; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_M32; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx16y32z64: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_W; tx86operand(operands[i]).size := OS_M16; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_M32; break; end; R_SUBMMZ: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx32y64: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_M32; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx32y64z128: for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_M32; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; break; end; R_SUBMMZ: begin tx86operand(operands[i]).opsize := S_XMM; tx86operand(operands[i]).size := OS_M128; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; msiMemRegx64y128: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_XMM; tx86operand(operands[i]).size := OS_M128; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx64y128z256: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_XMM; tx86operand(operands[i]).size := OS_M128; break; end; R_SUBMMZ: begin tx86operand(operands[i]).opsize := S_YMM; tx86operand(operands[i]).size := OS_M256; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx64y256: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_YMM; tx86operand(operands[i]).size := OS_M256; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegx64y256z512: begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin case getsubreg(operands[j].opr.reg) of R_SUBMMX: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_M64; break; end; R_SUBMMY: begin tx86operand(operands[i]).opsize := S_YMM; tx86operand(operands[i]).size := OS_M256; break; end; R_SUBMMZ: begin tx86operand(operands[i]).opsize := S_ZMM; tx86operand(operands[i]).size := OS_M512; break; end; else Message(asmr_e_unable_to_determine_reference_size); end; end; end; end; msiMemRegConst128, msiMemRegConst256, msiMemRegConst512: begin ExistConst := false; for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_CONSTANT then begin ExistConst := true; break; end; end; if ExistConst then begin for j := 1 to ops do begin if operands[j].Opr.Typ = OPR_REGISTER then begin if (tx86operand(operands[j]).opsize <> S_NO) and (tx86operand(operands[j]).size <> OS_NO) then begin tx86operand(operands[i]).opsize := tx86operand(operands[j]).opsize; tx86operand(operands[i]).size := tx86operand(operands[j]).size; break; end else Message(asmr_e_unable_to_determine_reference_size); end; end; end else begin case MemRefInfo(opcode).MemRefSize of msiMemRegConst128: begin tx86operand(operands[i]).opsize := S_XMM; tx86operand(operands[i]).size := OS_M128; break; end; msiMemRegConst256: begin tx86operand(operands[i]).opsize := S_YMM; tx86operand(operands[i]).size := OS_M256; break; end; msiMemRegConst512: begin tx86operand(operands[i]).opsize := S_ZMM; tx86operand(operands[i]).size := OS_M512; break; end; else Internalerror(2019081018); end; end; end; msiXMem32, msiYMem32, msiZMem32, msiXMem64, msiYMem64, msiZMem64: ; // ignore; gather/scatter opcodes haven a fixed element-size, not a fixed memory-size // the vector-register have indices with base of the memory-address in the memory-operand msiNoSize: ; // all memory-sizes are ok msiNoMemRef:; // ignore; msiVMemMultiple, msiVMemRegSize: ; // ignore msiUnknown, msiUnsupported, msiMultiple: Message(asmr_e_unable_to_determine_reference_size); // TODO individual message else Internalerror(2019081008); end; end; OPR_CONSTANT: case MemRefInfo(opcode).ConstSize of csiMem8: begin tx86operand(operands[i]).opsize := S_B; tx86operand(operands[i]).size := OS_8; end; csiMem16: begin tx86operand(operands[i]).opsize := S_W; tx86operand(operands[i]).size := OS_16; end; csiMem32: begin tx86operand(operands[i]).opsize := S_L; tx86operand(operands[i]).size := OS_32; end; {$ifdef x86_64} csiMem64: begin tx86operand(operands[i]).opsize := S_Q; tx86operand(operands[i]).size := OS_64; end; {$else} csiMem64: begin internalerror(2019050910); end; {$endif} csiUnknown, csiMultiple, csiNoSize: ; end; else ; end; end; end; end; for i:=1 to ops do begin operands[i].SetCorrectSize(opcode); if tx86operand(operands[i]).opsize=S_NO then begin {$ifdef x86_64} if (opcode=A_MOVQ) and (ops=2) and (operands[1].opr.typ=OPR_CONSTANT) then opsize:=S_Q else {$endif x86_64} case operands[i].Opr.Typ of OPR_LOCAL, OPR_REFERENCE : begin { for 3-operand opcodes, operand #1 (in ATT order) is always an immediate, don't consider it. } if i=ops then operand2:=i-1 else operand2:=i+1; if operand2>0 then begin { Only allow register as operand to take the size from } if operands[operand2].opr.typ=OPR_REGISTER then begin if ((opcode<>A_MOVD) and (opcode<>A_CVTSI2SS)) then begin //tx86operand(operands[i]).opsize:=tx86operand(operands[operand2]).opsize; // torsten - 31.01.2012 // old: xmm/ymm-register operands have a opsize = "S_NO" // new: xmm/ymm-register operands have a opsize = "S_XMM/S_YMM" // any SSE- and AVX-opcodes have mixed operand sizes (e.g. cvtsd2ss xmmreg, xmmreg/m32) // in this case is we need the old handling ("S_NO") // =>> ignore if (tx86operand(operands[operand2]).opsize <> S_XMM) and (tx86operand(operands[operand2]).opsize <> S_YMM) and (tx86operand(operands[operand2]).opsize <> S_ZMM) then tx86operand(operands[i]).opsize:=tx86operand(operands[operand2]).opsize else tx86operand(operands[operand2]).opsize := S_NO; end; end else begin { if no register then take the opsize (which is available with ATT), if not availble then give an error } if opsize<>S_NO then tx86operand(operands[i]).opsize:=opsize else begin if (m_delphi in current_settings.modeswitches) then Message(asmr_w_unable_to_determine_reference_size_using_dword) else Message(asmr_e_unable_to_determine_reference_size); { recovery } tx86operand(operands[i]).opsize:=S_L; end; end; end else begin if opsize<>S_NO then tx86operand(operands[i]).opsize:=opsize else if not(NoMemorySizeRequired(opcode) or (opcode=A_JMP) or (opcode=A_JCC) or (opcode=A_CALL) or (opcode=A_LCALL) or (opcode=A_LJMP)) then begin if (m_delphi in current_settings.modeswitches) then Message(asmr_w_unable_to_determine_reference_size_using_dword) else Message(asmr_e_unable_to_determine_reference_size); { recovery } tx86operand(operands[i]).opsize:=S_L; end; end; end; OPR_SYMBOL : begin { Fix lea which need a reference } if opcode=A_LEA then begin s:=operands[i].opr.symbol; so:=operands[i].opr.symofs; operands[i].opr.typ:=OPR_REFERENCE; Fillchar(operands[i].opr.ref,sizeof(treference),0); operands[i].opr.ref.symbol:=s; operands[i].opr.ref.offset:=so; end; {$if defined(x86_64)} tx86operand(operands[i]).opsize:=S_Q; {$elseif defined(i386)} tx86operand(operands[i]).opsize:=S_L; {$elseif defined(i8086)} tx86operand(operands[i]).opsize:=S_W; {$endif} end; else ; end; end; end; if MemRefInfo(opcode).ExistsSSEAVX then begin // validate broadcast-memory-operands vbcst := 0; mmregs := []; for i := 1 to ops do if operands[i].Opr.Typ in [OPR_REFERENCE, OPR_LOCAL] then vbcst := tx86operand(operands[i]).vbcst else if operands[i].Opr.Typ = OPR_REGISTER then begin if getsubreg(operands[i].opr.reg) in [R_SUBMMX, R_SUBMMY, R_SUBMMZ] then begin include(mmregs, getsubreg(operands[i].opr.reg)); end; end; if vbcst <> 0 then begin // found broadcast-memory-operand (e.g. "{1to8}") // check is correct multiplicator := 0; if mmregs = [R_SUBMMX] then multiplicator := 1 else if mmregs = [R_SUBMMY] then multiplicator := 2 else if mmregs = [R_SUBMMZ] then multiplicator := 4 else begin //TG TODO end; if MemRefInfo(opcode).BCSTTypes <> [] then begin str(MemRefInfo(opcode).BCSTXMMMultiplicator * multiplicator, bcst1); str(vbcst, bcst2); case vbcst of 2: if not(bt1to2 in MemRefInfo(opcode).BCSTTypes) then Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2); 4: if not(bt1to4 in MemRefInfo(opcode).BCSTTypes) then Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2); 8: if not(bt1to8 in MemRefInfo(opcode).BCSTTypes) then Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2); 16: if not(bt1to16 in MemRefInfo(opcode).BCSTTypes) then Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2); end; end else if MemRefInfo(opcode).BCSTXMMMultiplicator * multiplicator <> vbcst then begin str(MemRefInfo(opcode).BCSTXMMMultiplicator * multiplicator, bcst1); str(vbcst, bcst2); Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2); end; end; end; end; procedure Tx86Instruction.SetInstructionOpsize; function CheckSSEAVX: Boolean; var i: integer; iSizeMask: int64; bBroadcastMemRef: boolean; bExistMemRef: boolean; ValidOpSizes: Set of topsize; begin Result := False; with MemRefInfo(opcode) do begin if (ExistsSSEAVX) then begin bBroadcastMemRef := false; for i := 1 to ops do bBroadcastMemRef := bBroadcastMemRef or ((tx86operand(operands[i]).vopext and OTVE_VECTOR_BCST) = OTVE_VECTOR_BCST); if bBroadcastMemRef then begin opsize := S_NO; result := true; end else begin if (gas_needsuffix[opcode] = AttSufMMS) and (ops > 0) then begin // special handling = use source operand for calculate instructions-opsize // e.g. vcvtsi2sd, vcvtsi2ss, vcvtusi2sd, vcvtusi2ss, // vfpclass.. if (ops > 2) and (tx86operand(operands[1]).opr.typ = OPR_CONSTANT) then opsize:=tx86operand(operands[2]).opsize else opsize:=tx86operand(operands[1]).opsize; if (MemRefSize in [msiMultipleMinSize128, msiMultipleMinSize256, msiMultipleMinSize512]) and (not(opsize in [S_XMM, S_YMM, S_ZMM])) then begin // special handling for external gas assembler, special opcodes (e.g. vfpclassps/pd) case MemRefSize of msiMultipleMinSize128: opsize := S_XMM; msiMultipleMinSize256: opsize := S_YMM; msiMultipleMinSize512: opsize := S_ZMM; else; end; end; result := true; end else if MemRefSize in MemRefMultiples - [msiVMemMultiple] then begin case ops of 2: begin opsize:=tx86operand(operands[1]).opsize; result := true; end; 3,4: begin if (tx86operand(operands[1]).opr.typ <> OPR_CONSTANT) then opsize:=tx86operand(operands[1]).opsize else opsize:=tx86operand(operands[2]).opsize; result := true; end; end; if (result) and (ops > 0) and (MemRefSize in [msiMultipleMinSize128, msiMultipleMinSize256, msiMultipleMinSize512]) and (gas_needsuffix[opcode] in [AttSufMMS, AttSufMMX]) then begin // external gas assembler need suffix (different opsizes possible) // - in fpc not exists datatypes for vector-variables // =>> all memsize = ok, but any special opcodes (marked with attSufMMS,attSUFMMX) needed in any combination of operandtypes the exact opsize // =>> check instructions-opsize and use the correct vector-mem-opsize for i := 1 to ops do if tx86operand(operands[i]).opr.typ in [OPR_REGISTER] then begin ValidOpSizes := []; case tx86operand(operands[i]).opsize of S_XMM: iSizeMask := RegXMMSizeMask; S_YMM: iSizeMask := RegYMMSizeMask; S_ZMM: iSizeMask := RegZMMSizeMask; else iSizeMask := 0; end; if iSizemask and OT_BITS128 = OT_BITS128 then include(ValidOpSizes, S_XMM); if iSizemask and OT_BITS256 = OT_BITS256 then include(ValidOpSizes, S_YMM); if iSizemask and OT_BITS512 = OT_BITS512 then include(ValidOpSizes, S_ZMM); if (ValidOpsizes <> []) then begin if not(opsize in ValidOpSizes) then begin // instructions-opsize is invalid =>> use smallest valid opsize if iSizemask and OT_BITS128 = OT_BITS128 then opsize := S_XMM else if iSizemask and OT_BITS256 = OT_BITS256 then opsize := S_YMM else if iSizemask and OT_BITS512 = OT_BITS512 then opsize := S_ZMM; end; end else ; // empty ValidOpsize =>> nothing todo??? break; end; end; end else if (gas_needsuffix[opcode] = AttSufNone) and (not(MemRefSize in [msiMemRegSize])) then begin // external gnu-assembler: no suffix =>> use instructions.opsize to define memory-reference size // Tx86Instruction: local variable: operand.opsize for i := 1 to ops do if tx86operand(operands[i]).opr.typ in [OPR_REFERENCE,OPR_LOCAL] then begin opsize := tx86operand(operands[i]).opsize; result := true; break; end; end; end; end; end; end; begin if opsize<>S_NO then exit; case ops of 0 : ; 1 : begin { "push es" must be stored as a long PM } if ((opcode=A_PUSH) or (opcode=A_POP)) and (operands[1].opr.typ=OPR_REGISTER) and is_segment_reg(operands[1].opr.reg) then {$ifdef i8086} opsize:=S_W {$else i8086} opsize:=S_L {$endif i8086} else opsize:=tx86operand(operands[1]).opsize; end; 2 : begin case opcode of A_MOVZX,A_MOVSX : begin if tx86operand(operands[1]).opsize=S_NO then begin tx86operand(operands[1]).opsize:=S_B; if (m_delphi in current_settings.modeswitches) then Message(asmr_w_unable_to_determine_reference_size_using_byte) else Message(asmr_e_unable_to_determine_reference_size); end; case tx86operand(operands[1]).opsize of S_W : case tx86operand(operands[2]).opsize of S_L : opsize:=S_WL; {$ifdef x86_64} S_Q : opsize:=S_WQ; {$endif} else ; end; S_B : begin case tx86operand(operands[2]).opsize of S_W : opsize:=S_BW; S_L : opsize:=S_BL; {$ifdef x86_64} S_Q : opsize:=S_BQ; {$endif} else ; end; end; else ; end; end; A_MOVD : { movd is a move from a mmx register to a 32 bit register or memory, so no opsize is correct here PM } exit; A_MOVQ : opsize:=S_IQ; A_OUT : opsize:=tx86operand(operands[1]).opsize; else if not CheckSSEAVX then opsize:=tx86operand(operands[2]).opsize; end; end; 3,4 : if not CheckSSEAVX then opsize:=tx86operand(operands[ops]).opsize; end; end; procedure Tx86Instruction.CheckOperandSizes; var sizeerr : boolean; i : longint; begin { Check only the most common opcodes here, the others are done in the assembler pass } case opcode of A_PUSH,A_POP,A_DEC,A_INC,A_NOT,A_NEG, A_CMP,A_MOV, A_ADD,A_SUB,A_ADC,A_SBB, A_AND,A_OR,A_TEST,A_XOR: ; else exit; end; { Handle the BW,BL,WL separatly } sizeerr:=false; { special push/pop selector case } if ((opcode=A_PUSH) or (opcode=A_POP)) and (operands[1].opr.typ=OPR_REGISTER) and is_segment_reg(operands[1].opr.reg) then exit; if opsize in [S_BW,S_BL,S_WL] then begin if ops<>2 then sizeerr:=true else begin case opsize of S_BW : sizeerr:=(tx86operand(operands[1]).opsize<>S_B) or (tx86operand(operands[2]).opsize<>S_W); S_BL : sizeerr:=(tx86operand(operands[1]).opsize<>S_B) or (tx86operand(operands[2]).opsize<>S_L); S_WL : sizeerr:=(tx86operand(operands[1]).opsize<>S_W) or (tx86operand(operands[2]).opsize<>S_L); {$ifdef x86_64} S_BQ: sizeerr:=(tx86operand(operands[1]).opsize<>S_B) or (tx86operand(operands[2]).opsize<>S_Q); S_WQ: sizeerr:=(tx86operand(operands[1]).opsize<>S_W) or (tx86operand(operands[2]).opsize<>S_Q); S_LQ: sizeerr:=(tx86operand(operands[1]).opsize<>S_L) or (tx86operand(operands[2]).opsize<>S_Q); {$endif} else ; end; end; end else begin for i:=1 to ops do begin if (operands[i].opr.typ<>OPR_CONSTANT) and (tx86operand(operands[i]).opsize in [S_B,S_W,S_L]) and (tx86operand(operands[i]).opsize<>opsize) then sizeerr:=true; end; end; if sizeerr then begin { if range checks are on then generate an error } if (cs_compilesystem in current_settings.moduleswitches) or not (cs_check_range in current_settings.localswitches) then Message(asmr_w_size_suffix_and_dest_dont_match) else Message(asmr_e_size_suffix_and_dest_dont_match); end; end; { This check must be done with the operand in ATT order i.e.after swapping in the intel reader but before swapping in the NASM and TASM writers PM } procedure Tx86Instruction.CheckNonCommutativeOpcodes; begin if ( (ops=2) and (operands[1].opr.typ=OPR_REGISTER) and (operands[2].opr.typ=OPR_REGISTER) and { if the first is ST and the second is also a register it is necessarily ST1 .. ST7 } ((operands[1].opr.reg=NR_ST) or (operands[1].opr.reg=NR_ST0)) ) or (ops=0) then if opcode=A_FSUBR then opcode:=A_FSUB else if opcode=A_FSUB then opcode:=A_FSUBR else if opcode=A_FDIVR then opcode:=A_FDIV else if opcode=A_FDIV then opcode:=A_FDIVR else if opcode=A_FSUBRP then opcode:=A_FSUBP else if opcode=A_FSUBP then opcode:=A_FSUBRP else if opcode=A_FDIVRP then opcode:=A_FDIVP else if opcode=A_FDIVP then opcode:=A_FDIVRP; if ( (ops=1) and (operands[1].opr.typ=OPR_REGISTER) and (getregtype(operands[1].opr.reg)=R_FPUREGISTER) and (operands[1].opr.reg<>NR_ST) and (operands[1].opr.reg<>NR_ST0) ) then if opcode=A_FSUBRP then opcode:=A_FSUBP else if opcode=A_FSUBP then opcode:=A_FSUBRP else if opcode=A_FDIVRP then opcode:=A_FDIVP else if opcode=A_FDIVP then opcode:=A_FDIVRP; end; procedure Tx86Instruction.FixupOpcode; begin { does nothing by default } end; {***************************************************************************** opcode Adding *****************************************************************************} function Tx86Instruction.ConcatInstruction(p : TAsmList) : tai; var siz : topsize; i : longint; asize : int64; ai : taicpu; begin ConcatInstruction:=nil; ai:=nil; for i:=1 to Ops do if not operands[i].CheckOperand(self) then exit; { Get Opsize } if (opsize<>S_NO) or (Ops=0) then siz:=opsize else begin if (Ops=2) and (operands[1].opr.typ=OPR_REGISTER) then siz:=tx86operand(operands[1]).opsize else siz:=tx86operand(operands[Ops]).opsize; { MOVD should be of size S_LQ or S_QL, but these do not exist PM } if (ops=2) and (tx86operand(operands[1]).opsize<>S_NO) and (tx86operand(operands[2]).opsize<>S_NO) and (tx86operand(operands[1]).opsize<>tx86operand(operands[2]).opsize) then siz:=S_NO; end; if ((opcode=A_MOVD)or (opcode=A_CVTSI2SS)) and ((tx86operand(operands[1]).opsize=S_NO) or (tx86operand(operands[2]).opsize=S_NO)) then siz:=S_NO; { NASM does not support FADD without args as alias of FADDP and GNU AS interprets FADD without operand differently for version 2.9.1 and 2.9.5 !! } if (ops=0) and ((opcode=A_FADD) or (opcode=A_FMUL) or (opcode=A_FSUB) or (opcode=A_FSUBR) or (opcode=A_FDIV) or (opcode=A_FDIVR)) then begin if opcode=A_FADD then opcode:=A_FADDP else if opcode=A_FMUL then opcode:=A_FMULP else if opcode=A_FSUB then opcode:=A_FSUBP else if opcode=A_FSUBR then opcode:=A_FSUBRP else if opcode=A_FDIV then opcode:=A_FDIVP else if opcode=A_FDIVR then opcode:=A_FDIVRP; message1(asmr_w_fadd_to_faddp,std_op2str[opcode]); end; {It is valid to specify some instructions without operand size.} if siz=S_NO then begin if (ops=1) and (opcode=A_INT) then siz:=S_B; if (ops=1) and (opcode=A_XABORT) then siz:=S_B; {$ifdef i8086} if (ops=1) and (opcode=A_BRKEM) then siz:=S_B; {$endif i8086} if (ops=1) and (opcode=A_RET) or (opcode=A_RETN) or (opcode=A_RETF) or (opcode=A_RETW) or (opcode=A_RETNW) or (opcode=A_RETFW) or {$ifndef x86_64} (opcode=A_RETD) or (opcode=A_RETND) or {$endif x86_64} (opcode=A_RETFD) {$ifdef x86_64} or (opcode=A_RETQ) or (opcode=A_RETNQ) or (opcode=A_RETFQ) {$endif x86_64} then siz:=S_W; if (ops=1) and (opcode=A_PUSH) then begin {$ifdef i8086} if (tx86operand(operands[1]).opr.val>=-128) and (tx86operand(operands[1]).opr.val<=127) then begin siz:=S_B; message(asmr_w_unable_to_determine_constant_size_using_byte); end else begin siz:=S_W; message(asmr_w_unable_to_determine_constant_size_using_word); end; {$else i8086} { We are a 32 compiler, assume 32-bit by default. This is Delphi compatible but bad coding practise.} siz:=S_L; message(asmr_w_unable_to_determine_reference_size_using_dword); {$endif i8086} end; if (opcode=A_JMP) or (opcode=A_JCC) or (opcode=A_CALL) then if ops=1 then siz:=S_NEAR else siz:=S_FAR; end; { GNU AS interprets FDIV without operand differently for version 2.9.1 and 2.10 we add explicit args to it !! } if (ops=0) and ((opcode=A_FSUBP) or (opcode=A_FSUBRP) or (opcode=A_FDIVP) or (opcode=A_FDIVRP) or (opcode=A_FSUB) or (opcode=A_FSUBR) or (opcode=A_FADD) or (opcode=A_FADDP) or (opcode=A_FDIV) or (opcode=A_FDIVR)) then begin message1(asmr_w_adding_explicit_args_fXX,std_op2str[opcode]); ops:=2; operands[1].opr.typ:=OPR_REGISTER; operands[2].opr.typ:=OPR_REGISTER; operands[1].opr.reg:=NR_ST0; operands[2].opr.reg:=NR_ST1; end; if (ops=1) and ( (operands[1].opr.typ=OPR_REGISTER) and (getregtype(operands[1].opr.reg)=R_FPUREGISTER) and (operands[1].opr.reg<>NR_ST) and (operands[1].opr.reg<>NR_ST0) ) and ( (opcode=A_FSUBP) or (opcode=A_FSUBRP) or (opcode=A_FDIVP) or (opcode=A_FDIVRP) or (opcode=A_FADDP) or (opcode=A_FMULP) ) then begin message1(asmr_w_adding_explicit_first_arg_fXX,std_op2str[opcode]); ops:=2; operands[2].opr.typ:=OPR_REGISTER; operands[2].opr.reg:=operands[1].opr.reg; operands[1].opr.reg:=NR_ST0; end; if (ops=1) and ( (operands[1].opr.typ=OPR_REGISTER) and (getregtype(operands[1].opr.reg)=R_FPUREGISTER) and (operands[1].opr.reg<>NR_ST) and (operands[1].opr.reg<>NR_ST0) ) and ( (opcode=A_FSUB) or (opcode=A_FSUBR) or (opcode=A_FDIV) or (opcode=A_FDIVR) or (opcode=A_FADD) or (opcode=A_FMUL) ) then begin message1(asmr_w_adding_explicit_second_arg_fXX,std_op2str[opcode]); ops:=2; operands[2].opr.typ:=OPR_REGISTER; operands[2].opr.reg:=NR_ST0; end; { Check for 'POP CS' } if (opcode=A_POP) and (ops=1) and (operands[1].opr.typ=OPR_REGISTER) and (operands[1].opr.reg=NR_CS) then {$ifdef i8086} { On i8086 we print only a warning, because 'POP CS' works on 8086 and 8088 CPUs, but isn't supported on any later CPU } Message(asmr_w_pop_cs_not_portable); {$else i8086} { On the i386 and x86_64 targets, we print out an error, because no CPU, supported by these targets support 'POP CS' } Message(asmr_e_pop_cs_not_valid); {$endif i8086} { I tried to convince Linus Torvalds to add code to support ENTER instruction (when raising a stack page fault) but he replied that ENTER is a bad instruction and Linux does not need to support it So I think its at least a good idea to add a warning if someone uses this in assembler code FPC itself does not use it at all PM } if (opcode=A_ENTER) and (target_info.system in [system_i386_linux,system_i386_FreeBSD,system_i386_android]) then Message(asmr_w_enter_not_supported_by_linux); ai:=taicpu.op_none(opcode,siz); ai.fileinfo:=filepos; ai.SetOperandOrder(op_att); ai.Ops:=Ops; ai.Allocate_oper(Ops); for i:=1 to Ops do begin ai.oper[i-1]^.vopext := (operands[i] as tx86operand).vopext; case operands[i].opr.typ of OPR_CONSTANT : ai.loadconst(i-1,operands[i].opr.val); OPR_REGISTER: ai.loadreg(i-1,operands[i].opr.reg); OPR_SYMBOL: {$ifdef i8086} if operands[i].opr.symseg then taicpu(ai).loadsegsymbol(i-1,operands[i].opr.symbol) else {$endif i8086} ai.loadsymbol(i-1,operands[i].opr.symbol,operands[i].opr.symofs); OPR_LOCAL : with operands[i].opr do begin ai.loadlocal(i-1,localsym,localsymofs,localindexreg, localscale,localgetoffset,localforceref); ai.oper[i-1]^.localoper^.localsegment:=localsegment; // check for embedded broadcast if MemRefInfo(opcode).ExistsSSEAVX then begin asize := 0; if ((operands[i] as tx86operand).vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST) and (MemRefInfo(opcode).MemRefSizeBCST in [msbBCST32,msbBCST64]) then begin case operands[i].size of OS_32,OS_M32: asize:=OT_BITS32; OS_64,OS_M64: asize:=OT_BITS64; else; end; end; if asize<>0 then //ai.oper[i-1]^.ot:=(ai.oper[i-1]^.ot and not OT_SIZE_MASK) or asize; ai.oper[i-1]^.ot:=(ai.oper[i-1]^.ot and OT_NON_SIZE) or asize; end; end; OPR_REFERENCE: begin if current_settings.optimizerswitches <> [] then if (not(MemRefInfo(opcode).MemRefSize in MemRefSizeInfoVMems)) and (opcode<>A_XLAT) and not is_x86_string_op(opcode) then optimize_ref(operands[i].opr.ref,true); ai.loadref(i-1,operands[i].opr.ref); if operands[i].size<>OS_NO then begin asize:=0; case operands[i].size of OS_8,OS_S8 : asize:=OT_BITS8; OS_16,OS_S16, OS_M16: asize:=OT_BITS16; OS_32,OS_S32 : {$ifdef i8086} if siz=S_FAR then asize:=OT_FAR else asize:=OT_BITS32; {$else i8086} asize:=OT_BITS32; {$endif i8086} OS_F32,OS_M32 : asize:=OT_BITS32; OS_64,OS_S64: begin { Only FPU and SSE/AVX operations know about 64bit values, for all integer operations it is seen as 32bit this applies only to i386, see tw16622} if (gas_needsuffix[opcode] in [attsufFPU,attsufFPUint]) or (MemRefInfo(opcode).ExistsSSEAVX) then asize:=OT_BITS64 {$ifdef i386} else asize:=OT_BITS32 {$endif i386} ; end; OS_F64,OS_C64, OS_M64 : asize:=OT_BITS64; OS_F80 : asize:=OT_BITS80; OS_128,OS_M128: asize := OT_BITS128; OS_M256: asize := OT_BITS256; OS_M512: asize := OT_BITS512; else ; end; if asize<>0 then ai.oper[i-1]^.ot:=(ai.oper[i-1]^.ot and OT_NON_SIZE) or asize; end; end; else ; end; end; { Condition ? } if condition<>C_None then ai.SetCondition(condition); { Set is_jmp, it enables asmwriter to emit short jumps if appropriate } if (opcode=A_JMP) or (opcode=A_JCC) then ai.is_jmp := True; { Concat the opcode or give an error } if assigned(ai) then p.concat(ai) else Message(asmr_e_invalid_opcode_and_operand); result:=ai; end; function Tx86Instruction.getstring(aAddMemRefSize: boolean): string; var i : longint; s, sval : string; regnr: string; addsize : boolean; begin s:='['+std_op2str[opcode]; for i:=1 to ops do begin with operands[i] as Tx86Operand do begin if i=1 then s:=s+' ' else s:=s+','; { type } addsize:=false; case operands[i].opr.typ of OPR_CONSTANT : begin str(operands[i].opr.val, sval); s:=s+ sval; end; OPR_REGISTER : begin regnr := ''; str(getsupreg(opr.reg),regnr); if getsubreg(opr.reg)= R_SUBMMX then s:=s+'xmmreg' + regnr else if getsubreg(opr.reg)= R_SUBMMY then s:=s+'ymmreg' + regnr else if getsubreg(opr.reg)= R_SUBMMZ then s:=s+'zmmreg' + regnr else if getregtype(opr.reg)= R_MMXREGISTER then s:=s+'mmxreg' else if getregtype(opr.reg)= R_FPUREGISTER then s:=s+'fpureg' else if getregtype(opr.reg)=R_INTREGISTER then begin s:=s+'reg'; addsize:=true; end else if getregtype(opr.reg)=R_ADDRESSREGISTER then begin s:=s+'k' + regnr; end; end; OPR_LOCAL, OPR_REFERENCE: begin s:=s + 'mem'; if aAddMemRefSize then addsize:=true; end; else s:=s + '???'; end; if addsize then begin sval := ''; str(tcgsize2size[size], sval); s := s + sval; end; if vopext <> 0 then begin str(vopext and $07, regnr); if vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then s := s + ' {k' + regnr + '}'; if vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then s := s + ' {z}'; if vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then s := s + ' {sae}'; if vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then case vopext and OTVE_VECTOR_BCST_MASK of OTVE_VECTOR_BCST2: s := s + ' {1to2}'; OTVE_VECTOR_BCST4: s := s + ' {1to4}'; OTVE_VECTOR_BCST8: s := s + ' {1to8}'; OTVE_VECTOR_BCST16: s := s + ' {1to16}'; end; if vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then case vopext and OTVE_VECTOR_ER_MASK of OTVE_VECTOR_RNSAE: s := s + ' {rn-sae}'; OTVE_VECTOR_RDSAE: s := s + ' {rd-sae}'; OTVE_VECTOR_RUSAE: s := s + ' {ru-sae}'; OTVE_VECTOR_RZSAE: s := s + ' {rz-sae}'; end; end; end; end; GetString:=s+']'; end; function Tx86Instruction.MightHaveExtension: boolean; begin Result:=aasmcpu.MightHaveExtension(opcode); end; end.