{ This file is part of the Free Pascal run time library. Copyright (c) 2003 by the Free Pascal development team. Processor dependent implementation for the system unit for ARM See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} {$asmmode gas} {$ifndef FPC_SYSTEM_HAS_MOVE} {$define FPC_SYSTEM_FPC_MOVE} {$endif FPC_SYSTEM_HAS_MOVE} {$ifdef FPC_SYSTEM_FPC_MOVE} const cpu_has_edsp : boolean = false; in_edsp_test : boolean = false; {$endif FPC_SYSTEM_FPC_MOVE} {$if not(defined(wince)) and not(defined(gba)) and not(defined(nds)) and not(defined(FPUSOFT)) and not(defined(FPULIBGCC))} {$define FPC_SYSTEM_HAS_SYSINITFPU} {$if not defined(darwin) and not defined(FPUVFPV2) and not defined(FPUVFPV3) and not defined(FPUVFPV3_D16)} Procedure SysInitFPU;{$ifdef SYSTEMINLINE}inline;{$endif} begin { Enable FPU exceptions, but disable INEXACT, UNDERFLOW, DENORMAL } asm rfs r0 and r0,r0,#0xffe0ffff orr r0,r0,#0x00070000 wfs r0 end; end; {$else} Procedure SysInitFPU;{$ifdef SYSTEMINLINE}inline;{$endif} begin { Enable FPU exceptions, but disable INEXACT, UNDERFLOW, DENORMAL } asm fmrx r0,fpscr // set "round to nearest" mode and r0,r0,#0xff3fffff // mask "exception happened" and overflow flags and r0,r0,#0xffffff20 // mask exception flags and r0,r0,#0xffff40ff {$ifndef darwin} // Floating point exceptions cause kernel panics on iPhoneOS 2.2.1... // disable flush-to-zero mode (IEEE math compliant) and r0,r0,#0xfeffffff // enable invalid operation, div-by-zero and overflow exceptions orr r0,r0,#0x00000700 {$endif} fmxr fpscr,r0 end; end; {$endif} {$endif} procedure fpc_cpuinit; begin { don't let libraries influence the FPU cw set by the host program } if not IsLibrary then SysInitFPU; end; {$ifdef wince} function _controlfp(new: DWORD; mask: DWORD): DWORD; cdecl; external 'coredll'; {$define FPC_SYSTEM_HAS_SYSRESETFPU} Procedure SysResetFPU;{$ifdef SYSTEMINLINE}inline;{$endif} begin end; {$define FPC_SYSTEM_HAS_SYSINITFPU} Procedure SysInitFPU;{$ifdef SYSTEMINLINE}inline;{$endif} begin { Enable FPU exceptions, but disable INEXACT, UNDERFLOW, DENORMAL } { FPU precision 64 bit, rounding to nearest, affine infinity } _controlfp($000C0003, $030F031F); end; {$endif wince} {**************************************************************************** stack frame related stuff ****************************************************************************} {$IFNDEF INTERNAL_BACKTRACE} {$define FPC_SYSTEM_HAS_GET_FRAME} function get_frame:pointer;assembler;nostackframe; asm {$ifndef darwin} mov r0,r11 {$else} mov r0,r7 {$endif} end; {$ENDIF not INTERNAL_BACKTRACE} {$define FPC_SYSTEM_HAS_GET_CALLER_ADDR} function get_caller_addr(framebp:pointer;addr:pointer=nil):pointer;assembler;nostackframe; asm cmp r0,#0 {$ifndef darwin} ldrne r0,[r0,#-4] {$else} ldrne r0,[r0,#4] {$endif} end; {$define FPC_SYSTEM_HAS_GET_CALLER_FRAME} function get_caller_frame(framebp:pointer;addr:pointer=nil):pointer;assembler;nostackframe; asm cmp r0,#0 {$ifndef darwin} ldrne r0,[r0,#-12] {$else} ldrne r0,[r0] {$endif} end; {$define FPC_SYSTEM_HAS_SPTR} Function Sptr : pointer;assembler;nostackframe; asm mov r0,sp end; {$ifndef FPC_SYSTEM_HAS_FILLCHAR} {$define FPC_SYSTEM_HAS_FILLCHAR} Procedure FillChar(var x;count:longint;value:byte);assembler;nostackframe; asm // less than 0? cmp r1,#0 {$ifdef CPUARM_HAS_BX} bxle lr {$else} movle pc,lr {$endif} mov r3,r0 orr r2,r2,r2,lsl #8 orr r2,r2,r2,lsl #16 tst r3, #3 // Aligned? bne .LFillchar_do_align .LFillchar_is_aligned: subs r1,r1,#8 bmi .LFillchar_less_than_8bytes mov ip,r2 .LFillchar_at_least_8bytes: // Do 16 bytes per loop // More unrolling is uncessary, as we'll just stall on the write buffers stmia r3!,{r2,ip} subs r1,r1,#8 stmplia r3!,{r2,ip} subpls r1,r1,#8 bpl .LFillchar_at_least_8bytes .LFillchar_less_than_8bytes: // Do the rest adds r1, r1, #8 {$ifdef CPUARM_HAS_BX} bxeq lr {$else} moveq pc,lr {$endif} tst r1, #4 strne r2,[r3],#4 tst r1, #2 strneh r2,[r3],#2 tst r1, #1 strneb r2,[r3],#1 {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} // Special case for unaligned start // We make a maximum of 3 loops here .LFillchar_do_align: strb r2,[r3],#1 subs r1, r1, #1 {$ifdef CPUARM_HAS_BX} bxeq lr {$else} moveq pc,lr {$endif} tst r3,#3 bne .LFillchar_do_align b .LFillchar_is_aligned end; {$endif FPC_SYSTEM_HAS_FILLCHAR} {$ifndef FPC_SYSTEM_HAS_MOVE} {$define FPC_SYSTEM_HAS_MOVE} {$ifdef CPUARM_HAS_EDSP} procedure Move(const source;var dest;count:longint);[public, alias: 'FPC_MOVE'];assembler;nostackframe; {$else CPUARM_HAS_EDSP} procedure Move_pld(const source;var dest;count:longint);assembler;nostackframe; {$endif CPUARM_HAS_EDSP} asm // pld [r0] // encode this using .long so the rtl assembles also with instructions sets not supporting pld .long 0xf5d0f000 // count <=0 ? cmp r2,#0 {$ifdef CPUARM_HAS_BX} bxle lr {$else} movle pc,lr {$endif} // overlap? subs r3, r1, r0 // if (dest > source) and cmphi r2, r3 // (count > dest - src) then bhi .Loverlapped // DoReverseByteCopy; cmp r2,#8 // if (count < 8) then blt .Lbyteloop // DoForwardByteCopy; // Any way to avoid the above jump and fuse the next two instructions? tst r0, #3 // if (source and 3) <> 0 or tsteq r1, #3 // (dest and 3) <> 0 then bne .Lbyteloop // DoForwardByteCopy; // pld [r0,#32] // encode this using .long so the rtl assembles also with instructions sets not supporting pld .long 0xf5d0f020 .Ldwordloop: ldmia r0!, {r3, ip} // preload // pld [r0,#64] // encode this using .long so the rtl assembles also with instructions sets not supporting pld .long 0xf5d0f040 sub r2,r2,#8 cmp r2, #8 stmia r1!, {r3, ip} bge .Ldwordloop cmp r2,#0 {$ifdef CPUARM_HAS_BX} bxeq lr {$else} moveq pc,lr {$endif} .Lbyteloop: subs r2,r2,#1 ldrb r3,[r0],#1 strb r3,[r1],#1 bne .Lbyteloop {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .Loverlapped: subs r2,r2,#1 ldrb r3,[r0,r2] strb r3,[r1,r2] bne .Loverlapped end; {$ifndef CPUARM_HAS_EDSP} procedure Move_blended(const source;var dest;count:longint);assembler;nostackframe; asm // count <=0 ? cmp r2,#0 {$ifdef CPUARM_HAS_BX} bxle lr {$else} movle pc,lr {$endif} // overlap? subs r3, r1, r0 // if (dest > source) and cmphi r2, r3 // (count > dest - src) then bhi .Loverlapped // DoReverseByteCopy; cmp r2,#8 // if (count < 8) then blt .Lbyteloop // DoForwardByteCopy; // Any way to avoid the above jump and fuse the next two instructions? tst r0, #3 // if (source and 3) <> 0 or tsteq r1, #3 // (dest and 3) <> 0 then bne .Lbyteloop // DoForwardByteCopy; .Ldwordloop: ldmia r0!, {r3, ip} sub r2,r2,#8 cmp r2, #8 stmia r1!, {r3, ip} bge .Ldwordloop cmp r2,#0 {$ifdef CPUARM_HAS_BX} bxeq lr {$else} moveq pc,lr {$endif} .Lbyteloop: subs r2,r2,#1 ldrb r3,[r0],#1 strb r3,[r1],#1 bne .Lbyteloop {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .Loverlapped: subs r2,r2,#1 ldrb r3,[r0,r2] strb r3,[r1,r2] bne .Loverlapped end; const moveproc : pointer = @move_blended; procedure Move(const source;var dest;count:longint);[public, alias: 'FPC_MOVE'];assembler;nostackframe; asm ldr ip,.Lmoveproc ldr pc,[ip] .Lmoveproc: .long moveproc end; {$endif CPUARM_HAS_EDSP} {$endif FPC_SYSTEM_HAS_MOVE} {**************************************************************************** String ****************************************************************************} {$ifndef FPC_SYSTEM_HAS_FPC_SHORTSTR_ASSIGN} {$define FPC_SYSTEM_HAS_FPC_SHORTSTR_ASSIGN} procedure fpc_shortstr_to_shortstr(out res:shortstring;const sstr:shortstring);assembler;nostackframe;[public,alias: 'FPC_SHORTSTR_TO_SHORTSTR'];compilerproc; {r0: __RESULT r1: len r2: sstr} asm ldrb r12,[r2],#1 cmp r12,r1 movgt r12,r1 strb r12,[r0],#1 cmp r12,#6 (* 6 seems to be the break even point. *) blt .LStartTailCopy (* Align destination on 32bits. This is the only place where unrolling really seems to help, since in the common case, sstr is aligned on 32 bits, therefore in the common case we need to copy 3 bytes to align, i.e. in the case of a loop, you wouldn't branch out early.*) rsb r3,r0,#0 ands r3,r3,#3 sub r12,r12,r3 ldrneb r1,[r2],#1 strneb r1,[r0],#1 subnes r3,r3,#1 ldrneb r1,[r2],#1 strneb r1,[r0],#1 subnes r3,r3,#1 ldrneb r1,[r2],#1 strneb r1,[r0],#1 subnes r3,r3,#1 .LDoneAlign: (* Destination should be aligned now, but source might not be aligned, if this is the case, do a byte-per-byte copy. *) tst r2,#3 bne .LStartTailCopy (* Start the main copy, 32 bit at a time. *) movs r3,r12,lsr #2 and r12,r12,#3 beq .LStartTailCopy .LNext4bytes: (* Unrolling this loop would save a little bit of time for long strings (>20 chars), but alas, it hurts for short strings and they are the common case.*) ldrne r1,[r2],#4 strne r1,[r0],#4 subnes r3,r3,#1 bne .LNext4bytes .LStartTailCopy: (* Do remaining bytes. *) cmp r12,#0 beq .LDoneTail .LNextChar3: ldrb r1,[r2],#1 strb r1,[r0],#1 subs r12,r12,#1 bne .LNextChar3 .LDoneTail: end; procedure fpc_shortstr_assign(len:longint;sstr,dstr:pointer);assembler;nostackframe;[public,alias:'FPC_SHORTSTR_ASSIGN'];compilerproc; {r0: len r1: sstr r2: dstr} asm ldrb r12,[r1],#1 cmp r12,r0 movgt r12,r0 strb r12,[r2],#1 cmp r12,#6 (* 6 seems to be the break even point. *) blt .LStartTailCopy (* Align destination on 32bits. This is the only place where unrolling really seems to help, since in the common case, sstr is aligned on 32 bits, therefore in the common case we need to copy 3 bytes to align, i.e. in the case of a loop, you wouldn't branch out early.*) rsb r3,r2,#0 ands r3,r3,#3 sub r12,r12,r3 ldrneb r0,[r1],#1 strneb r0,[r2],#1 subnes r3,r3,#1 ldrneb r0,[r1],#1 strneb r0,[r2],#1 subnes r3,r3,#1 ldrneb r0,[r1],#1 strneb r0,[r2],#1 subnes r3,r3,#1 .LDoneAlign: (* Destination should be aligned now, but source might not be aligned, if this is the case, do a byte-per-byte copy. *) tst r1,#3 bne .LStartTailCopy (* Start the main copy, 32 bit at a time. *) movs r3,r12,lsr #2 and r12,r12,#3 beq .LStartTailCopy .LNext4bytes: (* Unrolling this loop would save a little bit of time for long strings (>20 chars), but alas, it hurts for short strings and they are the common case.*) ldrne r0,[r1],#4 strne r0,[r2],#4 subnes r3,r3,#1 bne .LNext4bytes .LStartTailCopy: (* Do remaining bytes. *) cmp r12,#0 beq .LDoneTail .LNextChar3: ldrb r0,[r1],#1 strb r0,[r2],#1 subs r12,r12,#1 bne .LNextChar3 .LDoneTail: end; {$endif FPC_SYSTEM_HAS_FPC_SHORTSTR_ASSIGN} {$ifndef FPC_SYSTEM_HAS_FPC_PCHAR_LENGTH} {$define FPC_SYSTEM_HAS_FPC_PCHAR_LENGTH} function fpc_Pchar_length(p:Pchar):sizeint;assembler;nostackframe;[public,alias:'FPC_PCHAR_LENGTH'];compilerproc; asm cmp r0,#0 mov r1,r0 beq .Ldone .Lnextchar: (*Are we aligned?*) tst r1,#3 bne .Ltest_unaligned (*No, do byte per byte.*) ldr r3,.L01010101 .Ltest_aligned: (*Aligned, load 4 bytes at a time.*) ldr r12,[r1],#4 (*Check wether r12 contains a 0 byte.*) sub r2,r12,r3 mvn r12,r12 and r2,r2,r12 ands r2,r2,r3,lsl #7 (*r3 lsl 7 = $80808080*) beq .Ltest_aligned (*No 0 byte, repeat.*) sub r1,r1,#4 .Ltest_unaligned: ldrb r12,[r1],#1 cmp r12,#1 (*r12<1 same as r12=0, but result in carry flag*) bcs .Lnextchar (*Dirty trick: we need to subtract 1 extra because we have counted the terminating 0, due to the known carry flag sbc can do this.*) sbc r0,r1,r0 .Ldone: {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .L01010101: .long 0x01010101 end; {$endif} {$ifndef darwin} {$define FPC_SYSTEM_HAS_ANSISTR_DECR_REF} Procedure fpc_ansistr_decr_ref (Var S : Pointer); [Public,Alias:'FPC_ANSISTR_DECR_REF'];assembler;nostackframe; compilerproc; asm ldr r1, [r0] // On return the pointer will always be set to zero, so utilize the delay slots mov r2, #0 str r2, [r0] // Check for a zero string cmp r1, #0 // Load reference counter ldrne r2, [r1, #-8] {$ifdef CPUARM_HAS_BX} bxeq lr {$else} moveq pc,lr {$endif} // Check for a constant string cmp r2, #0 {$ifdef CPUARM_HAS_BX} bxlt lr {$else} movlt pc,lr {$endif} stmfd sp!, {r1, lr} sub r0, r1, #8 {$if defined(CPUARM_HAS_BX) and not(defined(WINCE))} blx InterLockedDecrement {$else defined(CPUARM_HAS_BX) and not(defined(WINCE))} bl InterLockedDecrement {$endif defined(CPUARM_HAS_BX) and not(defined(WINCE))} // InterLockedDecrement is a nice guy and sets the z flag for us // if the reference count dropped to 0 ldmnefd sp!, {r1, pc} ldmfd sp!, {r0, lr} // We currently can not use constant symbols in ARM-Assembly // but we need to stay backward compatible with 2.6 sub r0, r0, #12 // Jump without a link, so freemem directly returns to our caller b FPC_FREEMEM end; {$endif not darwin} var fpc_system_lock: longint; export name 'fpc_system_lock'; function InterLockedDecrement (var Target: longint) : longint; assembler; nostackframe; asm {$ifdef CPUARM_HAS_LDREX} .Lloop: ldrex r1, [r0] sub r1, r1, #1 strex r2, r1, [r0] cmp r2, #0 bne .Lloop movs r0, r1 bx lr {$else} {$ifdef SYSTEM_HAS_KUSER_CMPXCHG} stmfd r13!, {lr} mov r2, r0 // kuser_cmpxchg does not clobber r2 by definition .Latomic_dec_loop: ldr r0, [r2] // Load the current value // We expect this to work without looping most of the time // R3 gets clobbered in kuser_cmpxchg so in the unlikely case that we have to // loop here again, we have to reload the value. Normaly this just fills the // load stall-cycles from the above ldr so in reality we'll not get any additional // delays because of this // Don't use ldr to load r3 to avoid cacheline trashing // Load 0xffff0fff into r3 and substract to 0xffff0fc0, // the kuser_cmpxchg entry point mvn r3, #0x0000f000 sub r3, r3, #0x3F sub r1, r0, #1 // Decrement value {$ifdef CPUARM_HAS_BLX} blx r3 // Call kuser_cmpxchg, sets C-Flag on success {$else} mov lr, pc {$ifdef CPUARM_HAS_BX} bx r3 {$else} mov pc, r3 {$endif} {$endif} // MOVS sets the Z flag when the result reaches zero, this can be used later on // The C-Flag will not be modified by this because we're not doing any shifting movcss r0, r1 // We expect that to work most of the time so keep it pipeline friendly ldmcsfd r13!, {pc} b .Latomic_dec_loop // kuser_cmpxchg sets C flag on error {$else} // lock ldr r3, .Lfpc_system_lock mov r1, #1 .Lloop: swp r2, r1, [r3] cmp r2, #0 bne .Lloop // do the job ldr r1, [r0] sub r1, r1, #1 str r1, [r0] movs r0, r1 // unlock and return str r2, [r3] {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .Lfpc_system_lock: .long fpc_system_lock {$endif} {$endif} end; {$ifndef darwin} {$define FPC_SYSTEM_HAS_ANSISTR_INCR_REF} Procedure fpc_ansistr_incr_ref (S : Pointer); [Public,Alias:'FPC_ANSISTR_INCR_REF'];assembler;nostackframe; compilerproc; asm // Null string? cmp r0, #0 // Load reference counter ldrne r1, [r0, #-8] // pointer to counter, calculate here for delay slot utilization subne r0, r0, #8 {$ifdef CPUARM_HAS_BX} bxeq lr {$else} moveq pc,lr {$endif} // Check for a constant string cmp r1, #0 // Tailcall // Hopefully the linker will place InterLockedIncrement as layed out here bge InterLockedIncrement // Freepascal will generate a proper return here, save some cachespace end; {$endif not darwin} function InterLockedIncrement (var Target: longint) : longint; assembler; nostackframe; asm {$ifdef CPUARM_HAS_LDREX} .Lloop: ldrex r1, [r0] add r1, r1, #1 strex r2, r1, [r0] cmp r2, #0 bne .Lloop mov r0, r1 bx lr {$else} {$ifdef SYSTEM_HAS_KUSER_CMPXCHG} stmfd r13!, {lr} mov r2, r0 // kuser_cmpxchg does not clobber r2 by definition .Latomic_inc_loop: ldr r0, [r2] // Load the current value // We expect this to work without looping most of the time // R3 gets clobbered in kuser_cmpxchg so in the unlikely case that we have to // loop here again, we have to reload the value. Normaly this just fills the // load stall-cycles from the above ldr so in reality we'll not get any additional // delays because of this // Don't use ldr to load r3 to avoid cacheline trashing // Load 0xffff0fff into r3 and substract to 0xffff0fc0, // the kuser_cmpxchg entry point mvn r3, #0x0000f000 sub r3, r3, #0x3F add r1, r0, #1 // Increment value {$ifdef CPUARM_HAS_BLX} blx r3 // Call kuser_cmpxchg, sets C-Flag on success {$else} mov lr, pc {$ifdef CPUARM_HAS_BX} bx r3 {$else} mov pc, r3 {$endif} {$endif} movcs r0, r1 // We expect that to work most of the time so keep it pipeline friendly ldmcsfd r13!, {pc} b .Latomic_inc_loop // kuser_cmpxchg sets C flag on error {$else} // lock ldr r3, .Lfpc_system_lock mov r1, #1 .Lloop: swp r2, r1, [r3] cmp r2, #0 bne .Lloop // do the job ldr r1, [r0] add r1, r1, #1 str r1, [r0] mov r0, r1 // unlock and return str r2, [r3] {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .Lfpc_system_lock: .long fpc_system_lock {$endif} {$endif} end; function InterLockedExchange (var Target: longint;Source : longint) : longint; assembler; nostackframe; asm {$ifdef CPUARM_HAS_LDREX} // swp is deprecated on ARMv6 and above .Lloop: ldrex r2, [r0] strex r3, r1, [r0] cmp r3, #0 bne .Lloop mov r0, r2 bx lr {$else} {$ifdef SYSTEM_HAS_KUSER_CMPXCHG} stmfd r13!, {r4, lr} mov r2, r0 // kuser_cmpxchg does not clobber r2 (and r1) by definition .Latomic_add_loop: ldr r0, [r2] // Load the current value // We expect this to work without looping most of the time // R3 gets clobbered in kuser_cmpxchg so in the unlikely case that we have to // loop here again, we have to reload the value. Normaly this just fills the // load stall-cycles from the above ldr so in reality we'll not get any additional // delays because of this // Don't use ldr to load r3 to avoid cacheline trashing // Load 0xffff0fff into r3 and substract to 0xffff0fc0, // the kuser_cmpxchg entry point mvn r3, #0x0000f000 sub r3, r3, #0x3F mov r4, r0 // save the current value because kuser_cmpxchg clobbers r0 {$ifdef CPUARM_HAS_BLX} blx r3 // Call kuser_cmpxchg, sets C-Flag on success {$else} mov lr, pc {$ifdef CPUARM_HAS_BX} bx r3 {$else} mov pc, r3 {$endif} {$endif} // restore the original value if needed movcs r0, r4 ldmcsfd r13!, {r4, pc} b .Latomic_add_loop // kuser_cmpxchg failed, loop back {$else} // lock ldr r3, .Lfpc_system_lock mov r2, #1 .Lloop: swp r2, r2, [r3] cmp r2, #0 bne .Lloop // do the job ldr r2, [r0] str r1, [r0] mov r0, r2 // unlock and return mov r2, #0 str r2, [r3] {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .Lfpc_system_lock: .long fpc_system_lock {$endif} {$endif} end; function InterLockedExchangeAdd (var Target: longint;Source : longint) : longint; assembler; nostackframe; asm {$ifdef CPUARM_HAS_LDREX} .Lloop: ldrex r2, [r0] add r12, r1, r2 strex r3, r12, [r0] cmp r3, #0 bne .Lloop mov r0, r2 bx lr {$else} {$ifdef SYSTEM_HAS_KUSER_CMPXCHG} stmfd r13!, {r4, lr} mov r2, r0 // kuser_cmpxchg does not clobber r2 by definition mov r4, r1 // Save addend .Latomic_add_loop: ldr r0, [r2] // Load the current value // We expect this to work without looping most of the time // R3 gets clobbered in kuser_cmpxchg so in the unlikely case that we have to // loop here again, we have to reload the value. Normaly this just fills the // load stall-cycles from the above ldr so in reality we'll not get any additional // delays because of this // Don't use ldr to load r3 to avoid cacheline trashing // Load 0xffff0fff into r3 and substract to 0xffff0fc0, // the kuser_cmpxchg entry point mvn r3, #0x0000f000 sub r3, r3, #0x3F add r1, r0, r4 // Add to value {$ifdef CPUARM_HAS_BLX} blx r3 // Call kuser_cmpxchg, sets C-Flag on success {$else} mov lr, pc {$ifdef CPUARM_HAS_BX} bx r3 {$else} mov pc, r3 {$endif} {$endif} // r1 does not get clobbered, so just get back the original value // Otherwise we would have to allocate one more register and store the // temporary value subcs r0, r1, r4 ldmcsfd r13!, {r4, pc} b .Latomic_add_loop // kuser_cmpxchg failed, loop back {$else} // lock ldr r3, .Lfpc_system_lock mov r2, #1 .Lloop: swp r2, r2, [r3] cmp r2, #0 bne .Lloop // do the job ldr r2, [r0] add r1, r1, r2 str r1, [r0] mov r0, r2 // unlock and return mov r2, #0 str r2, [r3] {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .Lfpc_system_lock: .long fpc_system_lock {$endif} {$endif} end; function InterlockedCompareExchange(var Target: longint; NewValue: longint; Comperand: longint): longint; assembler; nostackframe; asm {$ifdef CPUARM_HAS_LDREX} .Lloop: ldrex r3, [r0] mov r12, #0 cmp r3, r2 strexeq r12, r1, [r0] cmp r12, #0 bne .Lloop mov r0, r3 bx lr {$else} {$ifdef SYSTEM_HAS_KUSER_CMPXCHG} stmfd r13!, {r4, lr} mvn r3, #0x0000f000 sub r3, r3, #0x3F mov r4, r2 // Swap parameters around mov r2, r0 mov r0, r4 // Use r4 because we'll need the new value for later // r1 and r2 will not be clobbered by kuser_cmpxchg // If we have to loop, r0 will be set to the original Comperand .Linterlocked_compare_exchange_loop: {$ifdef CPUARM_HAS_BLX} blx r3 // Call kuser_cmpxchg, sets C-Flag on success {$else} mov lr, pc {$ifdef CPUARM_HAS_BX} bx r3 {$else} mov pc, r3 {$endif} {$endif} movcs r0, r4 // Return the previous value on success ldmcsfd r13!, {r4, pc} // The error case is a bit tricky, kuser_cmpxchg does not return the current value // So we may need to loop to avoid race conditions // The loop case is HIGHLY unlikely, it would require that we got rescheduled between // calling kuser_cmpxchg and the ldr. While beeing rescheduled another process/thread // would have the set the value to our comperand ldr r0, [r2] // Load the currently set value cmp r0, r4 // Return if Comperand != current value, otherwise loop again ldmnefd r13!, {r4, pc} // If we need to loop here, we have to b .Linterlocked_compare_exchange_loop {$else} // lock ldr r12, .Lfpc_system_lock mov r3, #1 .Lloop: swp r3, r3, [r12] cmp r3, #0 bne .Lloop // do the job ldr r3, [r0] cmp r3, r2 streq r1, [r0] mov r0, r3 // unlock and return mov r3, #0 str r3, [r12] {$ifdef CPUARM_HAS_BX} bx lr {$else} mov pc,lr {$endif} .Lfpc_system_lock: .long fpc_system_lock {$endif} {$endif} end; {$define FPC_SYSTEM_HAS_DECLOCKED_LONGINT} function declocked(var l: longint) : boolean; inline; begin Result:=InterLockedDecrement(l) = 0; end; {$define FPC_SYSTEM_HAS_INCLOCKED_LONGINT} procedure inclocked(var l: longint); inline; begin InterLockedIncrement(l); end; procedure fpc_cpucodeinit; begin {$ifdef FPC_SYSTEM_FPC_MOVE} {$ifndef CPUARM_HAS_EDSP} cpu_has_edsp:=true; in_edsp_test:=true; asm bic r0,sp,#7 // ldrd r0,r1,[r0] // encode this using .long so the rtl assembles also with instructions sets not supporting pld .long 0xe1c000d0 end; in_edsp_test:=false; if cpu_has_edsp then moveproc:=@move_pld else moveproc:=@move_blended; {$else CPUARM_HAS_EDSP} cpu_has_edsp:=true; {$endif CPUARM_HAS_EDSP} {$endif FPC_SYSTEM_FPC_MOVE} end; {$define FPC_SYSTEM_HAS_SWAPENDIAN} { SwapEndian(<16 Bit>) being inlined is faster than using assembler } function SwapEndian(const AValue: SmallInt): SmallInt;{$ifdef SYSTEMINLINE}inline;{$endif} begin { the extra Word type cast is necessary because the "AValue shr 8" } { is turned into "longint(AValue) shr 8", so if AValue < 0 then } { the sign bits from the upper 16 bits are shifted in rather than } { zeroes. } Result := SmallInt((Word(AValue) shr 8) or (Word(AValue) shl 8)); end; function SwapEndian(const AValue: Word): Word;{$ifdef SYSTEMINLINE}inline;{$endif} begin Result := Word((AValue shr 8) or (AValue shl 8)); end; (* This is kept for reference. Thats what the compiler COULD generate in these cases. But FPC currently does not support inlining of asm-functions, so the whole call-overhead is bigger than the gain of the optimized function. function AsmSwapEndian(const AValue: SmallInt): SmallInt;{$ifdef SYSTEMINLINE}inline;{$endif};assembler;nostackframe; asm // We're starting with 4321 {$if defined(CPUARM_HAS_REV)} rev r0, r0 // Reverse byteorder r0 = 1234 mov r0, r0, shr #16 // Shift down to 16bits r0 = 0012 {$else} mov r0, r0, shl #16 // Shift to make that 2100 mov r0, r0, ror #24 // Rotate to 1002 orr r0, r0, r0 shr #16 // Shift and combine into 0012 {$endif} end; *) { These used to be an assembler-function, but with newer improvements to the compiler this generates a perfect 4 cycle code sequence and can be inlined. } function SwapEndian(const AValue: LongWord): LongWord;{$ifdef SYSTEMINLINE}inline;{$endif} begin Result:= AValue xor rordword(AValue,16); Result:= Result and $FF00FFFF; Result:= (Result shr 8) xor rordword(AValue,8); end; function SwapEndian(const AValue: LongInt): LongInt;{$ifdef SYSTEMINLINE}inline;{$endif} begin Result:=LongInt(SwapEndian(DWord(AValue))); end; { Currently freepascal will not generate a good assembler sequence for Result:=(SwapEndian(longword(lo(AValue))) shl 32) or (SwapEndian(longword(hi(AValue)))); So we keep an assembly version for now } function SwapEndian(const AValue: Int64): Int64; assembler; nostackframe; asm // fpc >2.6.0 adds the "rev" instruction in the internal assembler {$if defined(CPUARM_HAS_REV)} rev r2, r0 rev r0, r1 mov r1, r2 {$else} mov ip, r1 // We're starting with r0 = $87654321 eor r1, r0, r0, ror #16 // r1 = $C444C444 bic r1, r1, #16711680 // r1 = r1 and $ff00ffff = $C400C444 mov r0, r0, ror #8 // r0 = $21876543 eor r1, r0, r1, lsr #8 // r1 = $21436587 eor r0, ip, ip, ror #16 bic r0, r0, #16711680 mov ip, ip, ror #8 eor r0, ip, r0, lsr #8 {$endif} end; function SwapEndian(const AValue: QWord): QWord; {$ifdef SYSTEMINLINE}inline;{$endif} begin Result:=QWord(SwapEndian(Int64(AValue))); end; {$ifndef FPC_SYSTEM_HAS_MEM_BARRIER} {$define FPC_SYSTEM_HAS_MEM_BARRIER} { Generic read/readwrite barrier code. } procedure barrier; assembler; nostackframe; asm // manually encode the instructions to avoid bootstrap and -march external // assembler settings {$ifdef CPUARM_HAS_DMB} .long 0xf57ff05f // dmb sy {$else} {$ifdef CPUARMV6} mov r0, #0 .long 0xee070fba // mcr 15, 0, r0, cr7, cr10, {5} {$endif} {$endif} end; procedure ReadBarrier;{$ifdef SYSTEMINLINE}inline;{$endif} begin barrier; end; procedure ReadDependencyBarrier;{$ifdef SYSTEMINLINE}inline;{$endif} begin { reads imply barrier on earlier reads depended on; not required on ARM } end; procedure ReadWriteBarrier;{$ifdef SYSTEMINLINE}inline;{$endif} begin barrier; end; procedure WriteBarrier; assembler; nostackframe; asm // specialize the write barrier because according to ARM, implementations for // "dmb st" may be more optimal than the more generic "dmb sy" {$ifdef CPUARM_HAS_DMB} .long 0xf57ff05e // dmb st {$else} {$ifdef CPUARMV6} mov r0, #0 .long 0xee070fba // mcr 15, 0, r0, cr7, cr10, {5} {$endif} {$endif} end; {$endif} {include hand-optimized assembler division code} {$i divide.inc}