Unit JdTrans; { This file contains library routines for transcoding decompression, that is, reading raw DCT coefficient arrays from an input JPEG file. The routines in jdapimin.c will also be needed by a transcoder. } { Original : jdtrans.c ; Copyright (C) 1995-1997, Thomas G. Lane. } interface {$I jconfig.inc} uses jmorecfg, jinclude, jdeferr, jerror, jpeglib, jdhuff, jdphuff, jdcoefct; { Read the coefficient arrays from a JPEG file. jpeg_read_header must be completed before calling this. The entire image is read into a set of virtual coefficient-block arrays, one per component. The return value is a pointer to the array of virtual-array descriptors. These can be manipulated directly via the JPEG memory manager, or handed off to jpeg_write_coefficients(). To release the memory occupied by the virtual arrays, call jpeg_finish_decompress() when done with the data. An alternative usage is to simply obtain access to the coefficient arrays during a buffered-image-mode decompression operation. This is allowed after any jpeg_finish_output() call. The arrays can be accessed until jpeg_finish_decompress() is called. (Note that any call to the library may reposition the arrays, so don't rely on access_virt_barray() results to stay valid across library calls.) Returns NIL if suspended. This case need be checked only if a suspending data source is used. } {GLOBAL} function jpeg_read_coefficients (cinfo : j_decompress_ptr) : jvirt_barray_tbl_ptr; implementation { Forward declarations } {LOCAL} procedure transdecode_master_selection (cinfo : j_decompress_ptr); forward; { Read the coefficient arrays from a JPEG file. jpeg_read_header must be completed before calling this. The entire image is read into a set of virtual coefficient-block arrays, one per component. The return value is a pointer to the array of virtual-array descriptors. These can be manipulated directly via the JPEG memory manager, or handed off to jpeg_write_coefficients(). To release the memory occupied by the virtual arrays, call jpeg_finish_decompress() when done with the data. Returns NIL if suspended. This case need be checked only if a suspending data source is used. } {GLOBAL} function jpeg_read_coefficients (cinfo : j_decompress_ptr) : jvirt_barray_tbl_ptr; var retcode : int; begin if (cinfo^.global_state = DSTATE_READY) then begin { First call: initialize active modules } transdecode_master_selection(cinfo); cinfo^.global_state := DSTATE_RDCOEFS; end; if (cinfo^.global_state = DSTATE_RDCOEFS) then begin { Absorb whole file into the coef buffer } while TRUE do begin { Call progress monitor hook if present } if (cinfo^.progress <> NIL) then cinfo^.progress^.progress_monitor (j_common_ptr(cinfo)); { Absorb some more input } retcode := cinfo^.inputctl^.consume_input (cinfo); if (retcode = JPEG_SUSPENDED) then begin jpeg_read_coefficients := NIL; exit; end; if (retcode = JPEG_REACHED_EOI) then break; { Advance progress counter if appropriate } if (cinfo^.progress <> NIL) and ((retcode = JPEG_ROW_COMPLETED) or (retcode = JPEG_REACHED_SOS)) then begin Inc(cinfo^.progress^.pass_counter); if (cinfo^.progress^.pass_counter >= cinfo^.progress^.pass_limit) then begin { startup underestimated number of scans; ratchet up one scan } Inc(cinfo^.progress^.pass_limit, long(cinfo^.total_iMCU_rows)); end; end; end; { Set state so that jpeg_finish_decompress does the right thing } cinfo^.global_state := DSTATE_STOPPING; end; { At this point we should be in state DSTATE_STOPPING if being used standalone, or in state DSTATE_BUFIMAGE if being invoked to get access to the coefficients during a full buffered-image-mode decompression. } if ((cinfo^.global_state = DSTATE_STOPPING) or (cinfo^.global_state = DSTATE_BUFIMAGE)) and (cinfo^.buffered_image) then begin jpeg_read_coefficients := cinfo^.coef^.coef_arrays; exit; end; { Oops, improper usage } ERREXIT1(j_common_ptr(cinfo), JERR_BAD_STATE, cinfo^.global_state); jpeg_read_coefficients := NIL; { keep compiler happy } end; { Master selection of decompression modules for transcoding. This substitutes for jdmaster.c's initialization of the full decompressor. } {LOCAL} procedure transdecode_master_selection (cinfo : j_decompress_ptr); var nscans : int; begin { This is effectively a buffered-image operation. } cinfo^.buffered_image := TRUE; { Entropy decoding: either Huffman or arithmetic coding. } if (cinfo^.arith_code) then begin ERREXIT(j_common_ptr(cinfo), JERR_ARITH_NOTIMPL); end else begin if (cinfo^.progressive_mode) then begin {$ifdef D_PROGRESSIVE_SUPPORTED} jinit_phuff_decoder(cinfo); {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} end else jinit_huff_decoder(cinfo); end; { Always get a full-image coefficient buffer. } jinit_d_coef_controller(cinfo, TRUE); { We can now tell the memory manager to allocate virtual arrays. } cinfo^.mem^.realize_virt_arrays (j_common_ptr(cinfo)); { Initialize input side of decompressor to consume first scan. } cinfo^.inputctl^.start_input_pass (cinfo); { Initialize progress monitoring. } if (cinfo^.progress <> NIL) then begin { Estimate number of scans to set pass_limit. } if (cinfo^.progressive_mode) then begin { Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. } nscans := 2 + 3 * cinfo^.num_components; end else if (cinfo^.inputctl^.has_multiple_scans) then begin { For a nonprogressive multiscan file, estimate 1 scan per component. } nscans := cinfo^.num_components; end else begin nscans := 1; end; cinfo^.progress^.pass_counter := long(0); cinfo^.progress^.pass_limit := long(cinfo^.total_iMCU_rows * nscans); cinfo^.progress^.completed_passes := 0; cinfo^.progress^.total_passes := 1; end; end; end.