{ Copyright (c) 1998-2012 by the Free Pascal team This unit implements the base class for the register allocator This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {$i fpcdefs.inc} { $define DEBUG_REGALLOC} { $define DEBUG_SPILLCOALESCE} { $define DEBUG_REGISTERLIFE} { Allow duplicate allocations, can be used to get the .s file written } { $define ALLOWDUPREG} {$ifdef DEBUG_REGALLOC} {$define EXTDEBUG} {$endif DEBUG_REGALLOC} unit rgobj; interface uses cutils, cpubase, aasmtai,aasmdata,aasmsym,aasmcpu, cclasses,globtype,cgbase,cgutils; type { The interference bitmap contains of 2 layers: layer 1 - 256*256 blocks with pointers to layer 2 blocks layer 2 - blocks of 32*256 (32 bytes = 256 bits) } Tinterferencebitmap2 = array[byte] of set of byte; Pinterferencebitmap2 = ^Tinterferencebitmap2; Tinterferencebitmap1 = array[byte] of Pinterferencebitmap2; pinterferencebitmap1 = ^tinterferencebitmap1; Tinterferencebitmap=class private maxx1, maxy1 : byte; fbitmap : pinterferencebitmap1; function getbitmap(x,y:tsuperregister):boolean; procedure setbitmap(x,y:tsuperregister;b:boolean); public constructor create; destructor destroy;override; property bitmap[x,y:tsuperregister]:boolean read getbitmap write setbitmap;default; end; Tmovelistheader=record count, maxcount, sorted_until : cardinal; end; Tmovelist=record header : Tmovelistheader; data : array[tsuperregister] of Tlinkedlistitem; end; Pmovelist=^Tmovelist; {In the register allocator we keep track of move instructions. These instructions are moved between five linked lists. There is also a linked list per register to keep track about the moves it is associated with. Because we need to determine quickly in which of the five lists it is we add anu enumeradtion to each move instruction.} Tmoveset=(ms_coalesced_moves,ms_constrained_moves,ms_frozen_moves, ms_worklist_moves,ms_active_moves); Tmoveins=class(Tlinkedlistitem) moveset:Tmoveset; x,y:Tsuperregister; end; Treginfoflag=( ri_coalesced, { the register is coalesced with other register } ri_selected, { the register is put to selectstack } ri_spill_read, { the register contains a value loaded from a spilled register } ri_has_initial_loc { the register has the initial memory location (e.g. a parameter in the stack) } ); Treginfoflagset=set of Treginfoflag; Treginfo=record live_start, live_end : Tai; subreg : tsubregister; alias : Tsuperregister; { The register allocator assigns each register a colour } colour : Tsuperregister; movelist : Pmovelist; adjlist : Psuperregisterworklist; degree : TSuperregister; flags : Treginfoflagset; weight : longint; {$ifdef llvm} def : pointer; {$endif llvm} count_uses : longint; total_interferences : longint; real_reg_interferences: word; end; Preginfo=^TReginfo; tspillreginfo = record { a single register may appear more than once in an instruction, but with different subregister types -> store all subregister types that occur, so we can add the necessary constraints for the inline register that will have to replace it } spillregconstraints : set of TSubRegister; orgreg : tsuperregister; loadreg, storereg: tregister; regread, regwritten, mustbespilled: boolean; end; tspillregsinfo = record reginfocount: longint; reginfo: array[0..3] of tspillreginfo; end; Pspill_temp_list=^Tspill_temp_list; Tspill_temp_list=array[tsuperregister] of Treference; { used to store where a register is spilled and what interferences it has at the point of being spilled } tspillinfo = record spilllocation : treference; spilled : boolean; interferences : Tinterferencebitmap; end; {#------------------------------------------------------------------ This class implements the default register allocator. It is used by the code generator to allocate and free registers which might be valid across nodes. It also contains utility routines related to registers. Some of the methods in this class should be overridden by cpu-specific implementations. --------------------------------------------------------------------} trgobj=class preserved_by_proc : tcpuregisterset; used_in_proc : tcpuregisterset; { generate SSA code? } ssa_safe: boolean; constructor create(Aregtype:Tregistertype; Adefaultsub:Tsubregister; const Ausable:array of tsuperregister; Afirst_imaginary:Tsuperregister; Apreserved_by_proc:Tcpuregisterset); destructor destroy;override; { Allocate a register. An internalerror will be generated if there is no more free registers which can be allocated.} function getregister(list:TAsmList;subreg:Tsubregister):Tregister;virtual; { Get the register specified.} procedure getcpuregister(list:TAsmList;r:Tregister);virtual; procedure ungetcpuregister(list:TAsmList;r:Tregister);virtual; { Get multiple registers specified.} procedure alloccpuregisters(list:TAsmList;const r:Tcpuregisterset);virtual; { Free multiple registers specified.} procedure dealloccpuregisters(list:TAsmList;const r:Tcpuregisterset);virtual; function uses_registers:boolean;virtual; procedure add_reg_instruction(instr:Tai;r:tregister;aweight:longint); procedure add_move_instruction(instr:Taicpu); { Do the register allocation.} procedure do_register_allocation(list:TAsmList;headertai:tai);virtual; { Adds an interference edge. don't move this to the protected section, the arm cg requires to access this (FK) } procedure add_edge(u,v:Tsuperregister); { translates a single given imaginary register to it's real register } procedure translate_register(var reg : tregister); { sets the initial memory location of the register } procedure set_reg_initial_location(reg: tregister; const ref: treference); protected maxreginfo, maxreginfoinc, maxreg : Tsuperregister; regtype : Tregistertype; { default subregister used } defaultsub : tsubregister; live_registers:Tsuperregisterworklist; spillednodes: tsuperregisterworklist; { can be overridden to add cpu specific interferences } procedure add_cpu_interferences(p : tai);virtual; procedure add_constraints(reg:Tregister);virtual; function getregisterinline(list:TAsmList;const subregconstraints:Tsubregisterset):Tregister; procedure ungetregisterinline(list:TAsmList;r:Tregister); function get_spill_subreg(r : tregister) : tsubregister;virtual; function do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean;virtual; { the orgrsupeg parameter is only here for the llvm target, so it can discover the def to use for the load } procedure do_spill_read(list:TAsmList;pos:tai;const spilltemp:treference;tempreg:tregister;orgsupreg:tsuperregister);virtual; procedure do_spill_written(list:TAsmList;pos:tai;const spilltemp:treference;tempreg:tregister;orgsupreg:tsuperregister);virtual; function addreginfo(var regs: tspillregsinfo; const r: tsuperregisterset; reg: tregister; operation: topertype): boolean; function instr_get_oper_spilling_info(var regs: tspillregsinfo; const r: tsuperregisterset; instr: tai_cpu_abstract_sym; opidx: longint): boolean; virtual; procedure substitute_spilled_registers(const regs: tspillregsinfo; instr: tai_cpu_abstract_sym; opidx: longint); virtual; procedure try_replace_reg(const regs: tspillregsinfo; var reg: tregister; useloadreg: boolean); function instr_spill_register(list:TAsmList; instr:tai_cpu_abstract_sym; const r:Tsuperregisterset; const spilltemplist:Tspill_temp_list): boolean;virtual; procedure insert_regalloc_info_all(list:TAsmList); procedure determine_spill_registers(list:TAsmList;headertail:tai); virtual; procedure get_spill_temp(list:TAsmlist;spill_temps: Pspill_temp_list; supreg: tsuperregister);virtual; strict protected { Highest register allocated until now.} reginfo : PReginfo; usable_registers_cnt : word; private int_live_range_direction: TRADirection; { First imaginary register.} first_imaginary : Tsuperregister; usable_registers : array[0..maxcpuregister] of tsuperregister; usable_register_set : tcpuregisterset; ibitmap : Tinterferencebitmap; simplifyworklist, freezeworklist, spillworklist, coalescednodes, selectstack : tsuperregisterworklist; worklist_moves, active_moves, frozen_moves, coalesced_moves, constrained_moves, { in this list we collect all moveins which should be disposed after register allocation finishes, we still need the moves for spill coalesce for the whole register allocation process, so they cannot be released as soon as they are frozen or whatever } move_garbage : Tlinkedlist; extended_backwards, backwards_was_first : tbitset; has_usedmarks: boolean; has_directalloc: boolean; spillinfo : array of tspillinfo; { Disposes of the reginfo array.} procedure dispose_reginfo; { Prepare the register colouring.} procedure prepare_colouring; { Clean up after register colouring.} procedure epilogue_colouring; { Colour the registers; that is do the register allocation.} procedure colour_registers; procedure insert_regalloc_info(list:TAsmList;u:tsuperregister); procedure generate_interference_graph(list:TAsmList;headertai:tai); { sort spilled nodes by increasing number of interferences } procedure sort_spillednodes; { translates the registers in the given assembler list } procedure translate_registers(list:TAsmList); function spill_registers(list:TAsmList;headertai:tai):boolean;virtual; function getnewreg(subreg:tsubregister):tsuperregister; procedure add_edges_used(u:Tsuperregister); procedure add_to_movelist(u:Tsuperregister;data:Tlinkedlistitem); function move_related(n:Tsuperregister):boolean; procedure make_work_list; procedure sort_simplify_worklist; procedure enable_moves(n:Tsuperregister); procedure decrement_degree(m:Tsuperregister); procedure simplify; procedure add_worklist(u:Tsuperregister); function adjacent_ok(u,v:Tsuperregister):boolean; function conservative(u,v:Tsuperregister):boolean; procedure coalesce; procedure freeze_moves(u:Tsuperregister); procedure freeze; procedure select_spill; procedure assign_colours; procedure clear_interferences(u:Tsuperregister); procedure set_live_range_direction(dir: TRADirection); procedure set_live_start(reg : tsuperregister;t : tai); function get_live_start(reg : tsuperregister) : tai; procedure set_live_end(reg : tsuperregister;t : tai); function get_live_end(reg : tsuperregister) : tai; procedure alloc_spillinfo(max_reg: Tsuperregister); { Remove p from the list and set p to the next element in the list } procedure remove_ai(list:TAsmList; var p:Tai); {$ifdef DEBUG_SPILLCOALESCE} procedure write_spill_stats; {$endif DEBUG_SPILLCOALESCE} public {$ifdef EXTDEBUG} procedure writegraph(loopidx:longint); {$endif EXTDEBUG} procedure combine(u,v:Tsuperregister); { set v as an alias for u } procedure set_alias(u,v:Tsuperregister); function get_alias(n:Tsuperregister):Tsuperregister; property live_range_direction: TRADirection read int_live_range_direction write set_live_range_direction; property live_start[reg : tsuperregister]: tai read get_live_start write set_live_start; property live_end[reg : tsuperregister]: tai read get_live_end write set_live_end; end; const first_reg = 0; last_reg = high(tsuperregister)-1; maxspillingcounter = 20; implementation uses sysutils, globals, verbose,tgobj,procinfo,cgobj; procedure sort_movelist(ml:Pmovelist); {Ok, sorting pointers is silly, but it does the job to make Trgobj.combine faster.} var h,i,p:longword; t:Tlinkedlistitem; begin with ml^ do begin if header.count<2 then exit; p:=1; while 2*cardinal(p)0 do begin for h:=p to header.count-1 do begin i:=h; t:=data[i]; repeat if ptruint(data[i-p])<=ptruint(t) then break; data[i]:=data[i-p]; dec(i,p); until imaxx1) then exit; page:=fbitmap[x shr 8,y shr 8]; result:=assigned(page) and ((x and $ff) in page^[y and $ff]); end; procedure tinterferencebitmap.setbitmap(x,y:tsuperregister;b:boolean); var x1,y1 : byte; begin x1:=x shr 8; y1:=y shr 8; if x1>maxx1 then begin reallocmem(fbitmap,sizeof(tinterferencebitmap1)*(x1+1)); fillchar(fbitmap[maxx1+1],sizeof(tinterferencebitmap1)*(x1-maxx1),0); maxx1:=x1; end; if not assigned(fbitmap[x1,y1]) then begin if y1>maxy1 then maxy1:=y1; new(fbitmap[x1,y1]); fillchar(fbitmap[x1,y1]^,sizeof(tinterferencebitmap2),0); end; if b then include(fbitmap[x1,y1]^[y and $ff],(x and $ff)) else exclude(fbitmap[x1,y1]^[y and $ff],(x and $ff)); end; {****************************************************************************** trgobj ******************************************************************************} constructor trgobj.create(Aregtype:Tregistertype; Adefaultsub:Tsubregister; const Ausable:array of tsuperregister; Afirst_imaginary:Tsuperregister; Apreserved_by_proc:Tcpuregisterset); var i : cardinal; begin { empty super register sets can cause very strange problems } if high(Ausable)=-1 then internalerror(200210181); live_range_direction:=rad_forward; first_imaginary:=Afirst_imaginary; maxreg:=Afirst_imaginary; regtype:=Aregtype; defaultsub:=Adefaultsub; preserved_by_proc:=Apreserved_by_proc; // default values set by newinstance // used_in_proc:=[]; // ssa_safe:=false; live_registers.init; { Get reginfo for CPU registers } maxreginfo:=first_imaginary; maxreginfoinc:=16; worklist_moves:=Tlinkedlist.create; move_garbage:=TLinkedList.Create; reginfo:=allocmem(first_imaginary*sizeof(treginfo)); for i:=0 to first_imaginary-1 do begin reginfo[i].degree:=high(tsuperregister); reginfo[i].alias:=RS_INVALID; end; { Usable registers } // default value set by constructor // fillchar(usable_registers,sizeof(usable_registers),0); for i:=low(Ausable) to high(Ausable) do begin usable_registers[i]:=Ausable[i]; include(usable_register_set,Ausable[i]); end; usable_registers_cnt:=high(Ausable)+1; { Initialize Worklists } spillednodes.init; simplifyworklist.init; freezeworklist.init; spillworklist.init; coalescednodes.init; selectstack.init; end; destructor trgobj.destroy; begin spillednodes.done; simplifyworklist.done; freezeworklist.done; spillworklist.done; coalescednodes.done; selectstack.done; live_registers.done; move_garbage.free; worklist_moves.free; dispose_reginfo; extended_backwards.free; backwards_was_first.free; end; procedure Trgobj.dispose_reginfo; var i : cardinal; begin if reginfo<>nil then begin for i:=0 to maxreg-1 do with reginfo[i] do begin if adjlist<>nil then dispose(adjlist,done); if movelist<>nil then dispose(movelist); end; freemem(reginfo); reginfo:=nil; end; end; function trgobj.getnewreg(subreg:tsubregister):tsuperregister; var oldmaxreginfo : tsuperregister; begin result:=maxreg; inc(maxreg); if maxreg>=last_reg then Message(parser_f_too_complex_proc); if maxreg>=maxreginfo then begin oldmaxreginfo:=maxreginfo; { Prevent overflow } if maxreginfoinc>last_reg-maxreginfo then maxreginfo:=last_reg else begin inc(maxreginfo,maxreginfoinc); if maxreginfoinc<256 then maxreginfoinc:=maxreginfoinc*2; end; reallocmem(reginfo,maxreginfo*sizeof(treginfo)); { Do we really need it to clear it ? At least for 1.0.x (PFV) } fillchar(reginfo[oldmaxreginfo],(maxreginfo-oldmaxreginfo)*sizeof(treginfo),0); end; reginfo[result].subreg:=subreg; end; function trgobj.getregister(list:TAsmList;subreg:Tsubregister):Tregister; begin {$ifdef EXTDEBUG} if reginfo=nil then InternalError(2004020901); {$endif EXTDEBUG} if defaultsub=R_SUBNONE then result:=newreg(regtype,getnewreg(R_SUBNONE),R_SUBNONE) else result:=newreg(regtype,getnewreg(subreg),subreg); end; function trgobj.uses_registers:boolean; begin result:=(maxreg>first_imaginary) or has_usedmarks or has_directalloc; end; procedure trgobj.ungetcpuregister(list:TAsmList;r:Tregister); begin if (getsupreg(r)>=first_imaginary) then InternalError(2004020902); list.concat(Tai_regalloc.dealloc(r,nil)); end; procedure trgobj.getcpuregister(list:TAsmList;r:Tregister); var supreg:Tsuperregister; begin supreg:=getsupreg(r); if supreg>=first_imaginary then internalerror(2003121503); include(used_in_proc,supreg); has_directalloc:=true; list.concat(Tai_regalloc.alloc(r,nil)); end; procedure trgobj.alloccpuregisters(list:TAsmList;const r:Tcpuregisterset); var i:cardinal; begin for i:=0 to first_imaginary-1 do if i in r then getcpuregister(list,newreg(regtype,i,defaultsub)); end; procedure trgobj.dealloccpuregisters(list:TAsmList;const r:Tcpuregisterset); var i:cardinal; begin for i:=0 to first_imaginary-1 do if i in r then ungetcpuregister(list,newreg(regtype,i,defaultsub)); end; const rtindex : longint = 0; procedure trgobj.do_register_allocation(list:TAsmList;headertai:tai); var spillingcounter:longint; endspill:boolean; i : Longint; begin { Insert regalloc info for imaginary registers } insert_regalloc_info_all(list); ibitmap:=tinterferencebitmap.create; generate_interference_graph(list,headertai); {$ifdef DEBUG_SPILLCOALESCE} if maxreg>first_imaginary then writeln(current_procinfo.procdef.mangledname, ': register allocation [',regtype,']'); {$endif DEBUG_SPILLCOALESCE} {$ifdef DEBUG_REGALLOC} if maxreg>first_imaginary then writegraph(rtindex); {$endif DEBUG_REGALLOC} inc(rtindex); { Don't do the real allocation when -sr is passed } if (cs_no_regalloc in current_settings.globalswitches) then exit; { Spill registers which interfere with all usable real registers. It is pointless to keep them for further processing. Also it may cause endless spilling. This can happen when compiling for very constrained CPUs such as i8086 where indexed memory access instructions allow only few registers as arguments and additionally the calling convention provides no general purpose volatile registers. Also spill registers which have the initial memory location and are used only once. This allows to access the memory location directly, without preloading it to a register. } for i:=first_imaginary to maxreg-1 do with reginfo[i] do if (real_reg_interferences>=usable_registers_cnt) or { also spill registers which have the initial memory location and are used only once } ((ri_has_initial_loc in flags) and (weight<=200)) then spillednodes.add(i); if spillednodes.length<>0 then begin spill_registers(list,headertai); spillednodes.clear; end; {Do register allocation.} spillingcounter:=0; repeat determine_spill_registers(list,headertai); endspill:=true; if spillednodes.length<>0 then begin inc(spillingcounter); if spillingcounter>maxspillingcounter then begin {$ifdef EXTDEBUG} { Only exit here so the .s file is still generated. Assembling the file will still trigger an error } exit; {$else} internalerror(200309041); {$endif} end; endspill:=not spill_registers(list,headertai); end; until endspill; ibitmap.free; translate_registers(list); {$ifdef DEBUG_SPILLCOALESCE} write_spill_stats; {$endif DEBUG_SPILLCOALESCE} { we need the translation table for debugging info and verbose assembler output, so not dispose them yet (FK) } for i:=0 to High(spillinfo) do spillinfo[i].interferences.Free; spillinfo:=nil; end; procedure trgobj.add_constraints(reg:Tregister); begin end; procedure trgobj.add_edge(u,v:Tsuperregister); {This procedure will add an edge to the virtual interference graph.} procedure addadj(u,v:Tsuperregister); begin {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2012101901); {$endif} with reginfo[u] do begin if adjlist=nil then new(adjlist,init); adjlist^.add(v); if (vv) and not(ibitmap[v,u]) then begin ibitmap[v,u]:=true; ibitmap[u,v]:=true; {Precoloured nodes are not stored in the interference graph.} if (u>=first_imaginary) then addadj(u,v); if (v>=first_imaginary) then addadj(v,u); end; end; procedure trgobj.add_edges_used(u:Tsuperregister); var i:cardinal; begin with live_registers do if length>0 then for i:=0 to length-1 do add_edge(u,get_alias(buf^[i])); end; {$ifdef EXTDEBUG} procedure trgobj.writegraph(loopidx:longint); {This procedure writes out the current interference graph in the register allocator.} var f:text; i,j:cardinal; begin assign(f,current_procinfo.procdef.mangledname+'_igraph'+tostr(loopidx)); rewrite(f); writeln(f,'Interference graph of ',current_procinfo.procdef.fullprocname(true)); writeln(f,'Register type: ',regtype,', First imaginary register is ',first_imaginary,' ($',hexstr(first_imaginary,2),')'); writeln(f); write(f,' '); for i:=0 to maxreg div 16 do for j:=0 to 15 do write(f,hexstr(i,1)); writeln(f); write(f,'Weight Degree Uses IntfCnt '); for i:=0 to maxreg div 16 do write(f,'0123456789ABCDEF'); writeln(f); for i:=0 to maxreg-1 do begin write(f,reginfo[i].weight:5,' ',reginfo[i].degree:5,' ',reginfo[i].count_uses:5,' ',reginfo[i].total_interferences:5,' '); if (i0) then write(f,std_regname(newreg(regtype,TSuperRegister(i),defaultsub))+':'+hexstr(i,2):7) else write(f,' ',hexstr(i,2):4); for j:=0 to maxreg-1 do if ibitmap[i,j] then write(f,'*') else write(f,'-'); writeln(f); end; close(f); end; {$endif EXTDEBUG} procedure trgobj.add_to_movelist(u:Tsuperregister;data:Tlinkedlistitem); begin {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2012101902); {$endif} with reginfo[u] do begin if movelist=nil then begin { don't use sizeof(tmovelistheader), because that ignores alignment } getmem(movelist,ptruint(@movelist^.data)-ptruint(movelist)+16*sizeof(pointer)); movelist^.header.maxcount:=16; movelist^.header.count:=0; movelist^.header.sorted_until:=0; end else begin if movelist^.header.count>=movelist^.header.maxcount then begin movelist^.header.maxcount:=movelist^.header.maxcount*2; { don't use sizeof(tmovelistheader), because that ignores alignment } reallocmem(movelist,ptruint(@movelist^.data)-ptruint(movelist)+movelist^.header.maxcount*sizeof(pointer)); end; end; movelist^.data[movelist^.header.count]:=data; inc(movelist^.header.count); end; end; procedure trgobj.set_live_range_direction(dir: TRADirection); begin if (dir in [rad_backwards,rad_backwards_reinit]) then begin if not assigned(extended_backwards) then begin { create expects a "size", not a "max bit" parameter -> +1 } backwards_was_first:=tbitset.create(maxreg+1); extended_backwards:=tbitset.create(maxreg+1); end else begin if (dir=rad_backwards_reinit) then extended_backwards.clear; backwards_was_first.clear; end; int_live_range_direction:=rad_backwards; end else int_live_range_direction:=rad_forward; end; procedure trgobj.set_live_start(reg: tsuperregister; t: tai); begin reginfo[reg].live_start:=t; end; function trgobj.get_live_start(reg: tsuperregister): tai; begin result:=reginfo[reg].live_start; end; procedure trgobj.set_live_end(reg: tsuperregister; t: tai); begin reginfo[reg].live_end:=t; end; function trgobj.get_live_end(reg: tsuperregister): tai; begin result:=reginfo[reg].live_end; end; procedure trgobj.alloc_spillinfo(max_reg: Tsuperregister); var j: longint; begin if Length(spillinfo)=maxreginfo) then internalerror(200411061); {$endif extdebug} if supreg>=first_imaginary then with reginfo[supreg] do begin { avoid overflow } if high(weight)-aweighttop_reg) or (instr.oper[O_MOV_DEST]^.typ<>top_reg) then internalerror(200311291); {$endif} sreg:=instr.oper[O_MOV_SOURCE]^.reg; dreg:=instr.oper[O_MOV_DEST]^.reg; { How should we handle m68k move %d0,%a0? } if (getregtype(sreg)<>getregtype(dreg)) then exit; i:=Tmoveins.create; i.moveset:=ms_worklist_moves; worklist_moves.insert(i); ssupreg:=getsupreg(sreg); add_to_movelist(ssupreg,i); dsupreg:=getsupreg(dreg); { On m68k move can mix address and integer registers, this leads to problems ... PM } if (ssupreg<>dsupreg) {and (getregtype(sreg)=getregtype(dreg))} then {Avoid adding the same move instruction twice to a single register.} add_to_movelist(dsupreg,i); i.x:=ssupreg; i.y:=dsupreg; end; function trgobj.move_related(n:Tsuperregister):boolean; var i:cardinal; begin move_related:=false; with reginfo[n] do if movelist<>nil then with movelist^ do for i:=0 to header.count-1 do if Tmoveins(data[i]).moveset in [ms_worklist_moves,ms_active_moves] then begin move_related:=true; break; end; end; procedure Trgobj.sort_simplify_worklist; {Sorts the simplifyworklist by the number of interferences the registers in it cause. This allows simplify to execute in constant time. Sort the list in the descending order, since items of simplifyworklist are retrieved from end to start and then items are added to selectstack. The selectstack list is also processed from end to start. Such way nodes with most interferences will get their colors first. Since degree of nodes in simplifyworklist before sorting is always less than the number of usable registers this should not trigger spilling and should lead to a better register allocation in some cases. } var p,h,i,leni,lent:longword; t:Tsuperregister; adji,adjt:Psuperregisterworklist; begin with simplifyworklist do begin if length<2 then exit; p:=1; while 2*p0 do begin for h:=p to length-1 do begin i:=h; t:=buf^[i]; adjt:=reginfo[buf^[i]].adjlist; lent:=0; if adjt<>nil then lent:=adjt^.length; repeat adji:=reginfo[buf^[i-p]].adjlist; leni:=0; if adji<>nil then leni:=adji^.length; if leni>=lent then break; buf^[i]:=buf^[i-p]; dec(i,p) until i0 do begin for h:=p to length-1 do begin i:=h; t:=buf^[i]; adjt:=reginfo[buf^[i]].adjlist; lent:=0; if adjt<>nil then lent:=adjt^.length; repeat adji:=reginfo[buf^[i-p]].adjlist; leni:=0; if adji<>nil then leni:=adji^.length; if leni<=lent then break; buf^[i]:=buf^[i-p]; dec(i,p) until i= 7, we cannot assign it to any of the registers, thus it is significant.} for n:=first_imaginary to maxreg-1 do with reginfo[n] do begin if adjlist=nil then degree:=0 else degree:=adjlist^.length; if degree>=usable_registers_cnt then spillworklist.add(n) else if move_related(n) then freezeworklist.add(n) else if not(ri_coalesced in flags) then simplifyworklist.add(n); end; sort_simplify_worklist; end; procedure trgobj.prepare_colouring; begin make_work_list; active_moves:=Tlinkedlist.create; frozen_moves:=Tlinkedlist.create; coalesced_moves:=Tlinkedlist.create; constrained_moves:=Tlinkedlist.create; selectstack.clear; end; procedure trgobj.enable_moves(n:Tsuperregister); var m:Tlinkedlistitem; i:cardinal; begin with reginfo[n] do if movelist<>nil then for i:=0 to movelist^.header.count-1 do begin m:=movelist^.data[i]; if Tmoveins(m).moveset in [ms_worklist_moves,ms_active_moves] then if Tmoveins(m).moveset=ms_active_moves then begin {Move m from the set active_moves to the set worklist_moves.} active_moves.remove(m); Tmoveins(m).moveset:=ms_worklist_moves; worklist_moves.concat(m); end; end; end; procedure Trgobj.decrement_degree(m:Tsuperregister); var adj : Psuperregisterworklist; n : tsuperregister; d,i : cardinal; begin with reginfo[m] do begin d:=degree; if d=0 then internalerror(200312151); dec(degree); if d=usable_registers_cnt then begin {Enable moves for m.} enable_moves(m); {Enable moves for adjacent.} adj:=adjlist; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if reginfo[n].flags*[ri_selected,ri_coalesced]<>[] then enable_moves(n); end; {Remove the node from the spillworklist.} if not spillworklist.delete(m) then internalerror(200310145); if move_related(m) then freezeworklist.add(m) else simplifyworklist.add(m); end; end; end; procedure trgobj.simplify; var adj : Psuperregisterworklist; m,n : Tsuperregister; i : cardinal; begin {We take the element with the least interferences out of the simplifyworklist. Since the simplifyworklist is now sorted, we no longer need to search, but we can simply take the first element.} m:=simplifyworklist.get; {Push it on the selectstack.} selectstack.add(m); with reginfo[m] do begin include(flags,ri_selected); adj:=adjlist; end; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if (n>=first_imaginary) and (reginfo[n].flags*[ri_selected,ri_coalesced]=[]) then decrement_degree(n); end; end; function trgobj.get_alias(n:Tsuperregister):Tsuperregister; begin while ri_coalesced in reginfo[n].flags do n:=reginfo[n].alias; get_alias:=n; end; procedure trgobj.add_worklist(u:Tsuperregister); begin if (u>=first_imaginary) and (not move_related(u)) and (reginfo[u].degreenil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if (flags*[ri_coalesced,ri_selected]=[]) and not ok(n,u) then begin adjacent_ok:=false; break; end; end; end; end; function trgobj.conservative(u,v:Tsuperregister):boolean; var adj : Psuperregisterworklist; done : Tsuperregisterset; {To prevent that we count nodes twice.} i,k:cardinal; n : tsuperregister; begin k:=0; supregset_reset(done,false,maxreg); with reginfo[u] do begin adj:=adjlist; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if reginfo[n].flags*[ri_coalesced,ri_selected]=[] then begin supregset_include(done,n); if reginfo[n].degree>=usable_registers_cnt then inc(k); end; end; end; adj:=reginfo[v].adjlist; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if (u=first_imaginary) and not ibitmap[u,n] and (usable_registers_cnt-reginfo[n].real_reg_interferences<=1) then begin { Do not coalesce if 'u' is the last usable real register available for imaginary register 'n'. } conservative:=false; exit; end; if not supregset_in(done,n) and (reginfo[n].degree>=usable_registers_cnt) and (reginfo[n].flags*[ri_coalesced,ri_selected]=[]) then inc(k); end; conservative:=(k0 then internalerror(200712291); reginfo[v].alias:=get_alias(u); coalescednodes.add(v); end; procedure trgobj.combine(u,v:Tsuperregister); var adj : Psuperregisterworklist; i,n,p,q:cardinal; t : tsuperregister; searched:Tlinkedlistitem; found : boolean; begin if not freezeworklist.delete(v) then spillworklist.delete(v); coalescednodes.add(v); include(reginfo[v].flags,ri_coalesced); reginfo[v].alias:=u; {Combine both movelists. Since the movelists are sets, only add elements that are not already present. The movelists cannot be empty by definition; nodes are only coalesced if there is a move between them. To prevent quadratic time blowup (movelists of especially machine registers can get very large because of moves generated during calls) we need to go into disgusting complexity. (See webtbs/tw2242 for an example that stresses this.) We want to sort the movelist to be able to search logarithmically. Unfortunately, sorting the movelist every time before searching is counter-productive, since the movelist usually grows with a few items at a time. Therefore, we split the movelist into a sorted and an unsorted part and search through both. If the unsorted part becomes too large, we sort.} if assigned(reginfo[u].movelist) then begin {We have to weigh the cost of sorting the list against searching the cost of the unsorted part. I use factor of 8 here; if the number of items is less than 8 times the numer of unsorted items, we'll sort the list.} with reginfo[u].movelist^ do if header.count<8*(header.count-header.sorted_until) then sort_movelist(reginfo[u].movelist); if assigned(reginfo[v].movelist) then begin for n:=0 to reginfo[v].movelist^.header.count-1 do begin {Binary search the sorted part of the list.} searched:=reginfo[v].movelist^.data[n]; p:=0; q:=reginfo[u].movelist^.header.sorted_until; i:=0; if q<>0 then repeat i:=(p+q) shr 1; if ptruint(searched)>ptruint(reginfo[u].movelist^.data[i]) then p:=i+1 else q:=i; until p=q; with reginfo[u].movelist^ do if searched<>data[i] then begin {Linear search the unsorted part of the list.} found:=false; for i:=header.sorted_until+1 to header.count-1 do if searched=data[i] then begin found:=true; break; end; if not found then add_to_movelist(u,searched); end; end; end; end; enable_moves(v); adj:=reginfo[v].adjlist; if adj<>nil then for i:=1 to adj^.length do begin t:=adj^.buf^[i-1]; with reginfo[t] do if not(ri_coalesced in flags) then begin {t has a connection to v. Since we are adding v to u, we need to connect t to u. However, beware if t was already connected to u...} if (ibitmap[t,u]) and not (ri_selected in flags) then {... because in that case, we are actually removing an edge and the degree of t decreases.} decrement_degree(t) else begin add_edge(t,u); {We have added an edge to t and u. So their degree increases. However, v is added to u. That means its neighbours will no longer point to v, but to u instead. Therefore, only the degree of u increases.} if (u>=first_imaginary) and not (ri_selected in flags) then inc(reginfo[u].degree); end; end; end; if (reginfo[u].degree>=usable_registers_cnt) and freezeworklist.delete(u) then spillworklist.add(u); end; procedure trgobj.coalesce; var m:Tmoveins; x,y,u,v:cardinal; begin m:=Tmoveins(worklist_moves.getfirst); x:=get_alias(m.x); y:=get_alias(m.y); if (yfirst_imaginary) or (u in usable_register_set)) and ((v>first_imaginary) or (v in usable_register_set)) then begin m.moveset:=ms_coalesced_moves; {Move coalesced!} coalesced_moves.insert(m); combine(u,v); add_worklist(u); end else begin m.moveset:=ms_active_moves; active_moves.insert(m); end; end; procedure trgobj.freeze_moves(u:Tsuperregister); var i:cardinal; m:Tlinkedlistitem; v,x,y:Tsuperregister; begin if reginfo[u].movelist<>nil then for i:=0 to reginfo[u].movelist^.header.count-1 do begin m:=reginfo[u].movelist^.data[i]; if Tmoveins(m).moveset in [ms_worklist_moves,ms_active_moves] then begin x:=Tmoveins(m).x; y:=Tmoveins(m).y; if get_alias(y)=get_alias(u) then v:=get_alias(x) else v:=get_alias(y); {Move m from active_moves/worklist_moves to frozen_moves.} if Tmoveins(m).moveset=ms_active_moves then active_moves.remove(m) else worklist_moves.remove(m); Tmoveins(m).moveset:=ms_frozen_moves; frozen_moves.insert(m); if (v>=first_imaginary) and not(move_related(v)) and (reginfo[v].degree0 } for i:=0 to length-1 do begin adj:=reginfo[buf^[i]].adjlist; dist:=adj^.length-reginfo[buf^[i]].total_interferences/reginfo[buf^[i]].count_uses; if assigned(adj) and (reginfo[buf^[i]].weight=1) and (reginfo[buf^[i]].weight>0) then begin p:=i; minweight:=reginfo[buf^[i]].weight; end; end; n:=buf^[p]; deleteidx(p); end; {$endif SPILLING_NEW} {$ifdef SPILLING_OLD} { We must look for the element with the most interferences in the spillworklist. This is required because those registers are creating the most conflicts and keeping them in a register will not reduce the complexity and even can cause the help registers for the spilling code to get too much conflicts with the result that the spilling code will never converge (PFV) We need a special processing for nodes with the ri_spill_read flag set. These nodes contain a value loaded from a previously spilled node. We need to avoid another spilling of ri_spill_read nodes, since it will likely lead to an endless loop and the register allocation will fail. } maxlength:=0; minweight:=high(longint); p:=high(p); with spillworklist do begin {Safe: This procedure is only called if length<>0} { Search for a candidate to be spilled, ignoring nodes with the ri_spill_read flag set. } for i:=0 to length-1 do if not(ri_spill_read in reginfo[buf^[i]].flags) then begin adj:=reginfo[buf^[i]].adjlist; if assigned(adj) and ( (adj^.length>maxlength) or ((adj^.length=maxlength) and (reginfo[buf^[i]].weightRS_INVALID)} tmpr: tregister; {$endif} begin spillednodes.clear; {Reset colours} for n:=0 to maxreg-1 do reginfo[n].colour:=n; {Colour the cpu registers...} supregset_reset(colourednodes,false,maxreg); for n:=0 to first_imaginary-1 do supregset_include(colourednodes,n); {Now colour the imaginary registers on the select-stack.} for i:=selectstack.length downto 1 do begin n:=selectstack.buf^[i-1]; {Create a list of colours that we cannot assign to n.} adj_colours:=[]; adj:=reginfo[n].adjlist; if adj<>nil then for j:=0 to adj^.length-1 do begin a:=get_alias(adj^.buf^[j]); if supregset_in(colourednodes,a) and (reginfo[a].colour<=255) then include(adj_colours,reginfo[a].colour); end; { e.g. AVR does not have a stack pointer register } {$if declared(RS_STACK_POINTER_REG) and (RS_STACK_POINTER_REG<>RS_INVALID)} { FIXME: temp variable r is needed here to avoid Internal error 20060521 } { while compiling the compiler. } tmpr:=NR_STACK_POINTER_REG; if (regtype=getregtype(tmpr)) then include(adj_colours,RS_STACK_POINTER_REG); {$ifend} {Assume a spill by default...} found:=false; {Search for a colour not in this list.} for k:=0 to usable_registers_cnt-1 do begin c:=usable_registers[k]; if not(c in adj_colours) then begin reginfo[n].colour:=c; found:=true; supregset_include(colourednodes,n); break; end; end; if not found then spillednodes.add(n); end; {Finally colour the nodes that were coalesced.} for i:=1 to coalescednodes.length do begin n:=coalescednodes.buf^[i-1]; k:=get_alias(n); reginfo[n].colour:=reginfo[k].colour; end; end; procedure trgobj.colour_registers; begin repeat if simplifyworklist.length<>0 then simplify else if not(worklist_moves.empty) then coalesce else if freezeworklist.length<>0 then freeze else if spillworklist.length<>0 then select_spill; until (simplifyworklist.length=0) and worklist_moves.empty and (freezeworklist.length=0) and (spillworklist.length=0); assign_colours; end; procedure trgobj.epilogue_colouring; begin { remove all items from the worklists, but do not free them, they are still needed for spill coalesce } move_garbage.concatList(worklist_moves); move_garbage.concatList(active_moves); active_moves.Free; active_moves:=nil; move_garbage.concatList(frozen_moves); frozen_moves.Free; frozen_moves:=nil; move_garbage.concatList(coalesced_moves); coalesced_moves.Free; coalesced_moves:=nil; move_garbage.concatList(constrained_moves); constrained_moves.Free; constrained_moves:=nil; end; procedure trgobj.clear_interferences(u:Tsuperregister); {Remove node u from the interference graph and remove all collected move instructions it is associated with.} var i : word; v : Tsuperregister; adj,adj2 : Psuperregisterworklist; begin adj:=reginfo[u].adjlist; if adj<>nil then begin for i:=1 to adj^.length do begin v:=adj^.buf^[i-1]; {Remove (u,v) and (v,u) from bitmap.} ibitmap[u,v]:=false; ibitmap[v,u]:=false; {Remove (v,u) from adjacency list.} adj2:=reginfo[v].adjlist; if adj2<>nil then begin adj2^.delete(u); if adj2^.length=0 then begin dispose(adj2,done); reginfo[v].adjlist:=nil; end; end; end; {Remove ( u,* ) from adjacency list.} dispose(adj,done); reginfo[u].adjlist:=nil; end; end; function trgobj.getregisterinline(list:TAsmList;const subregconstraints:Tsubregisterset):Tregister; var p : Tsuperregister; subreg: tsubregister; begin for subreg:=high(tsubregister) downto low(tsubregister) do if subreg in subregconstraints then break; p:=getnewreg(subreg); live_registers.add(p); result:=newreg(regtype,p,subreg); add_edges_used(p); add_constraints(result); { also add constraints for other sizes used for this register } if subreg<>low(tsubregister) then for subreg:=pred(subreg) downto low(tsubregister) do if subreg in subregconstraints then add_constraints(newreg(regtype,getsupreg(result),subreg)); end; procedure trgobj.ungetregisterinline(list:TAsmList;r:Tregister); var supreg:Tsuperregister; begin supreg:=getsupreg(r); live_registers.delete(supreg); insert_regalloc_info(list,supreg); end; procedure trgobj.insert_regalloc_info(list:TAsmList;u:tsuperregister); var p : tai; r : tregister; palloc, pdealloc : tai_regalloc; begin { Insert regallocs for all imaginary registers } with reginfo[u] do begin r:=newreg(regtype,u,subreg); if assigned(live_start) then begin { Generate regalloc and bind it to an instruction, this is needed to find all live registers belonging to an instruction during the spilling } if live_start.typ=ait_instruction then palloc:=tai_regalloc.alloc(r,live_start) else palloc:=tai_regalloc.alloc(r,nil); if live_end.typ=ait_instruction then pdealloc:=tai_regalloc.dealloc(r,live_end) else pdealloc:=tai_regalloc.dealloc(r,nil); { Insert live start allocation before the instruction/reg_a_sync } list.insertbefore(palloc,live_start); { Insert live end deallocation before reg allocations to reduce conflicts } p:=live_end; while assigned(p) and assigned(p.previous) and (tai(p.previous).typ=ait_regalloc) and (tai_regalloc(p.previous).ratype=ra_alloc) and (tai_regalloc(p.previous).reg<>r) do p:=tai(p.previous); { , but add release after a reg_a_sync } if assigned(p) and (p.typ=ait_regalloc) and (tai_regalloc(p).ratype=ra_sync) then p:=tai(p.next); if assigned(p) then list.insertbefore(pdealloc,p) else list.concat(pdealloc); end; end; end; procedure trgobj.insert_regalloc_info_all(list:TAsmList); var supreg : tsuperregister; begin { Insert regallocs for all imaginary registers } for supreg:=first_imaginary to maxreg-1 do insert_regalloc_info(list,supreg); end; procedure trgobj.determine_spill_registers(list: TAsmList; headertail: tai); begin prepare_colouring; colour_registers; epilogue_colouring; end; procedure trgobj.get_spill_temp(list: TAsmlist; spill_temps: Pspill_temp_list; supreg: tsuperregister); var size: ptrint; begin {Get a temp for the spilled register, the size must at least equal a complete register, take also care of the fact that subreg can be larger than a single register like doubles that occupy 2 registers } { only force the whole register in case of integers. Storing a register that contains a single precision value as a double can cause conversion errors on e.g. ARM VFP } if (regtype=R_INTREGISTER) then size:=max(tcgsize2size[reg_cgsize(newreg(regtype,supreg,R_SUBWHOLE))], tcgsize2size[reg_cgsize(newreg(regtype,supreg,reginfo[supreg].subreg))]) else size:=tcgsize2size[reg_cgsize(newreg(regtype,supreg,reginfo[supreg].subreg))]; tg.gettemp(list, size,size, tt_noreuse,spill_temps^[supreg]); end; procedure trgobj.add_cpu_interferences(p : tai); begin end; procedure trgobj.generate_interference_graph(list:TAsmList;headertai:tai); procedure RecordUse(var r : Treginfo); begin inc(r.total_interferences,live_registers.length); inc(r.count_uses); end; var p : tai; i : integer; supreg, u: tsuperregister; {$ifdef arm} so: pshifterop; {$endif arm} begin { All allocations are available. Now we can generate the interference graph. Walk through all instructions, we can start with the headertai, because before the header tai is only symbols. } live_registers.clear; p:=headertai; while assigned(p) do begin prefetch(pointer(p.next)^); case p.typ of ait_instruction: with Taicpu(p) do begin current_filepos:=fileinfo; {For speed reasons, get_alias isn't used here, instead, assign_colours will also set the colour of coalesced nodes. If there are registers with colour=0, then the coalescednodes list probably doesn't contain these registers, causing assign_colours not to do this properly.} for i:=0 to ops-1 do with oper[i]^ do case typ of top_reg: if (getregtype(reg)=regtype) then begin u:=getsupreg(reg); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2018111701); {$endif} RecordUse(reginfo[u]); end; top_ref: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then with ref^ do begin if (base<>NR_NO) and (getregtype(base)=regtype) then begin u:=getsupreg(base); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2018111702); {$endif} RecordUse(reginfo[u]); end; if (index<>NR_NO) and (getregtype(index)=regtype) then begin u:=getsupreg(index); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2018111703); {$endif} RecordUse(reginfo[u]); end; {$if defined(x86)} if (segment<>NR_NO) and (getregtype(segment)=regtype) then begin u:=getsupreg(segment); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2018111704); {$endif} RecordUse(reginfo[u]); end; {$endif defined(x86)} end; end; {$ifdef arm} Top_shifterop: begin if regtype=R_INTREGISTER then begin so:=shifterop; if (so^.rs<>NR_NO) and (getregtype(so^.rs)=regtype) then RecordUse(reginfo[getsupreg(so^.rs)]); end; end; {$endif arm} else ; end; end; ait_regalloc: with Tai_regalloc(p) do begin if (getregtype(reg)=regtype) then begin supreg:=getsupreg(reg); case ratype of ra_alloc : begin live_registers.add(supreg); {$ifdef DEBUG_REGISTERLIFE} write(live_registers.length,' '); for i:=0 to live_registers.length-1 do write(std_regname(newreg(regtype,live_registers.buf^[i],defaultsub)),' '); writeln; {$endif DEBUG_REGISTERLIFE} add_edges_used(supreg); end; ra_dealloc : begin live_registers.delete(supreg); {$ifdef DEBUG_REGISTERLIFE} write(live_registers.length,' '); for i:=0 to live_registers.length-1 do write(std_regname(newreg(regtype,live_registers.buf^[i],defaultsub)),' '); writeln; {$endif DEBUG_REGISTERLIFE} add_edges_used(supreg); end; ra_markused : if (supreg0 then begin for i:=0 to live_registers.length-1 do begin { Only report for imaginary registers } if live_registers.buf^[i]>=first_imaginary then Comment(V_Warning,'Register '+std_regname(newreg(regtype,live_registers.buf^[i],defaultsub))+' not released'); end; end; {$endif} end; procedure trgobj.translate_register(var reg : tregister); begin if (getregtype(reg)=regtype) then setsupreg(reg,reginfo[getsupreg(reg)].colour) else internalerror(200602021); end; procedure trgobj.set_reg_initial_location(reg: tregister; const ref: treference); var supreg: TSuperRegister; begin supreg:=getsupreg(reg); if (supreg=maxreg) then internalerror(2020090501); alloc_spillinfo(supreg+1); spillinfo[supreg].spilllocation:=ref; include(reginfo[supreg].flags,ri_has_initial_loc); end; procedure trgobj.translate_registers(list: TAsmList); function get_reg_name_full(r: tregister; include_prefix: boolean): string; var rr:tregister; sr:TSuperRegister; begin sr:=getsupreg(r); if reginfo[sr].live_start=nil then begin result:=''; exit; end; if (sr=0 then result:=result+'+'; result:=result+IntToStr(offset)+']'; if include_prefix then result:='stack '+result; end else begin rr:=r; setsupreg(rr,reginfo[sr].colour); result:=std_regname(rr); if include_prefix then result:='register '+result; end; {$if defined(cpu8bitalu) or defined(cpu16bitalu)} if (sr>=first_int_imreg) and cg.has_next_reg[sr] then result:=result+':'+get_reg_name_full(cg.GetNextReg(r),false); {$endif defined(cpu8bitalu) or defined(cpu16bitalu)} end; var hp,p:Tai; i:shortint; u:longint; s:string; {$ifdef arm} so:pshifterop; {$endif arm} begin { Leave when no imaginary registers are used } if maxreg<=first_imaginary then exit; p:=Tai(list.first); while assigned(p) do begin prefetch(pointer(p.next)^); case p.typ of ait_regalloc: with Tai_regalloc(p) do begin if (getregtype(reg)=regtype) then begin { Only alloc/dealloc is needed for the optimizer, remove other regalloc } if not(ratype in [ra_alloc,ra_dealloc]) then begin remove_ai(list,p); continue; end else begin u:=reginfo[getsupreg(reg)].colour; include(used_in_proc,u); {$ifdef EXTDEBUG} if u>=maxreginfo then internalerror(2015040501); {$endif} setsupreg(reg,u); end; end; end; ait_varloc: begin if (getregtype(tai_varloc(p).newlocation)=regtype) then begin if (cs_asm_source in current_settings.globalswitches) then begin s:=get_reg_name_full(tai_varloc(p).newlocation,tai_varloc(p).newlocationhi=NR_NO); if s<>'' then begin if tai_varloc(p).newlocationhi<>NR_NO then s:=get_reg_name_full(tai_varloc(p).newlocationhi,true)+':'+s; hp:=Tai_comment.Create(strpnew('Var '+tai_varloc(p).varsym.realname+' located in '+s)); list.insertafter(hp,p); end; setsupreg(tai_varloc(p).newlocation,reginfo[getsupreg(tai_varloc(p).newlocation)].colour); if tai_varloc(p).newlocationhi<>NR_NO then setsupreg(tai_varloc(p).newlocationhi,reginfo[getsupreg(tai_varloc(p).newlocationhi)].colour); end; remove_ai(list,p); continue; end; end; ait_instruction: with Taicpu(p) do begin current_filepos:=fileinfo; {For speed reasons, get_alias isn't used here, instead, assign_colours will also set the colour of coalesced nodes. If there are registers with colour=0, then the coalescednodes list probably doesn't contain these registers, causing assign_colours not to do this properly.} for i:=0 to ops-1 do with oper[i]^ do case typ of Top_reg: if (getregtype(reg)=regtype) then begin u:=getsupreg(reg); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2012101903); {$endif} setsupreg(reg,reginfo[u].colour); end; Top_ref: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then with ref^ do begin if (base<>NR_NO) and (getregtype(base)=regtype) then begin u:=getsupreg(base); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2012101904); {$endif} setsupreg(base,reginfo[u].colour); end; if (index<>NR_NO) and (getregtype(index)=regtype) then begin u:=getsupreg(index); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2012101905); {$endif} setsupreg(index,reginfo[u].colour); end; {$if defined(x86)} if (segment<>NR_NO) and (getregtype(segment)=regtype) then begin u:=getsupreg(segment); {$ifdef EXTDEBUG} if (u>=maxreginfo) then internalerror(2013052401); {$endif} setsupreg(segment,reginfo[u].colour); end; {$endif defined(x86)} end; end; {$ifdef arm} Top_shifterop: begin if regtype=R_INTREGISTER then begin so:=shifterop; if (so^.rs<>NR_NO) and (getregtype(so^.rs)=regtype) then setsupreg(so^.rs,reginfo[getsupreg(so^.rs)].colour); end; end; {$endif arm} else ; end; { Maybe the operation can be removed when it is a move and both arguments are the same } if is_same_reg_move(regtype) then begin remove_ai(list,p); continue; end; end; else ; end; p:=Tai(p.next); end; current_filepos:=current_procinfo.exitpos; end; function trgobj.spill_registers(list:TAsmList;headertai:tai):boolean; { Returns true if any help registers have been used } var i : cardinal; t : tsuperregister; p : Tai; regs_to_spill_set:Tsuperregisterset; spill_temps : ^Tspill_temp_list; supreg,x,y : tsuperregister; templist : TAsmList; j : Longint; getnewspillloc : Boolean; begin spill_registers:=false; live_registers.clear; { spilling should start with the node with the highest number of interferences, so we can coalesce as much as possible spilled nodes (coalesce in case of spilled node means they share the same memory location) } sort_spillednodes; for i:=first_imaginary to maxreg-1 do exclude(reginfo[i].flags,ri_selected); spill_temps:=allocmem(sizeof(treference)*maxreg); supregset_reset(regs_to_spill_set,false,$ffff); {$ifdef DEBUG_SPILLCOALESCE} writeln('trgobj.spill_registers: Got maxreg ',maxreg); writeln('trgobj.spill_registers: Spilling ',spillednodes.length,' nodes'); {$endif DEBUG_SPILLCOALESCE} { after each round of spilling, more registers could be used due to allocations for spilling } alloc_spillinfo(maxreg); { Allocate temps and insert in front of the list } templist:=TAsmList.create; { Safe: this procedure is only called if there are spilled nodes. } with spillednodes do { the node with the highest interferences is the last one } for i:=length-1 downto 0 do begin t:=buf^[i]; {$ifdef DEBUG_SPILLCOALESCE} writeln('trgobj.spill_registers: Spilling ',t); {$endif DEBUG_SPILLCOALESCE} spillinfo[t].interferences:=Tinterferencebitmap.create; { copy interferences } for j:=0 to maxreg-1 do spillinfo[t].interferences[0,j]:=ibitmap[t,j]; { Alternative representation. } supregset_include(regs_to_spill_set,t); { Clear all interferences of the spilled register. } clear_interferences(t); getnewspillloc:=not (ri_has_initial_loc in reginfo[t].flags); if not getnewspillloc then spill_temps^[t]:=spillinfo[t].spilllocation; { check if we can "coalesce" spilled nodes. To do so, it is required that they do not interfere but are connected by a move instruction doing so might save some mem->mem moves } if (cs_opt_level3 in current_settings.optimizerswitches) and getnewspillloc and assigned(reginfo[t].movelist) then for j:=0 to reginfo[t].movelist^.header.count-1 do begin x:=Tmoveins(reginfo[t].movelist^.data[j]).x; y:=Tmoveins(reginfo[t].movelist^.data[j]).y; if (x=t) and (spillinfo[get_alias(y)].spilled) and not(spillinfo[get_alias(y)].interferences[0,t]) then begin spill_temps^[t]:=spillinfo[get_alias(y)].spilllocation; {$ifdef DEBUG_SPILLCOALESCE} writeln('trgobj.spill_registers: Spill coalesce ',t,' to ',y); {$endif DEBUG_SPILLCOALESCE} getnewspillloc:=false; break; end else if (y=t) and (spillinfo[get_alias(x)].spilled) and not(spillinfo[get_alias(x)].interferences[0,t]) then begin {$ifdef DEBUG_SPILLCOALESCE} writeln('trgobj.spill_registers: Spill coalesce ',t,' to ',x); {$endif DEBUG_SPILLCOALESCE} spill_temps^[t]:=spillinfo[get_alias(x)].spilllocation; getnewspillloc:=false; break; end; end; if getnewspillloc then get_spill_temp(templist,spill_temps,t); {$ifdef DEBUG_SPILLCOALESCE} writeln('trgobj.spill_registers: Spill temp: ',getsupreg(spill_temps^[t].base),'+',spill_temps^[t].offset); {$endif DEBUG_SPILLCOALESCE} { set spilled only as soon as a temp is assigned, else a mov iregX,iregX results in a spill coalesce with itself } spillinfo[t].spilled:=true; spillinfo[t].spilllocation:=spill_temps^[t]; end; list.insertlistafter(headertai,templist); templist.free; { Walk through all instructions, we can start with the headertai, because before the header tai is only symbols } p:=headertai; while assigned(p) do begin case p.typ of ait_regalloc: with Tai_regalloc(p) do begin if (getregtype(reg)=regtype) then begin {A register allocation of the spilled register (and all coalesced registers) must be removed.} supreg:=get_alias(getsupreg(reg)); if supregset_in(regs_to_spill_set,supreg) then begin { Remove loading of the register from its initial memory location (e.g. load of a stack parameter to the register). } if (ratype=ra_alloc) and (ri_has_initial_loc in reginfo[supreg].flags) and (instr<>nil) then begin list.remove(instr); FreeAndNil(instr); dec(reginfo[supreg].weight,100); end; { Remove the regalloc } remove_ai(list,p); continue; end else begin case ratype of ra_alloc : live_registers.add(supreg); ra_dealloc : live_registers.delete(supreg); else ; end; end; end; end; {$ifdef llvm} ait_llvmins, {$endif llvm} ait_instruction: with tai_cpu_abstract_sym(p) do begin // writeln(gas_op2str[tai_cpu_abstract_sym(p).opcode]); current_filepos:=fileinfo; if instr_spill_register(list,tai_cpu_abstract_sym(p),regs_to_spill_set,spill_temps^) then spill_registers:=true; end; else ; end; p:=Tai(p.next); end; current_filepos:=current_procinfo.exitpos; {Safe: this procedure is only called if there are spilled nodes.} with spillednodes do for i:=0 to length-1 do begin j:=buf^[i]; if tg.istemp(spill_temps^[j]) then tg.ungettemp(list,spill_temps^[j]); end; freemem(spill_temps); end; function trgobj.do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean; begin result:=false; end; procedure trgobj.do_spill_read(list:TAsmList;pos:tai;const spilltemp:treference;tempreg:tregister;orgsupreg:tsuperregister); var ins:tai_cpu_abstract_sym; begin ins:=spilling_create_load(spilltemp,tempreg); add_cpu_interferences(ins); list.insertafter(ins,pos); {$ifdef DEBUG_SPILLING} list.Insertbefore(tai_comment.Create(strpnew('Spilling: Spill Read')),ins); {$endif} end; procedure Trgobj.do_spill_written(list:TAsmList;pos:tai;const spilltemp:treference;tempreg:tregister;orgsupreg:tsuperregister); var ins:tai_cpu_abstract_sym; begin ins:=spilling_create_store(tempreg,spilltemp); add_cpu_interferences(ins); list.insertafter(ins,pos); {$ifdef DEBUG_SPILLING} list.Insertbefore(tai_comment.Create(strpnew('Spilling: Spill Write')),ins); {$endif} end; function trgobj.get_spill_subreg(r : tregister) : tsubregister; begin result:=defaultsub; end; function trgobj.addreginfo(var regs: tspillregsinfo; const r: tsuperregisterset; reg: tregister; operation: topertype): boolean; var i, tmpindex: longint; supreg: tsuperregister; begin result:=false; tmpindex := regs.reginfocount; supreg := get_alias(getsupreg(reg)); { did we already encounter this register? } for i := 0 to pred(regs.reginfocount) do if (regs.reginfo[i].orgreg = supreg) then begin tmpindex := i; break; end; if tmpindex > high(regs.reginfo) then internalerror(2003120301); regs.reginfo[tmpindex].orgreg := supreg; include(regs.reginfo[tmpindex].spillregconstraints,get_spill_subreg(reg)); if supregset_in(r,supreg) then begin { add/update info on this register } regs.reginfo[tmpindex].mustbespilled := true; case operation of operand_read: regs.reginfo[tmpindex].regread := true; operand_write: regs.reginfo[tmpindex].regwritten := true; operand_readwrite: begin regs.reginfo[tmpindex].regread := true; regs.reginfo[tmpindex].regwritten := true; end; end; result:=true; end; inc(regs.reginfocount,ord(regs.reginfocount=tmpindex)); end; function trgobj.instr_get_oper_spilling_info(var regs: tspillregsinfo; const r: tsuperregisterset; instr: tai_cpu_abstract_sym; opidx: longint): boolean; begin result:=false; with instr.oper[opidx]^ do begin case typ of top_reg: begin if (getregtype(reg) = regtype) then result:=addreginfo(regs,r,reg,instr.spilling_get_operation_type(opidx)); end; top_ref: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then with ref^ do begin if (base <> NR_NO) and (getregtype(base)=regtype) then result:=addreginfo(regs,r,base,instr.spilling_get_operation_type_ref(opidx,base)); if (index <> NR_NO) and (getregtype(index)=regtype) then result:=addreginfo(regs,r,index,instr.spilling_get_operation_type_ref(opidx,index)) or result; {$if defined(x86)} if (segment <> NR_NO) and (getregtype(segment)=regtype) then result:=addreginfo(regs,r,segment,instr.spilling_get_operation_type_ref(opidx,segment)) or result; {$endif defined(x86)} end; end; {$ifdef ARM} top_shifterop: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then if shifterop^.rs<>NR_NO then result:=addreginfo(regs,r,shifterop^.rs,operand_read); end; {$endif ARM} else ; end; end; end; procedure trgobj.try_replace_reg(const regs: tspillregsinfo; var reg: tregister; useloadreg: boolean); var i: longint; supreg: tsuperregister; begin supreg:=get_alias(getsupreg(reg)); for i:=0 to pred(regs.reginfocount) do if (regs.reginfo[i].mustbespilled) and (regs.reginfo[i].orgreg=supreg) then begin { Only replace supreg } if useloadreg then setsupreg(reg, getsupreg(regs.reginfo[i].loadreg)) else setsupreg(reg, getsupreg(regs.reginfo[i].storereg)); break; end; end; procedure trgobj.substitute_spilled_registers(const regs: tspillregsinfo; instr: tai_cpu_abstract_sym; opidx: longint); begin with instr.oper[opidx]^ do case typ of top_reg: begin if (getregtype(reg) = regtype) then try_replace_reg(regs, reg, not ssa_safe or (instr.spilling_get_operation_type(opidx)=operand_read)); end; top_ref: begin if regtype in [R_INTREGISTER, R_ADDRESSREGISTER] then begin if (ref^.base <> NR_NO) and (getregtype(ref^.base)=regtype) then try_replace_reg(regs, ref^.base, not ssa_safe or (instr.spilling_get_operation_type_ref(opidx, ref^.base)=operand_read)); if (ref^.index <> NR_NO) and (getregtype(ref^.index)=regtype) then try_replace_reg(regs, ref^.index, not ssa_safe or (instr.spilling_get_operation_type_ref(opidx, ref^.index)=operand_read)); {$if defined(x86)} if (ref^.segment <> NR_NO) and (getregtype(ref^.segment)=regtype) then try_replace_reg(regs, ref^.segment, true { always read-only }); {$endif defined(x86)} end; end; {$ifdef ARM} top_shifterop: begin if regtype in [R_INTREGISTER, R_ADDRESSREGISTER] then try_replace_reg(regs, shifterop^.rs, true { always read-only }); end; {$endif ARM} else ; end; end; function trgobj.instr_spill_register(list:TAsmList; instr:tai_cpu_abstract_sym; const r:Tsuperregisterset; const spilltemplist:Tspill_temp_list): boolean; var counter: longint; regs: tspillregsinfo; spilled: boolean; var loadpos, storepos : tai; oldlive_registers : tsuperregisterworklist; begin result := false; fillchar(regs,sizeof(regs),0); for counter := low(regs.reginfo) to high(regs.reginfo) do begin regs.reginfo[counter].orgreg := RS_INVALID; regs.reginfo[counter].loadreg := NR_INVALID; regs.reginfo[counter].storereg := NR_INVALID; end; spilled := false; { check whether and if so which and how (read/written) this instructions contains registers that must be spilled } for counter := 0 to instr.ops-1 do spilled:=instr_get_oper_spilling_info(regs,r,instr,counter) or spilled; { if no spilling for this instruction we can leave } if not spilled then exit; { Check if the instruction is "OP reg1,reg2" and reg1 is coalesced with reg2 } if (regs.reginfocount=1) and (instr.ops=2) and (instr.oper[0]^.typ=top_reg) and (instr.oper[1]^.typ=top_reg) and (getregtype(instr.oper[0]^.reg)=getregtype(instr.oper[1]^.reg)) then begin { Set both registers in the instruction to the same register } setsupreg(instr.oper[0]^.reg, regs.reginfo[0].orgreg); setsupreg(instr.oper[1]^.reg, regs.reginfo[0].orgreg); { In case of MOV reg,reg no spilling is needed. This MOV will be removed later in translate_registers() } if instr.is_same_reg_move(regtype) then exit; end; {$if defined(x86) or defined(mips) or defined(sparcgen) or defined(arm) or defined(m68k)} { Try replacing the register with the spilltemp. This is useful only for the i386,x86_64 that support memory locations for several instructions For non-x86 it is nevertheless possible to replace moves to/from the register with loads/stores to spilltemp (Sergei) } for counter := 0 to pred(regs.reginfocount) do with regs.reginfo[counter] do begin if mustbespilled then begin if do_spill_replace(list,instr,orgreg,spilltemplist[orgreg]) then mustbespilled:=false; end; end; {$endif defined(x86) or defined(mips) or defined(sparcgen) or defined(arm) or defined(m68k)} { There are registers that need are spilled. We generate the following code for it. The used positions where code need to be inserted are marked using #. Note that code is always inserted before the positions using pos.previous. This way the position is always the same since pos doesn't change, but pos.previous is modified everytime new code is inserted. [ - reg_allocs load spills - load spills ] [#loadpos - reg_deallocs - reg_allocs ] [ - reg_deallocs for load-only spills - reg_allocs for store-only spills ] [#instr - original instruction ] [ - store spills - reg_deallocs store spills ] [#storepos ] } result := true; oldlive_registers.copyfrom(live_registers); { Process all tai_regallocs belonging to this instruction, ignore explicit inserted regallocs. These can happend for example in i386: mov ref,ireg26 lea [ireg26+ireg17],edi All released registers are also added to the live_registers because they can't be used during the spilling } loadpos:=tai(instr.previous); while assigned(loadpos) and (loadpos.typ=ait_regalloc) and ((tai_regalloc(loadpos).instr=nil) or (tai_regalloc(loadpos).instr=instr)) do begin { Only add deallocs belonging to the instruction. Explicit inserted deallocs belong to the previous instruction and not the current instruction } if (tai_regalloc(loadpos).instr=instr) and (tai_regalloc(loadpos).ratype=ra_dealloc) then live_registers.add(getsupreg(tai_regalloc(loadpos).reg)); loadpos:=tai(loadpos.previous); end; loadpos:=tai(loadpos.next); { Load the spilled registers } for counter := 0 to pred(regs.reginfocount) do with regs.reginfo[counter] do begin if mustbespilled and regread then begin loadreg:=getregisterinline(list,regs.reginfo[counter].spillregconstraints); do_spill_read(list,tai(loadpos.previous),spilltemplist[orgreg],loadreg,orgreg); include(reginfo[getsupreg(loadreg)].flags,ri_spill_read); end; end; { Release temp registers of read-only registers, and add reference of the instruction to the reginfo } for counter := 0 to pred(regs.reginfocount) do with regs.reginfo[counter] do begin if mustbespilled and regread and (ssa_safe or not regwritten) then begin { The original instruction will be the next that uses this register set weigth of the newly allocated register higher than the old one, so it will selected for spilling with a lower priority than the original one, this prevents an endless spilling loop if orgreg is short living, see e.g. tw25164.pp the min trick is needed to avoid an overflow in case weight=high(weight which might happen } add_reg_instruction(instr,loadreg,min(high(reginfo[orgreg].weight)-1,reginfo[orgreg].weight)+1); ungetregisterinline(list,loadreg); end; end; { Allocate temp registers of write-only registers, and add reference of the instruction to the reginfo } for counter := 0 to pred(regs.reginfocount) do with regs.reginfo[counter] do begin if mustbespilled and regwritten then begin { When the register is also loaded there is already a register assigned } if (not regread) or ssa_safe then begin storereg:=getregisterinline(list,regs.reginfo[counter].spillregconstraints); { we also use loadreg for store replacements in case we don't have ensure ssa -> initialise loadreg even if there are no reads } if not regread then loadreg:=storereg; end else storereg:=loadreg; { The original instruction will be the next that uses this register, this also needs to be done for read-write registers, set weigth of the newly allocated register higher than the old one, so it will selected for spilling with a lower priority than the original one, this prevents an endless spilling loop if orgreg is short living, see e.g. tw25164.pp the min trick is needed to avoid an overflow in case weight=high(weight which might happen } add_reg_instruction(instr,storereg,min(high(reginfo[orgreg].weight)-1,reginfo[orgreg].weight)+1); end; end; { store the spilled registers } if not assigned(instr.next) then list.concat(tai_marker.Create(mark_Position)); storepos:=tai(instr.next); for counter := 0 to pred(regs.reginfocount) do with regs.reginfo[counter] do begin if mustbespilled and regwritten then begin do_spill_written(list,tai(storepos.previous),spilltemplist[orgreg],storereg,orgreg); ungetregisterinline(list,storereg); end; end; { now all spilling code is generated we can restore the live registers. This must be done after the store because the store can need an extra register that also needs to conflict with the registers of the instruction } live_registers.done; live_registers:=oldlive_registers; { substitute registers } for counter:=0 to instr.ops-1 do substitute_spilled_registers(regs,instr,counter); { We have modified the instruction; perhaps the new instruction has certain constraints regarding which imaginary registers interfere with certain physical registers. } add_cpu_interferences(instr); end; procedure trgobj.remove_ai(list:TAsmList; var p:Tai); var q:Tai; begin q:=tai(p.next); list.remove(p); p.free; p:=q; end; {$ifdef DEBUG_SPILLCOALESCE} procedure trgobj.write_spill_stats; { This procedure outputs spilling statistincs. If no spilling has occurred, no output is provided. NUM is the number of spilled registers. EFF is efficiency of the spilling which is based on weight and usage count of registers. Range 0-100%. 0% means all imaginary registers have been spilled. 100% means no imaginary registers have been spilled (no output in this case). Higher value is better. } var i,spillingcounter,max_weight:longint; all_weight,spill_weight,d: double; begin max_weight:=1; for i:=first_imaginary to maxreg-1 do with reginfo[i] do if weight>max_weight then max_weight:=weight; spillingcounter:=0; spill_weight:=0; all_weight:=0; for i:=first_imaginary to maxreg-1 do with reginfo[i] do begin d:=weight/max_weight; all_weight:=all_weight+d; if (weight>100) and (i<=high(spillinfo)) and spillinfo[i].spilled then begin inc(spillingcounter); spill_weight:=spill_weight+d; end; end; if spillingcounter>0 then begin d:=(1.0-spill_weight/all_weight)*100.0; writeln(current_procinfo.procdef.mangledname,' [',regtype,']: spill stats: NUM: ',spillingcounter, ', EFF: ',d:4:1,'%'); end; end; {$endif DEBUG_SPILLCOALESCE} end.