{ $Id$ Copyright (c) 1998-2000 by Florian Klaempfl This unit exports some help routines for the type checking This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit htypechk; {$i defines.inc} interface uses tokens, node, symtype,symdef; type Ttok2nodeRec=record tok : ttoken; nod : tnodetype; op_overloading_supported : boolean; end; const tok2nodes=25; tok2node:array[1..tok2nodes] of ttok2noderec=( (tok:_PLUS ;nod:addn;op_overloading_supported:true), { binary overloading supported } (tok:_MINUS ;nod:subn;op_overloading_supported:true), { binary and unary overloading supported } (tok:_STAR ;nod:muln;op_overloading_supported:true), { binary overloading supported } (tok:_SLASH ;nod:slashn;op_overloading_supported:true), { binary overloading supported } (tok:_EQUAL ;nod:equaln;op_overloading_supported:true), { binary overloading supported } (tok:_GT ;nod:gtn;op_overloading_supported:true), { binary overloading supported } (tok:_LT ;nod:ltn;op_overloading_supported:true), { binary overloading supported } (tok:_GTE ;nod:gten;op_overloading_supported:true), { binary overloading supported } (tok:_LTE ;nod:lten;op_overloading_supported:true), { binary overloading supported } (tok:_SYMDIF ;nod:symdifn;op_overloading_supported:true), { binary overloading supported } (tok:_STARSTAR;nod:starstarn;op_overloading_supported:true), { binary overloading supported } (tok:_OP_AS ;nod:asn;op_overloading_supported:false), { binary overloading NOT supported } (tok:_OP_IN ;nod:inn;op_overloading_supported:false), { binary overloading NOT supported } (tok:_OP_IS ;nod:isn;op_overloading_supported:false), { binary overloading NOT supported } (tok:_OP_OR ;nod:orn;op_overloading_supported:true), { binary overloading supported } (tok:_OP_AND ;nod:andn;op_overloading_supported:true), { binary overloading supported } (tok:_OP_DIV ;nod:divn;op_overloading_supported:true), { binary overloading supported } (tok:_OP_NOT ;nod:notn;op_overloading_supported:true), { unary overloading supported } (tok:_OP_MOD ;nod:modn;op_overloading_supported:true), { binary overloading supported } (tok:_OP_SHL ;nod:shln;op_overloading_supported:true), { binary overloading supported } (tok:_OP_SHR ;nod:shrn;op_overloading_supported:true), { binary overloading supported } (tok:_OP_XOR ;nod:xorn;op_overloading_supported:true), { binary overloading supported } (tok:_ASSIGNMENT;nod:assignn;op_overloading_supported:true), { unary overloading supported } (tok:_CARET ;nod:caretn;op_overloading_supported:false), { binary overloading NOT supported } (tok:_UNEQUAL ;nod:unequaln;op_overloading_supported:false) { binary overloading NOT supported overload = instead } ); const { firstcallparan without varspez we don't count the ref } {$ifdef extdebug} count_ref : boolean = true; {$endif def extdebug} get_para_resulttype : boolean = false; allow_array_constructor : boolean = false; { is overloading of this operator allowed for this binary operator } function isbinaryoperatoroverloadable(ld, rd,dd : pdef; treetyp : tnodetype) : boolean; { is overloading of this operator allowed for this unary operator } function isunaryoperatoroverloadable(rd,dd : pdef; treetyp : tnodetype) : boolean; { check operator args and result type } function isoperatoracceptable(pf : pprocdef; optoken : ttoken) : boolean; function isbinaryoverloaded(var t : tnode) : boolean; { Register Allocation } procedure make_not_regable(p : tnode); procedure calcregisters(p : tbinarynode;r32,fpu,mmx : word); { subroutine handling } procedure test_protected_sym(sym : psym); procedure test_protected(p : tnode); function valid_for_formal_var(p : tnode) : boolean; function valid_for_formal_const(p : tnode) : boolean; function is_procsym_load(p:tnode):boolean; function is_procsym_call(p:tnode):boolean; procedure test_local_to_procvar(from_def:pprocvardef;to_def:pdef); function valid_for_assign(p:tnode;allowprop:boolean):boolean; { sets the callunique flag, if the node is a vecn, } { takes care of type casts etc. } procedure set_unique(p : tnode); { sets funcret_is_valid to true, if p contains a funcref node } procedure set_funcret_is_valid(p : tnode); { type tvarstaterequire = (vsr_can_be_undefined,vsr_must_be_valid, vsr_is_used_after,vsr_must_be_valid_and_is_used_after); } { sets varsym varstate field correctly } procedure unset_varstate(p : tnode); procedure set_varstate(p : tnode;must_be_valid : boolean); implementation uses globtype,systems, cutils,verbose,globals, symconst,symsym,symtable, types,pass_1,cpubase, ncnv,nld, nmem,ncal,nmat, {$ifdef newcg} cgbase {$else} hcodegen {$endif} ; { ld is the left type definition rd the right type definition dd the result type definition or voiddef if unkown } function isbinaryoperatoroverloadable(ld, rd, dd : pdef; treetyp : tnodetype) : boolean; begin isbinaryoperatoroverloadable:= (treetyp=starstarn) or (ld^.deftype=recorddef) or (rd^.deftype=recorddef) or ((rd^.deftype=pointerdef) and not(is_pchar(rd) and (is_chararray(ld) or (ld^.deftype=stringdef) or (treetyp=addn))) and (not(ld^.deftype in [pointerdef,objectdef,classrefdef,procvardef]) or not (treetyp in [equaln,unequaln,gtn,gten,ltn,lten,subn]) ) and (not is_integer(ld) or not (treetyp in [addn,subn])) ) or ((ld^.deftype=pointerdef) and not(is_pchar(ld) and (is_chararray(rd) or (rd^.deftype=stringdef) or (treetyp=addn))) and (not(rd^.deftype in [stringdef,pointerdef,objectdef,classrefdef,procvardef]) and ((not is_integer(rd) and (rd^.deftype<>objectdef) and (rd^.deftype<>classrefdef)) or not (treetyp in [equaln,unequaln,gtn,gten,ltn,lten,addn,subn]) ) ) ) or { array def, but not mmx or chararray+[char,string,chararray] } ((ld^.deftype=arraydef) and not((cs_mmx in aktlocalswitches) and is_mmx_able_array(ld)) and not(is_chararray(ld) and (is_char(rd) or is_pchar(rd) or { char array + int = pchar + int, fix for web bug 1377 (JM) } is_integer(rd) or (rd^.deftype=stringdef) or is_chararray(rd))) ) or ((rd^.deftype=arraydef) and not((cs_mmx in aktlocalswitches) and is_mmx_able_array(rd)) and not(is_chararray(rd) and (is_char(ld) or is_pchar(ld) or (ld^.deftype=stringdef) or is_chararray(ld))) ) or { <> and = are defined for classes } ( (ld^.deftype=objectdef) and not((treetyp in [equaln,unequaln]) and is_class_or_interface(ld)) ) or ( (rd^.deftype=objectdef) and not((treetyp in [equaln,unequaln]) and is_class_or_interface(rd)) ) or { allow other operators that + on strings } ( (is_char(rd) or is_pchar(rd) or (rd^.deftype=stringdef) or is_chararray(rd) or is_char(ld) or is_pchar(ld) or (ld^.deftype=stringdef) or is_chararray(ld) ) and not(treetyp in [addn,equaln,unequaln,gtn,gten,ltn,lten]) and not(is_pchar(ld) and (is_integer(rd) or (rd^.deftype=pointerdef)) and (treetyp=subn) ) ); end; function isunaryoperatoroverloadable(rd,dd : pdef; treetyp : tnodetype) : boolean; begin isunaryoperatoroverloadable:=false; { what assignment overloading should be allowed ?? } if (treetyp=assignn) then begin isunaryoperatoroverloadable:=true; { this already get tbs0261 to fail isunaryoperatoroverloadable:=not is_equal(rd,dd); PM } end { should we force that rd and dd are equal ?? } else if (treetyp=subn { unaryminusn }) then begin isunaryoperatoroverloadable:= not is_integer(rd) and not (rd^.deftype=floatdef) {$ifdef SUPPORT_MMX} and not ((cs_mmx in aktlocalswitches) and is_mmx_able_array(rd)) {$endif SUPPORT_MMX} ; end else if (treetyp=notn) then begin isunaryoperatoroverloadable:=not is_integer(rd) and not is_boolean(rd) {$ifdef SUPPORT_MMX} and not ((cs_mmx in aktlocalswitches) and is_mmx_able_array(rd)) {$endif SUPPORT_MMX} ; end; end; function isoperatoracceptable(pf : pprocdef; optoken : ttoken) : boolean; var ld,rd,dd : pdef; i : longint; begin case pf^.parast^.symindex^.count of 2 : begin isoperatoracceptable:=false; for i:=1 to tok2nodes do if tok2node[i].tok=optoken then begin ld:=pvarsym(pf^.parast^.symindex^.first)^.vartype.def; rd:=pvarsym(pf^.parast^.symindex^.first^.indexnext)^.vartype.def; dd:=pf^.rettype.def; isoperatoracceptable:= tok2node[i].op_overloading_supported and isbinaryoperatoroverloadable(ld,rd,dd,tok2node[i].nod); break; end; end; 1 : begin rd:=pvarsym(pf^.parast^.symindex^.first)^.vartype.def; dd:=pf^.rettype.def; for i:=1 to tok2nodes do if tok2node[i].tok=optoken then begin isoperatoracceptable:= tok2node[i].op_overloading_supported and isunaryoperatoroverloadable(rd,dd,tok2node[i].nod); break; end; end; else isoperatoracceptable:=false; end; end; function isbinaryoverloaded(var t : tnode) : boolean; var rd,ld : pdef; optoken : ttoken; ht : tnode; begin isbinaryoverloaded:=false; { overloaded operator ? } { load easier access variables } rd:=tbinarynode(t).right.resulttype; ld:=tbinarynode(t).left.resulttype; if isbinaryoperatoroverloadable(ld,rd,voiddef,t.nodetype) then begin isbinaryoverloaded:=true; {!!!!!!!!! handle paras } case t.nodetype of addn: optoken:=_PLUS; subn: optoken:=_MINUS; muln: optoken:=_STAR; starstarn: optoken:=_STARSTAR; slashn: optoken:=_SLASH; ltn: optoken:=tokens._lt; gtn: optoken:=tokens._gt; lten: optoken:=_lte; gten: optoken:=_gte; equaln,unequaln : optoken:=_EQUAL; symdifn : optoken:=_SYMDIF; modn : optoken:=_OP_MOD; orn : optoken:=_OP_OR; xorn : optoken:=_OP_XOR; andn : optoken:=_OP_AND; divn : optoken:=_OP_DIV; shln : optoken:=_OP_SHL; shrn : optoken:=_OP_SHR; else exit; end; { the nil as symtable signs firstcalln that this is an overloaded operator } ht:=gencallnode(overloaded_operators[optoken],nil); { we have to convert p^.left and p^.right into callparanodes } if tcallnode(ht).symtableprocentry=nil then begin CGMessage(parser_e_operator_not_overloaded); ht.free; { the original t t will be released by firstpass! (JM) } t := t.getcopy; end else begin inc(tcallnode(ht).symtableprocentry^.refs); { we need copies, because the originals will be destroyed when we give a } { changed node back to firstpass! (JM) } if assigned(tbinarynode(t).left) then if assigned(tbinarynode(t).right) then tcallnode(ht).left := gencallparanode(tbinarynode(t).right.getcopy, gencallparanode(tbinarynode(t).left.getcopy,nil)) else tcallnode(ht).left := gencallparanode(nil,gencallparanode(tbinarynode(t).left.getcopy,nil)) else if assigned(tbinarynode(t).right) then gencallparanode(tbinarynode(t).right.getcopy, gencallparanode(nil,nil)); if t.nodetype=unequaln then ht:=cnotnode.create(ht); firstpass(ht); t:=ht; end; end; end; {**************************************************************************** Register Calculation ****************************************************************************} { marks an lvalue as "unregable" } procedure make_not_regable(p : tnode); begin case p.nodetype of typeconvn : make_not_regable(ttypeconvnode(p).left); loadn : if tloadnode(p).symtableentry^.typ=varsym then pvarsym(tloadnode(p).symtableentry)^.varoptions:=pvarsym(tloadnode(p).symtableentry)^.varoptions-[vo_regable,vo_fpuregable]; end; end; { calculates the needed registers for a binary operator } procedure calcregisters(p : tbinarynode;r32,fpu,mmx : word); begin p.left_right_max; { Only when the difference between the left and right registers < the wanted registers allocate the amount of registers } if assigned(p.left) then begin if assigned(p.right) then begin if (abs(p.left.registers32-p.right.registers32)0) and (p.left.location.loc in [LOC_REFERENCE,LOC_MEM]) and (p.right.location.loc in [LOC_REFERENCE,LOC_MEM]) then inc(p.registers32); end else begin if (p.left.registers328 then CGMessage(cg_e_too_complex_expr); end; {**************************************************************************** Subroutine Handling ****************************************************************************} { protected field handling protected field can not appear in var parameters of function !! this can only be done after we have determined the overloaded function this is the reason why it is not in the parser, PM } procedure test_protected_sym(sym : psym); begin if (sp_protected in sym^.symoptions) and ((sym^.owner^.symtabletype=unitsymtable) or ((sym^.owner^.symtabletype=objectsymtable) and (pobjectdef(sym^.owner^.defowner)^.owner^.symtabletype=unitsymtable)) ) then CGMessage(parser_e_cant_access_protected_member); end; procedure test_protected(p : tnode); begin case p.nodetype of loadn : test_protected_sym(tloadnode(p).symtableentry); typeconvn : test_protected(ttypeconvnode(p).left); derefn : test_protected(tderefnode(p).left); subscriptn : begin { test_protected(p.left); Is a field of a protected var also protected ??? PM } test_protected_sym(tsubscriptnode(p).vs); end; end; end; function valid_for_formal_var(p : tnode) : boolean; var v : boolean; begin case p.nodetype of loadn : v:=(tloadnode(p).symtableentry^.typ in [typedconstsym,varsym]); typeconvn : v:=valid_for_formal_var(ttypeconvnode(p).left); derefn, subscriptn, vecn, funcretn, selfn : v:=true; calln : { procvars are callnodes first } v:=assigned(tcallnode(p).right) and not assigned(tcallnode(p).left); addrn : begin { addrn is not allowed as this generate a constant value, but a tp procvar are allowed (PFV) } if nf_procvarload in p.flags then v:=true else v:=false; end; else v:=false; end; valid_for_formal_var:=v; end; function valid_for_formal_const(p : tnode) : boolean; var v : boolean; begin { p must have been firstpass'd before } { accept about anything but not a statement ! } case p.nodetype of calln, statementn, addrn : begin { addrn is not allowed as this generate a constant value, but a tp procvar are allowed (PFV) } if nf_procvarload in p.flags then v:=true else v:=false; end; else v:=true; end; valid_for_formal_const:=v; end; function is_procsym_load(p:tnode):boolean; begin is_procsym_load:=((p.nodetype=loadn) and (tloadnode(p).symtableentry^.typ=procsym)) or ((p.nodetype=addrn) and (taddrnode(p).left.nodetype=loadn) and (tloadnode(taddrnode(p).left).symtableentry^.typ=procsym)) ; end; { change a proc call to a procload for assignment to a procvar } { this can only happen for proc/function without arguments } function is_procsym_call(p:tnode):boolean; begin is_procsym_call:=(p.nodetype=calln) and (tcallnode(p).left=nil) and (((tcallnode(p).symtableprocentry^.typ=procsym) and (tcallnode(p).right=nil)) or (assigned(tcallnode(p).right) and (tcallnode(tcallnode(p).right).symtableprocentry^.typ=varsym))); end; { local routines can't be assigned to procvars } procedure test_local_to_procvar(from_def:pprocvardef;to_def:pdef); begin if (from_def^.symtablelevel>1) and (to_def^.deftype=procvardef) then CGMessage(type_e_cannot_local_proc_to_procvar); end; function valid_for_assign(p:tnode;allowprop:boolean):boolean; var hp : tnode; gotwith, gotsubscript, gotpointer, gotclass, gotderef : boolean; begin valid_for_assign:=false; gotsubscript:=false; gotderef:=false; gotclass:=false; gotpointer:=false; gotwith:=false; hp:=p; if is_void(hp.resulttype) then begin CGMessagePos(hp.fileinfo,type_e_argument_cant_be_assigned); exit; end; while assigned(hp) do begin { property allowed? calln has a property check itself } if (not allowprop) and (nf_isproperty in hp.flags) and (hp.nodetype<>calln) then begin CGMessagePos(hp.fileinfo,type_e_argument_cant_be_assigned); exit; end; case hp.nodetype of derefn : begin gotderef:=true; hp:=tderefnode(hp).left; end; typeconvn : begin case hp.resulttype^.deftype of pointerdef : gotpointer:=true; objectdef : gotclass:=is_class_or_interface(hp.resulttype); classrefdef : gotclass:=true; arraydef : begin { pointer -> array conversion is done then we need to see it as a deref, because a ^ is then not required anymore } if (ttypeconvnode(hp).left.resulttype^.deftype=pointerdef) then gotderef:=true; end; end; hp:=ttypeconvnode(hp).left; end; vecn, asn : hp:=tunarynode(hp).left; subscriptn : begin gotsubscript:=true; { a class/interface access is an implicit } { dereferencing } hp:=tsubscriptnode(hp).left; if is_class_or_interface(hp.resulttype) then gotderef:=true; end; subn, addn : begin { Allow add/sub operators on a pointer, or an integer and a pointer typecast and deref has been found } if (hp.resulttype^.deftype=pointerdef) or (is_integer(hp.resulttype) and gotpointer and gotderef) then valid_for_assign:=true else CGMessagePos(hp.fileinfo,type_e_variable_id_expected); exit; end; addrn : begin if not(gotderef) and not(nf_procvarload in hp.flags) then CGMessagePos(hp.fileinfo,type_e_no_assign_to_addr); exit; end; selfn, funcretn : begin valid_for_assign:=true; exit; end; calln : begin { check return type } case hp.resulttype^.deftype of pointerdef : gotpointer:=true; objectdef : gotclass:=is_class_or_interface(hp.resulttype); recorddef, { handle record like class it needs a subscription } classrefdef : gotclass:=true; end; { 1. if it returns a pointer and we've found a deref, 2. if it returns a class or record and a subscription or with is found, 3. property is allowed } if (gotpointer and gotderef) or (gotclass and (gotsubscript or gotwith)) or ((nf_isproperty in hp.flags) and allowprop) then valid_for_assign:=true else CGMessagePos(hp.fileinfo,type_e_argument_cant_be_assigned); exit; end; loadn : begin case tloadnode(hp).symtableentry^.typ of absolutesym, varsym : begin if (pvarsym(tloadnode(hp).symtableentry)^.varspez=vs_const) then begin { allow p^:= constructions with p is const parameter } if gotderef then valid_for_assign:=true else CGMessagePos(tloadnode(hp).fileinfo,type_e_no_assign_to_const); exit; end; { Are we at a with symtable, then we need to process the withrefnode also to check for maybe a const load } if (tloadnode(hp).symtable^.symtabletype=withsymtable) then begin { continue with processing the withref node } hp:=tnode(pwithsymtable(tloadnode(hp).symtable)^.withrefnode); gotwith:=true; end else begin { set the assigned flag for varsyms } if (pvarsym(tloadnode(hp).symtableentry)^.varstate=vs_declared) then pvarsym(tloadnode(hp).symtableentry)^.varstate:=vs_assigned; valid_for_assign:=true; exit; end; end; funcretsym, typedconstsym : begin valid_for_assign:=true; exit; end; end; end; else begin CGMessagePos(hp.fileinfo,type_e_variable_id_expected); exit; end; end; end; end; procedure set_varstate(p : tnode;must_be_valid : boolean); var hsym : pvarsym; begin while assigned(p) do begin if (nf_varstateset in p.flags) then exit; include(p.flags,nf_varstateset); case p.nodetype of typeconvn : begin case ttypeconvnode(p).convtype of tc_cchar_2_pchar, tc_cstring_2_pchar, tc_array_2_pointer : must_be_valid:=false; tc_pchar_2_string, tc_pointer_2_array : must_be_valid:=true; end; p:=tunarynode(p).left; end; subscriptn : p:=tunarynode(p).left; vecn: begin set_varstate(tbinarynode(p).right,true); if not(tunarynode(p).left.resulttype^.deftype in [stringdef,arraydef]) then must_be_valid:=true; p:=tunarynode(p).left; end; { do not parse calln } calln : break; callparan : begin set_varstate(tbinarynode(p).right,must_be_valid); p:=tunarynode(p).left; end; loadn : begin if (tloadnode(p).symtableentry^.typ=varsym) then begin hsym:=pvarsym(tloadnode(p).symtableentry); if must_be_valid and (nf_first in p.flags) then begin if (hsym^.varstate=vs_declared_and_first_found) or (hsym^.varstate=vs_set_but_first_not_passed) then begin if (assigned(hsym^.owner) and assigned(aktprocsym) and (hsym^.owner = aktprocsym^.definition^.localst)) then begin if tloadnode(p).symtable^.symtabletype=localsymtable then CGMessage1(sym_n_uninitialized_local_variable,hsym^.realname) else CGMessage1(sym_n_uninitialized_variable,hsym^.realname); end; end; end; if (nf_first in p.flags) then begin if hsym^.varstate=vs_declared_and_first_found then begin { this can only happen at left of an assignment, no ? PM } if (parsing_para_level=0) and not must_be_valid then hsym^.varstate:=vs_assigned else hsym^.varstate:=vs_used; end else if hsym^.varstate=vs_set_but_first_not_passed then hsym^.varstate:=vs_used; exclude(p.flags,nf_first); end else begin if (hsym^.varstate=vs_assigned) and (must_be_valid or (parsing_para_level>0) or (p.resulttype^.deftype=procvardef)) then hsym^.varstate:=vs_used; if (hsym^.varstate=vs_declared_and_first_found) and (must_be_valid or (parsing_para_level>0) or (p.resulttype^.deftype=procvardef)) then hsym^.varstate:=vs_set_but_first_not_passed; end; end; break; end; funcretn: begin { no claim if setting higher return value_str } if must_be_valid and (procinfo=pprocinfo(tfuncretnode(p).funcretprocinfo)) and ((procinfo^.funcret_state=vs_declared) or ((nf_is_first_funcret in p.flags) and (procinfo^.funcret_state=vs_declared_and_first_found))) then begin CGMessage(sym_w_function_result_not_set); { avoid multiple warnings } procinfo^.funcret_state:=vs_assigned; end; if (nf_is_first_funcret in p.flags) and not must_be_valid then pprocinfo(tfuncretnode(p).funcretprocinfo)^.funcret_state:=vs_assigned; break; end; else break; end;{case } end; end; procedure unset_varstate(p : tnode); begin while assigned(p) do begin exclude(p.flags,nf_varstateset); case p.nodetype of typeconvn, subscriptn, vecn : p:=tunarynode(p).left; else break; end; end; end; procedure set_unique(p : tnode); begin while assigned(p) do begin case p.nodetype of vecn: begin include(p.flags,nf_callunique); break; end; typeconvn, subscriptn, derefn: p:=tunarynode(p).left; else break; end; end; end; procedure set_funcret_is_valid(p:tnode); begin while assigned(p) do begin case p.nodetype of funcretn: begin if (nf_is_first_funcret in p.flags) then pprocinfo(tfuncretnode(p).funcretprocinfo)^.funcret_state:=vs_assigned; break; end; vecn, {derefn,} typeconvn, subscriptn: p:=tunarynode(p).left; else break; end; end; end; end. { $Log$ Revision 1.22 2001-02-20 21:46:26 peter * don't allow assign to void type (merged) Revision 1.21 2001/02/04 11:12:17 jonas * fixed web bug 1377 & const pointer arithmtic Revision 1.20 2000/12/09 13:04:05 florian * web bug 1207 fixed: field and properties of const classes can be changed Revision 1.19 2000/11/29 00:30:31 florian * unused units removed from uses clause * some changes for widestrings Revision 1.18 2000/11/28 17:14:33 jonas * fixed crash when trying to use an overloaded operator which is nowhere defined Revision 1.17 2000/11/28 14:04:03 jonas * fixed operator overloading problems Revision 1.16 2000/11/13 11:30:54 florian * some bugs with interfaces and NIL fixed Revision 1.15 2000/11/12 22:20:37 peter * create generic toutputsection for binary writers Revision 1.14 2000/11/04 14:25:19 florian + merged Attila's changes for interfaces, not tested yet Revision 1.13 2000/10/31 22:02:47 peter * symtable splitted, no real code changes Revision 1.12 2000/10/14 10:14:47 peter * moehrendorf oct 2000 rewrite Revision 1.11 2000/10/01 19:48:23 peter * lot of compile updates for cg11 Revision 1.10 2000/09/29 15:45:23 florian * make cycle fixed Revision 1.9 2000/09/28 19:49:51 florian *** empty log message *** Revision 1.8 2000/09/27 18:14:31 florian * fixed a lot of syntax errors in the n*.pas stuff Revision 1.7 2000/09/26 20:06:13 florian * hmm, still a lot of work to get things compilable Revision 1.6 2000/09/24 15:06:17 peter * use defines.inc Revision 1.5 2000/08/27 16:11:51 peter * moved some util functions from globals,cobjects to cutils * splitted files into finput,fmodule Revision 1.4 2000/08/16 18:33:53 peter * splitted namedobjectitem.next into indexnext and listnext so it can be used in both lists * don't allow "word = word" type definitions (merged) Revision 1.3 2000/08/07 11:31:04 jonas * fixed bug in type conversions between enum subranges (it didn't take the packenum directive into account) + define PACKENUMFIXED symbol in options.pas (merged from fixes branch) Revision 1.2 2000/07/13 11:32:41 michael + removed logs }