{ $Id$ Copyright (c) 2000-2001 by Florian Klaempfl Type checking and register allocation for type converting nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ncnv; {$i defines.inc} interface uses node, symtype,types, nld; type ttypeconvnode = class(tunarynode) totype : ttype; convtype : tconverttype; constructor create(node : tnode;const t : ttype);virtual; function getcopy : tnode;override; function pass_1 : tnode;override; function det_resulttype:tnode;override; function docompare(p: tnode) : boolean; override; private function resulttype_cord_to_pointer : tnode; function resulttype_chararray_to_string : tnode; function resulttype_string_to_chararray : tnode; function resulttype_string_to_string : tnode; function resulttype_char_to_string : tnode; function resulttype_char_to_chararray : tnode; function resulttype_int_to_real : tnode; function resulttype_real_to_real : tnode; function resulttype_cchar_to_pchar : tnode; function resulttype_cstring_to_pchar : tnode; function resulttype_char_to_char : tnode; function resulttype_arrayconstructor_to_set : tnode; function resulttype_pchar_to_string : tnode; function resulttype_interface_to_guid : tnode; function resulttype_dynarray_to_openarray : tnode; function resulttype_call_helper(c : tconverttype) : tnode; protected function first_int_to_int : tnode;virtual; function first_cstring_to_pchar : tnode;virtual; function first_string_to_chararray : tnode;virtual; function first_char_to_string : tnode;virtual; function first_nothing : tnode;virtual; function first_array_to_pointer : tnode;virtual; function first_int_to_real : tnode;virtual; function first_real_to_real : tnode;virtual; function first_pointer_to_array : tnode;virtual; function first_cchar_to_pchar : tnode;virtual; function first_bool_to_int : tnode;virtual; function first_int_to_bool : tnode;virtual; function first_bool_to_bool : tnode;virtual; function first_proc_to_procvar : tnode;virtual; function first_load_smallset : tnode;virtual; function first_cord_to_pointer : tnode;virtual; function first_ansistring_to_pchar : tnode;virtual; function first_arrayconstructor_to_set : tnode;virtual; function first_class_to_intf : tnode;virtual; function first_char_to_char : tnode;virtual; function first_call_helper(c : tconverttype) : tnode; procedure second_int_to_int;virtual;abstract; procedure second_string_to_string;virtual;abstract; procedure second_cstring_to_pchar;virtual;abstract; procedure second_string_to_chararray;virtual;abstract; procedure second_array_to_pointer;virtual;abstract; procedure second_pointer_to_array;virtual;abstract; procedure second_chararray_to_string;virtual;abstract; procedure second_char_to_string;virtual;abstract; procedure second_int_to_real;virtual;abstract; procedure second_real_to_real;virtual;abstract; procedure second_cord_to_pointer;virtual;abstract; procedure second_proc_to_procvar;virtual;abstract; procedure second_bool_to_int;virtual;abstract; procedure second_int_to_bool;virtual;abstract; procedure second_load_smallset;virtual;abstract; procedure second_ansistring_to_pchar;virtual;abstract; procedure second_pchar_to_string;virtual;abstract; procedure second_class_to_intf;virtual;abstract; procedure second_char_to_char;virtual;abstract; procedure second_nothing; virtual; end; ttypeconvnodeclass = class of ttypeconvnode; tasnode = class(tbinarynode) constructor create(l,r : tnode);virtual; function pass_1 : tnode;override; function det_resulttype:tnode;override; procedure pass_2;override; end; tasnodeclass = class of tasnode; tisnode = class(tbinarynode) constructor create(l,r : tnode);virtual; function pass_1 : tnode;override; function det_resulttype:tnode;override; procedure pass_2;override; end; tisnodeclass = class of tisnode; var ctypeconvnode : ttypeconvnodeclass; casnode : tasnodeclass; cisnode : tisnodeclass; procedure inserttypeconv(var p:tnode;const t:ttype); procedure arrayconstructor_to_set(var p : tarrayconstructornode); implementation uses globtype,systems,tokens, cutils,verbose,globals,widestr, symconst,symdef,symsym,symtable, ncon,ncal,nset,nadd,ninl,nmem, cgbase, htypechk,pass_1,cpubase,cpuinfo; {***************************************************************************** Helpers *****************************************************************************} procedure inserttypeconv(var p:tnode;const t:ttype); begin if not assigned(p.resulttype.def) then begin resulttypepass(p); if codegenerror then exit; end; { don't insert obsolete type conversions } if is_equal(p.resulttype.def,t.def) and not ((p.resulttype.def.deftype=setdef) and (tsetdef(p.resulttype.def).settype <> tsetdef(t.def).settype)) then begin p.resulttype:=t; end else begin p:=ctypeconvnode.create(p,t); resulttypepass(p); end; end; {***************************************************************************** Array constructor to Set Conversion *****************************************************************************} procedure arrayconstructor_to_set(var p : tarrayconstructornode); var constp : tsetconstnode; buildp, p2,p3,p4 : tnode; htype : ttype; constset : pconstset; constsetlo, constsethi : longint; procedure update_constsethi(t:ttype); begin if ((t.def.deftype=orddef) and (torddef(t.def).high>=constsethi)) then begin constsethi:=torddef(t.def).high; if htype.def=nil then begin if (constsethi>255) or (torddef(t.def).low<0) then htype:=u8bittype else htype:=t; end; if constsethi>255 then constsethi:=255; end else if ((t.def.deftype=enumdef) and (tenumdef(t.def).max>=constsethi)) then begin if htype.def=nil then htype:=t; constsethi:=tenumdef(t.def).max; end; end; procedure do_set(pos : longint); var mask,l : longint; begin if (pos>255) or (pos<0) then Message(parser_e_illegal_set_expr); if pos>constsethi then constsethi:=pos; if pos0 then Message(parser_e_illegal_set_expr); pconst32bitset(constset)^[l]:=pconst32bitset(constset)^[l] or mask; end; var l : Longint; lr,hr : TConstExprInt; begin new(constset); FillChar(constset^,sizeof(constset^),0); htype.reset; constsetlo:=0; constsethi:=0; constp:=csetconstnode.create(nil,htype); constp.value_set:=constset; buildp:=constp; if assigned(p.left) then begin while assigned(p) do begin p4:=nil; { will contain the tree to create the set } {split a range into p2 and p3 } if p.left.nodetype=arrayconstructorrangen then begin p2:=tarrayconstructorrangenode(p.left).left; p3:=tarrayconstructorrangenode(p.left).right; tarrayconstructorrangenode(p.left).left:=nil; tarrayconstructorrangenode(p.left).right:=nil; end else begin p2:=p.left; p.left:=nil; p3:=nil; end; resulttypepass(p2); if assigned(p3) then resulttypepass(p3); if codegenerror then break; case p2.resulttype.def.deftype of enumdef, orddef: begin getrange(p2.resulttype.def,lr,hr); if assigned(p3) then begin { this isn't good, you'll get problems with type t010 = 0..10; ts = set of t010; var s : ts;b : t010 begin s:=[1,2,b]; end. if is_integer(p3^.resulttype.def) then begin inserttypeconv(p3,u8bitdef); end; } if assigned(htype.def) and not(is_equal(htype.def,p3.resulttype.def)) then begin aktfilepos:=p3.fileinfo; CGMessage(type_e_typeconflict_in_set); end else begin if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then begin if not(is_integer(p3.resulttype.def)) then htype:=p3.resulttype else begin inserttypeconv(p3,u8bittype); inserttypeconv(p2,u8bittype); end; for l:=tordconstnode(p2).value to tordconstnode(p3).value do do_set(l); p2.free; p3.free; end else begin update_constsethi(p2.resulttype); inserttypeconv(p2,htype); update_constsethi(p3.resulttype); inserttypeconv(p3,htype); if assigned(htype.def) then inserttypeconv(p3,htype) else inserttypeconv(p3,u8bittype); p4:=csetelementnode.create(p2,p3); end; end; end else begin { Single value } if p2.nodetype=ordconstn then begin if not(is_integer(p2.resulttype.def)) then update_constsethi(p2.resulttype) else inserttypeconv(p2,u8bittype); do_set(tordconstnode(p2).value); p2.free; end else begin update_constsethi(p2.resulttype); if assigned(htype.def) then inserttypeconv(p2,htype) else inserttypeconv(p2,u8bittype); p4:=csetelementnode.create(p2,nil); end; end; end; stringdef : begin { if we've already set elements which are constants } { throw an error } if ((htype.def=nil) and assigned(buildp)) or not(is_char(htype.def)) then CGMessage(type_e_typeconflict_in_set) else for l:=1 to length(pstring(tstringconstnode(p2).value_str)^) do do_set(ord(pstring(tstringconstnode(p2).value_str)^[l])); if htype.def=nil then htype:=cchartype; p2.free; end; else CGMessage(type_e_ordinal_expr_expected); end; { insert the set creation tree } if assigned(p4) then buildp:=caddnode.create(addn,buildp,p4); { load next and dispose current node } p2:=p; p:=tarrayconstructornode(tarrayconstructornode(p2).right); tarrayconstructornode(p2).right:=nil; p2.free; end; if (htype.def=nil) then htype:=u8bittype; end else begin { empty set [], only remove node } p.free; end; { set the initial set type } constp.resulttype.setdef(tsetdef.create(htype,constsethi)); { determine the resulttype for the tree } resulttypepass(buildp); { set the new tree } p:=tarrayconstructornode(buildp); end; {***************************************************************************** TTYPECONVNODE *****************************************************************************} constructor ttypeconvnode.create(node : tnode;const t:ttype); begin inherited create(typeconvn,node); convtype:=tc_not_possible; totype:=t; if t.def=nil then internalerror(200103281); set_file_line(node); end; function ttypeconvnode.getcopy : tnode; var n : ttypeconvnode; begin n:=ttypeconvnode(inherited getcopy); n.convtype:=convtype; getcopy:=n; end; function ttypeconvnode.resulttype_cord_to_pointer : tnode; var t : tnode; begin result:=nil; if left.nodetype=ordconstn then begin { check if we have a valid pointer constant (JM) } if (sizeof(pointer) > sizeof(TConstPtrUInt)) then if (sizeof(TConstPtrUInt) = 4) then begin if (tordconstnode(left).value < low(longint)) or (tordconstnode(left).value > high(cardinal)) then CGMessage(parser_e_range_check_error); end else if (sizeof(TConstPtrUInt) = 8) then begin if (tordconstnode(left).value < low(int64)) or (tordconstnode(left).value > high(qword)) then CGMessage(parser_e_range_check_error); end else internalerror(2001020801); t:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype); result:=t; end else internalerror(200104023); end; function ttypeconvnode.resulttype_chararray_to_string : tnode; begin result := ccallnode.createinternres( 'fpc_chararray_to_'+lower(tstringdef(resulttype.def).stringtypname), ccallparanode.create(left,nil),resulttype); left := nil; end; function ttypeconvnode.resulttype_string_to_chararray : tnode; var arrsize: longint; begin with tarraydef(resulttype.def) do begin if highrange= arrsize) and (tstringdef(left.resulttype.def).string_typ=st_shortstring) then begin { handled separately } result := nil; exit; end; result := ccallnode.createinternres( 'fpc_'+lower(tstringdef(left.resulttype.def).stringtypname)+ '_to_chararray',ccallparanode.create(left,ccallparanode.create( cordconstnode.create(arrsize,s32bittype),nil)),resulttype); left := nil; end; function ttypeconvnode.resulttype_string_to_string : tnode; var procname: string[31]; stringpara : tcallparanode; pw : pcompilerwidestring; pc : pchar; begin result:=nil; if left.nodetype=stringconstn then begin { convert ascii 2 unicode } if (tstringdef(resulttype.def).string_typ=st_widestring) and (tstringconstnode(left).st_type in [st_ansistring,st_shortstring,st_longstring]) then begin initwidestring(pw); ascii2unicode(tstringconstnode(left).value_str,tstringconstnode(left).len,pw); ansistringdispose(tstringconstnode(left).value_str,tstringconstnode(left).len); pcompilerwidestring(tstringconstnode(left).value_str):=pw; end else { convert unicode 2 ascii } if (tstringconstnode(left).st_type=st_widestring) and (tstringdef(resulttype.def).string_typ in [st_ansistring,st_shortstring,st_longstring]) then begin pw:=pcompilerwidestring(tstringconstnode(left).value_str); getmem(pc,getlengthwidestring(pw)+1); unicode2ascii(pw,pc); donewidestring(pw); tstringconstnode(left).value_str:=pc; end; tstringconstnode(left).st_type:=tstringdef(resulttype.def).string_typ; tstringconstnode(left).resulttype:=resulttype; result:=left; left:=nil; end else begin { get the correct procedure name } procname := 'fpc_'+ lower(tstringdef(left.resulttype.def).stringtypname+ '_to_'+tstringdef(resulttype.def).stringtypname); { create parameter (and remove left node from typeconvnode } { since it's reused as parameter) } stringpara := ccallparanode.create(left,nil); left := nil; { hen converting to shortstrings, we have to pass high(destination) too } if (tstringdef(resulttype.def).string_typ = st_shortstring) then stringpara.right := ccallparanode.create(cinlinenode.create( in_high_x,false,self.getcopy),nil); { and create the callnode } result := ccallnode.createinternres(procname,stringpara,resulttype); end; end; function ttypeconvnode.resulttype_char_to_string : tnode; var procname: string[31]; para : tcallparanode; hp : tstringconstnode; ws : pcompilerwidestring; begin result:=nil; if left.nodetype=ordconstn then begin if tstringdef(resulttype.def).string_typ=st_widestring then begin initwidestring(ws); concatwidestringchar(ws,tcompilerwidechar(chr(tordconstnode(left).value))); hp:=cstringconstnode.createwstr(ws); donewidestring(ws); end else hp:=cstringconstnode.createstr(chr(tordconstnode(left).value),tstringdef(resulttype.def).string_typ); result:=hp; end else { shortstrings are handled 'inline' } if tstringdef(resulttype.def).string_typ <> st_shortstring then begin { create the parameter } para := ccallparanode.create(left,nil); left := nil; { and the procname } procname := 'fpc_char_to_' + lower(tstringdef(resulttype.def).stringtypname); { and finally the call } result := ccallnode.createinternres(procname,para,resulttype); end; end; function ttypeconvnode.resulttype_char_to_chararray : tnode; begin if resulttype.def.size <> 1 then begin { convert first to string, then to chararray } inserttypeconv(left,cshortstringtype); inserttypeconv(left,resulttype); result:=left; left := nil; exit; end; result := nil; { a chararray with 1 element is the same as a char } set_location(location,left.location); end; function ttypeconvnode.resulttype_char_to_char : tnode; var hp : tordconstnode; begin result:=nil; if left.nodetype=ordconstn then begin if (torddef(resulttype.def).typ=uchar) and (torddef(left.resulttype.def).typ=uwidechar) then begin hp:=cordconstnode.create( ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value))),cchartype); result:=hp; end else if (torddef(resulttype.def).typ=uwidechar) and (torddef(left.resulttype.def).typ=uchar) then begin hp:=cordconstnode.create( asciichar2unicode(chr(tordconstnode(left).value)),cwidechartype); result:=hp; end else internalerror(200105131); exit; end; end; function ttypeconvnode.resulttype_int_to_real : tnode; var t : trealconstnode; begin result:=nil; if left.nodetype=ordconstn then begin t:=crealconstnode.create(tordconstnode(left).value,resulttype); result:=t; exit; end; end; function ttypeconvnode.resulttype_real_to_real : tnode; var t : tnode; begin result:=nil; if left.nodetype=realconstn then begin t:=crealconstnode.create(trealconstnode(left).value_real,resulttype); result:=t; end; end; function ttypeconvnode.resulttype_cchar_to_pchar : tnode; begin result:=nil; if is_pwidechar(resulttype.def) then inserttypeconv(left,cwidestringtype) else inserttypeconv(left,cshortstringtype); { evaluate again, reset resulttype so the convert_typ will be calculated again and cstring_to_pchar will be used for futher conversion } result:=det_resulttype; end; function ttypeconvnode.resulttype_cstring_to_pchar : tnode; begin result:=nil; if is_pwidechar(resulttype.def) then inserttypeconv(left,cwidestringtype); end; function ttypeconvnode.resulttype_arrayconstructor_to_set : tnode; var hp : tnode; begin result:=nil; if left.nodetype<>arrayconstructorn then internalerror(5546); { remove typeconv node } hp:=left; left:=nil; { create a set constructor tree } arrayconstructor_to_set(tarrayconstructornode(hp)); result:=hp; end; function ttypeconvnode.resulttype_pchar_to_string : tnode; begin result := ccallnode.createinternres( 'fpc_pchar_to_'+lower(tstringdef(resulttype.def).stringtypname), ccallparanode.create(left,nil),resulttype); left := nil; end; function ttypeconvnode.resulttype_interface_to_guid : tnode; begin if tobjectdef(left.resulttype.def).isiidguidvalid then result:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid); end; function ttypeconvnode.resulttype_dynarray_to_openarray : tnode; begin { a dynamic array is a pointer to an array, so to convert it to } { an open array, we have to dereference it (JM) } result := ctypeconvnode.create(left,voidpointertype); { left is reused } left := nil; result.toggleflag(nf_explizit); result := cderefnode.create(result); result.resulttype := resulttype; end; function ttypeconvnode.resulttype_call_helper(c : tconverttype) : tnode; const resulttypeconvert : array[tconverttype] of pointer = ( {equal} nil, {not_possible} nil, { string_2_string } @ttypeconvnode.resulttype_string_to_string, { char_2_string } @ttypeconvnode.resulttype_char_to_string, { char_2_chararray } @ttypeconvnode.resulttype_char_to_chararray, { pchar_2_string } @ttypeconvnode.resulttype_pchar_to_string, { cchar_2_pchar } @ttypeconvnode.resulttype_cchar_to_pchar, { cstring_2_pchar } @ttypeconvnode.resulttype_cstring_to_pchar, { ansistring_2_pchar } nil, { string_2_chararray } @ttypeconvnode.resulttype_string_to_chararray, { chararray_2_string } @ttypeconvnode.resulttype_chararray_to_string, { array_2_pointer } nil, { pointer_2_array } nil, { int_2_int } nil, { int_2_bool } nil, { bool_2_bool } nil, { bool_2_int } nil, { real_2_real } @ttypeconvnode.resulttype_real_to_real, { int_2_real } @ttypeconvnode.resulttype_int_to_real, { proc_2_procvar } nil, { arrayconstructor_2_set } @ttypeconvnode.resulttype_arrayconstructor_to_set, { load_smallset } nil, { cord_2_pointer } @ttypeconvnode.resulttype_cord_to_pointer, { intf_2_string } nil, { intf_2_guid } @ttypeconvnode.resulttype_interface_to_guid, { class_2_intf } nil, { char_2_char } @ttypeconvnode.resulttype_char_to_char, { normal_2_smallset} nil, { dynarray_2_openarray} @resulttype_dynarray_to_openarray ); type tprocedureofobject = function : tnode of object; var r : packed record proc : pointer; obj : pointer; end; begin result:=nil; { this is a little bit dirty but it works } { and should be quite portable too } r.proc:=resulttypeconvert[c]; r.obj:=self; if assigned(r.proc) then result:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC} end; function ttypeconvnode.det_resulttype:tnode; var hp : tnode; currprocdef, aprocdef : tprocdef; begin result:=nil; resulttype:=totype; resulttypepass(left); if codegenerror then exit; { remove obsolete type conversions } if is_equal(left.resulttype.def,resulttype.def) then begin { becuase is_equal only checks the basetype for sets we need to check here if we are loading a smallset into a normalset } if (resulttype.def.deftype=setdef) and (left.resulttype.def.deftype=setdef) and ((tsetdef(resulttype.def).settype = smallset) xor (tsetdef(left.resulttype.def).settype = smallset)) then begin { try to define the set as a normalset if it's a constant set } if (tsetdef(resulttype.def).settype <> smallset) then begin if (left.nodetype=setconstn) then begin tsetdef(left.resulttype.def).changesettype(normset); result:=left; left:=nil; exit; end else convtype:=tc_load_smallset; end else convtype := tc_normal_2_smallset; exit; end else begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; end; aprocdef:=assignment_overloaded(left.resulttype.def,resulttype.def); if assigned(aprocdef) then begin procinfo^.flags:=procinfo^.flags or pi_do_call; hp:=ccallnode.create(ccallparanode.create(left,nil), overloaded_operators[_assignment],nil,nil); { tell explicitly which def we must use !! (PM) } tcallnode(hp).procdefinition:=aprocdef; left:=nil; result:=hp; exit; end; if isconvertable(left.resulttype.def,resulttype.def,convtype,left.nodetype,nf_explizit in flags)=0 then begin {Procedures have a resulttype.def of voiddef and functions of their own resulttype.def. They will therefore always be incompatible with a procvar. Because isconvertable cannot check for procedures we use an extra check for them.} if (m_tp_procvar in aktmodeswitches) then begin if (resulttype.def.deftype=procvardef) and (is_procsym_load(left) or is_procsym_call(left)) then begin if is_procsym_call(left) then begin currprocdef:=get_proc_2_procvar_def(tprocsym(tcallnode(left).symtableprocentry),tprocvardef(resulttype.def)); hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry), currprocdef,tcallnode(left).symtableproc); if (tcallnode(left).symtableprocentry.owner.symtabletype=objectsymtable) and assigned(tcallnode(left).methodpointer) then tloadnode(hp).set_mp(tcallnode(left).methodpointer.getcopy); resulttypepass(hp); left.free; left:=hp; aprocdef:=tprocdef(left.resulttype.def); end else begin if (left.nodetype<>addrn) then aprocdef:=tprocsym(tloadnode(left).symtableentry).defs^.def; end; convtype:=tc_proc_2_procvar; { Now check if the procedure we are going to assign to the procvar, is compatible with the procvar's type } if assigned(aprocdef) then begin if not proc_to_procvar_equal(aprocdef,tprocvardef(resulttype.def),false) then CGMessage2(type_e_incompatible_types,aprocdef.typename,resulttype.def.typename); end else CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); exit; end; end; if nf_explizit in flags then begin { check if the result could be in a register } if not(tstoreddef(resulttype.def).is_intregable) and not(tstoreddef(resulttype.def).is_fpuregable) then make_not_regable(left); { boolean to byte are special because the location can be different } if is_integer(resulttype.def) and is_boolean(left.resulttype.def) then begin convtype:=tc_bool_2_int; exit; end; { ansistring to pchar } if is_pchar(resulttype.def) and is_ansistring(left.resulttype.def) then begin convtype:=tc_ansistring_2_pchar; exit; end; { do common tc_equal cast } convtype:=tc_equal; { enum to ordinal will always be s32bit } if (left.resulttype.def.deftype=enumdef) and is_ordinal(resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if isconvertable(s32bittype.def,resulttype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { ordinal to enumeration } else if (resulttype.def.deftype=enumdef) and is_ordinal(left.resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(left.resulttype.def,s32bittype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { nil to ordinal node } else if (left.nodetype=niln) and is_ordinal(resulttype.def) then begin hp:=cordconstnode.create(0,resulttype); result:=hp; exit; end { constant pointer to ordinal } else if is_ordinal(resulttype.def) and (left.nodetype=pointerconstn) then begin hp:=cordconstnode.create(tpointerconstnode(left).value,resulttype); result:=hp; exit; end {Are we typecasting an ordconst to a char?} else if is_char(resulttype.def) and is_ordinal(left.resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(left.resulttype.def,u8bittype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end {Are we typecasting an ordconst to a wchar?} else if is_widechar(resulttype.def) and is_ordinal(left.resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(left.resulttype.def,u16bittype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { char to ordinal } else if is_char(left.resulttype.def) and is_ordinal(resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(u8bittype.def,resulttype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { widechar to ordinal } else if is_widechar(left.resulttype.def) and is_ordinal(resulttype.def) then begin if left.nodetype=ordconstn then begin hp:=cordconstnode.create(tordconstnode(left).value,resulttype); result:=hp; exit; end else begin if IsConvertable(u16bittype.def,resulttype.def,convtype,ordconstn,false)=0 then CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; end { only if the same size or formal def } { why do we allow typecasting of voiddef ?? (PM) } else begin if not( (left.resulttype.def.deftype=formaldef) or (left.resulttype.def.size=resulttype.def.size) or (is_void(left.resulttype.def) and (left.nodetype=derefn)) ) then CGMessage(cg_e_illegal_type_conversion); if ((left.resulttype.def.deftype=orddef) and (resulttype.def.deftype=pointerdef)) or ((resulttype.def.deftype=orddef) and (left.resulttype.def.deftype=pointerdef)) then CGMessage(cg_d_pointer_to_longint_conv_not_portable); end; { the conversion into a strutured type is only } { possible, if the source is not a register } if ((resulttype.def.deftype in [recorddef,stringdef,arraydef]) or ((resulttype.def.deftype=objectdef) and not(is_class(resulttype.def))) ) and (left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) { and it also works if the assignment is overloaded YES but this code is not executed if assignment is overloaded (PM) not assigned(assignment_overloaded(left.resulttype.def,resulttype.def))} then CGMessage(cg_e_illegal_type_conversion); end else CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename); end; { tp7 procvar support, when right is not a procvardef and we got a loadn of a procvar then convert to a calln, the check for the result is already done in is_convertible, also no conflict with @procvar is here because that has an extra addrn } if (m_tp_procvar in aktmodeswitches) and (resulttype.def.deftype<>procvardef) and (left.resulttype.def.deftype=procvardef) and (left.nodetype=loadn) then begin hp:=ccallnode.create(nil,nil,nil,nil); tcallnode(hp).set_procvar(left); resulttypepass(hp); left:=hp; end; { remove typeconv after niln } if (left.nodetype=niln) then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; { ordinal contants can be directly converted } if (left.nodetype=ordconstn) and is_ordinal(resulttype.def) then begin { replace the resulttype and recheck the range } left.resulttype:=resulttype; testrange(left.resulttype.def,tordconstnode(left).value,(nf_explizit in flags)); result:=left; left:=nil; exit; end; { fold nil to any pointer type } if (left.nodetype=niln) and (resulttype.def.deftype=pointerdef) then begin hp:=cnilnode.create; hp.resulttype:=resulttype; result:=hp; exit; end; { further, pointerconstn to any pointer is folded too } if (left.nodetype=pointerconstn) and (resulttype.def.deftype=pointerdef) then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; { now call the resulttype helper to do constant folding } result:=resulttype_call_helper(convtype); end; function ttypeconvnode.first_cord_to_pointer : tnode; begin result:=nil; internalerror(200104043); end; function ttypeconvnode.first_int_to_int : tnode; begin first_int_to_int:=nil; if (left.location.loc<>LOC_REGISTER) and (resulttype.def.size>left.resulttype.def.size) then location.loc:=LOC_REGISTER; if is_64bitint(resulttype.def) then registers32:=max(registers32,2) else registers32:=max(registers32,1); end; function ttypeconvnode.first_cstring_to_pchar : tnode; begin first_cstring_to_pchar:=nil; registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_string_to_chararray : tnode; begin first_string_to_chararray:=nil; registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_char_to_string : tnode; begin first_char_to_string:=nil; location.loc:=LOC_MEM; end; function ttypeconvnode.first_nothing : tnode; begin first_nothing:=nil; location.loc:=LOC_MEM; end; function ttypeconvnode.first_array_to_pointer : tnode; begin first_array_to_pointer:=nil; if registers32<1 then registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_int_to_real : tnode; begin first_int_to_real:=nil; {$ifdef m68k} if (cs_fp_emulation in aktmoduleswitches) or (tfloatdef(resulttype.def).typ=s32real) then begin if registers32<1 then registers32:=1; end else if registersfpu<1 then registersfpu:=1; {$else not m68k} if registersfpu<1 then registersfpu:=1; {$endif not m68k} location.loc:=LOC_FPU; end; function ttypeconvnode.first_real_to_real : tnode; begin first_real_to_real:=nil; { comp isn't a floating type } {$ifdef i386} if (tfloatdef(resulttype.def).typ=s64comp) and (tfloatdef(left.resulttype.def).typ<>s64comp) and not (nf_explizit in flags) then CGMessage(type_w_convert_real_2_comp); {$endif} if registersfpu<1 then registersfpu:=1; location.loc:=LOC_FPU; end; function ttypeconvnode.first_pointer_to_array : tnode; begin first_pointer_to_array:=nil; if registers32<1 then registers32:=1; location.loc:=LOC_REFERENCE; end; function ttypeconvnode.first_cchar_to_pchar : tnode; begin first_cchar_to_pchar:=nil; internalerror(200104021); end; function ttypeconvnode.first_bool_to_int : tnode; begin first_bool_to_int:=nil; { byte(boolean) or word(wordbool) or longint(longbool) must be accepted for var parameters } if (nf_explizit in flags) and (left.resulttype.def.size=resulttype.def.size) and (left.location.loc in [LOC_REFERENCE,LOC_MEM,LOC_CREGISTER]) then exit; { when converting to 64bit, first convert to a 32bit int and then } { convert to a 64bit int (only necessary for 32bit processors) (JM) } if resulttype.def.size > sizeof(aword) then begin result := ctypeconvnode.create(left,u32bittype); result.toggleflag(nf_explizit); result := ctypeconvnode.create(result,resulttype); left := nil; firstpass(result); exit; end; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_int_to_bool : tnode; begin first_int_to_bool:=nil; { byte(boolean) or word(wordbool) or longint(longbool) must be accepted for var parameters } if (nf_explizit in flags) and (left.resulttype.def.size=resulttype.def.size) and (left.location.loc in [LOC_REFERENCE,LOC_MEM,LOC_CREGISTER]) then exit; location.loc:=LOC_REGISTER; { need if bool to bool !! not very nice !! insertypeconv(left,s32bittype); left.explizit:=true; firstpass(left); } if registers32<1 then registers32:=1; end; function ttypeconvnode.first_bool_to_bool : tnode; begin first_bool_to_bool:=nil; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_char_to_char : tnode; begin first_char_to_char:=nil; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_proc_to_procvar : tnode; begin first_proc_to_procvar:=nil; if (left.location.loc<>LOC_REFERENCE) then CGMessage(cg_e_illegal_expression); registers32:=left.registers32; if registers32<1 then registers32:=1; location.loc:=LOC_REGISTER; end; function ttypeconvnode.first_load_smallset : tnode; var srsym: ttypesym; p: tcallparanode; begin if not searchsystype('FPC_SMALL_SET',srsym) then internalerror(200108313); p := ccallparanode.create(left,nil); { reused } left := nil; { convert parameter explicitely to fpc_small_set } p.left := ctypeconvnode.create(p.left,srsym.restype); p.left.toggleflag(nf_explizit); { create call, adjust resulttype } result := ccallnode.createinternres('fpc_set_load_small',p,resulttype); firstpass(result); end; function ttypeconvnode.first_ansistring_to_pchar : tnode; begin first_ansistring_to_pchar:=nil; location.loc:=LOC_REGISTER; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_arrayconstructor_to_set : tnode; begin first_arrayconstructor_to_set:=nil; internalerror(200104022); end; function ttypeconvnode.first_class_to_intf : tnode; begin first_class_to_intf:=nil; location.loc:=LOC_REFERENCE; if registers32<1 then registers32:=1; end; function ttypeconvnode.first_call_helper(c : tconverttype) : tnode; const firstconvert : array[tconverttype] of pointer = ( @ttypeconvnode.first_nothing, {equal} @ttypeconvnode.first_nothing, {not_possible} nil, { removed in resulttype_string_to_string } @ttypeconvnode.first_char_to_string, @ttypeconvnode.first_nothing, { char_2_chararray, needs nothing extra } nil, { removed in resulttype_chararray_to_string } @ttypeconvnode.first_cchar_to_pchar, @ttypeconvnode.first_cstring_to_pchar, @ttypeconvnode.first_ansistring_to_pchar, @ttypeconvnode.first_string_to_chararray, nil, { removed in resulttype_chararray_to_string } @ttypeconvnode.first_array_to_pointer, @ttypeconvnode.first_pointer_to_array, @ttypeconvnode.first_int_to_int, @ttypeconvnode.first_int_to_bool, @ttypeconvnode.first_bool_to_bool, @ttypeconvnode.first_bool_to_int, @ttypeconvnode.first_real_to_real, @ttypeconvnode.first_int_to_real, @ttypeconvnode.first_proc_to_procvar, @ttypeconvnode.first_arrayconstructor_to_set, @ttypeconvnode.first_load_smallset, @ttypeconvnode.first_cord_to_pointer, @ttypeconvnode.first_nothing, @ttypeconvnode.first_nothing, @ttypeconvnode.first_class_to_intf, @ttypeconvnode.first_char_to_char, @ttypeconvnode.first_nothing, @ttypeconvnode.first_nothing ); type tprocedureofobject = function : tnode of object; var r : packed record proc : pointer; obj : pointer; end; begin { this is a little bit dirty but it works } { and should be quite portable too } r.proc:=firstconvert[c]; r.obj:=self; first_call_helper:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC} end; function ttypeconvnode.pass_1 : tnode; begin result:=nil; firstpass(left); if codegenerror then exit; { load the value_str from the left part } registers32:=left.registers32; registersfpu:=left.registersfpu; {$ifdef SUPPORT_MMX} registersmmx:=left.registersmmx; {$endif} set_location(location,left.location); if nf_explizit in flags then begin { check if the result could be in a register } if not(tstoreddef(resulttype.def).is_intregable) and not(tstoreddef(resulttype.def).is_fpuregable) then make_not_regable(left); end; if convtype=tc_equal then begin { remove typeconv node if left is a const. For other nodes we can't remove it because the secondpass can still depend on the old type (PFV) } if is_constnode(left) then begin left.resulttype:=resulttype; result:=left; left:=nil; end; end else begin result:=first_call_helper(convtype); end; end; function ttypeconvnode.docompare(p: tnode) : boolean; begin docompare := inherited docompare(p) and (convtype = ttypeconvnode(p).convtype); end; procedure ttypeconvnode.second_nothing; begin end; {***************************************************************************** TISNODE *****************************************************************************} constructor tisnode.create(l,r : tnode); begin inherited create(isn,l,r); end; function tisnode.det_resulttype:tnode; begin result:=nil; resulttypepass(left); resulttypepass(right); set_varstate(left,true); set_varstate(right,true); if codegenerror then exit; if (right.resulttype.def.deftype=classrefdef) then begin { left must be a class } if is_class(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related( tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and (not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related( tobjectdef(left.resulttype.def)))) then CGMessage(type_e_mismatch); end else CGMessage(type_e_mismatch); end else if is_interface(right.resulttype.def) then begin { left is a class } if is_class(left.resulttype.def) then begin { the operands must be related } if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and (tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then CGMessage(type_e_mismatch); end { left is an interface } else if is_interface(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and (not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then CGMessage(type_e_mismatch); end else CGMessage(type_e_mismatch); end else CGMessage(type_e_mismatch); resulttype:=booltype; end; function tisnode.pass_1 : tnode; var paras: tcallparanode; begin if (right.resulttype.def.deftype=classrefdef) then begin paras := ccallparanode.create(left,ccallparanode.create(right,nil)); left := nil; right := nil; result := ccallnode.createintern('fpc_do_is',paras); firstpass(result); end else result:=nil; end; { dummy pass_2, it will never be called, but we need one since } { you can't instantiate an abstract class } procedure tisnode.pass_2; begin end; {***************************************************************************** TASNODE *****************************************************************************} constructor tasnode.create(l,r : tnode); begin inherited create(asn,l,r); end; function tasnode.det_resulttype:tnode; begin result:=nil; resulttypepass(right); resulttypepass(left); set_varstate(right,true); set_varstate(left,true); if codegenerror then exit; if (right.resulttype.def.deftype=classrefdef) then begin { left must be a class } if is_class(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related( tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and (not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related( tobjectdef(left.resulttype.def)))) then CGMessage(type_e_mismatch); end else CGMessage(type_e_mismatch); resulttype:=tclassrefdef(right.resulttype.def).pointertype; end else if is_interface(right.resulttype.def) then begin { left is a class } if is_class(left.resulttype.def) then begin { the operands must be related } if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and (tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then CGMessage(type_e_mismatch); end { left is an interface } else if is_interface(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and (not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then CGMessage(type_e_mismatch); end else CGMessage(type_e_mismatch); resulttype:=right.resulttype; end else CGMessage(type_e_mismatch); end; function tasnode.pass_1 : tnode; var paras: tcallparanode; begin if (right.resulttype.def.deftype=classrefdef) then begin paras := ccallparanode.create(left,ccallparanode.create(right,nil)); left := nil; right := nil; result := ccallnode.createinternres('fpc_do_as',paras, resulttype); firstpass(result); end else result:=nil; end; { dummy pass_2, it will never be called, but we need one since } { you can't instantiate an abstract class } procedure tasnode.pass_2; begin end; begin ctypeconvnode:=ttypeconvnode; casnode:=tasnode; cisnode:=tisnode; end. { $Log$ Revision 1.48 2002-02-03 09:30:03 peter * more fixes for protected handling Revision 1.47 2001/12/10 14:34:04 jonas * fixed type conversions from dynamic arrays to open arrays Revision 1.46 2001/12/06 17:57:34 florian + parasym to tparaitem added Revision 1.45 2001/12/03 21:48:41 peter * freemem change to value parameter * torddef low/high range changed to int64 Revision 1.44 2001/11/02 23:24:11 jonas * fixed web bug 1665 (allow char to chararray type conversion) ("merged") Revision 1.43 2001/11/02 22:58:02 peter * procsym definition rewrite Revision 1.42 2001/10/28 17:22:25 peter * allow assignment of overloaded procedures to procvars when we know which procedure to take Revision 1.41 2001/10/20 19:28:37 peter * interface 2 guid support * guid constants support Revision 1.40 2001/10/20 17:21:54 peter * fixed size of constset when change from small to normalset Revision 1.39 2001/09/30 16:12:46 jonas - removed unnecessary i386 pass_2 of as- and isnode and added dummy generic ones Revision 1.38 2001/09/29 21:32:46 jonas * almost all second pass typeconvnode helpers are now processor independent * fixed converting boolean to int64/qword * fixed register allocation bugs which could cause internalerror 10 * isnode and asnode are completely processor indepent now as well * fpc_do_as now returns its class argument (necessary to be able to use it properly with compilerproc) Revision 1.37 2001/09/03 13:27:42 jonas * compilerproc implementation of set addition/substraction/... * changed the declaration of some set helpers somewhat to accomodate the above change * i386 still uses the old code for comparisons of sets, because its helpers return the results in the flags * dummy tc_normal_2_small_set type conversion because I need the original resulttype of the set add nodes NOTE: you have to start a cycle with 1.0.5! Revision 1.36 2001/09/02 21:12:06 peter * move class of definitions into type section for delphi Revision 1.35 2001/08/29 19:49:03 jonas * some fixes in compilerprocs for chararray to string conversions * conversion from string to chararray is now also done via compilerprocs Revision 1.34 2001/08/29 12:18:07 jonas + new createinternres() constructor for tcallnode to support setting a custom resulttype * compilerproc typeconversions now set the resulttype from the type conversion for the generated call node, because the resulttype of of the compilerproc helper isn't always exact (e.g. the ones that return shortstrings, actually return a shortstring[x], where x is specified by the typeconversion node) * ti386callnode.pass_2 now always uses resulttype instead of procsym.definition.rettype (so the custom resulttype, if any, is always used). Note that this "rettype" stuff is only for use with compilerprocs. Revision 1.33 2001/08/28 13:24:46 jonas + compilerproc implementation of most string-related type conversions - removed all code from the compiler which has been replaced by compilerproc implementations (using (ifdef hascompilerproc) is not necessary in the compiler) Revision 1.32 2001/08/26 13:36:40 florian * some cg reorganisation * some PPC updates Revision 1.31 2001/08/05 13:19:51 peter * partly fix for proc of obj=nil Revision 1.30 2001/07/30 20:59:27 peter * m68k updates from v10 merged Revision 1.29 2001/07/08 21:00:15 peter * various widestring updates, it works now mostly without charset mapping supported Revision 1.28 2001/05/13 15:43:46 florian * made resultype_char_to_char a little bit robuster Revision 1.27 2001/05/08 21:06:30 florian * some more support for widechars commited especially regarding type casting and constants Revision 1.26 2001/05/04 15:52:03 florian * some Delphi incompatibilities fixed: - out, dispose and new can be used as idenfiers now - const p = apointerype(nil); is supported now + support for const p = apointertype(pointer(1234)); added Revision 1.25 2001/04/13 22:20:58 peter * remove wrongly placed first_call_helper Revision 1.24 2001/04/13 01:22:08 peter * symtable change to classes * range check generation and errors fixed, make cycle DEBUG=1 works * memory leaks fixed Revision 1.23 2001/04/04 22:42:39 peter * move constant folding into det_resulttype Revision 1.22 2001/04/02 21:20:30 peter * resulttype rewrite Revision 1.21 2001/03/08 17:44:47 jonas * fixed web bug 1430 Revision 1.20 2001/02/21 11:49:50 jonas * evaluate typecasts of const pointers to ordinals inline ('merged') Revision 1.19 2001/02/20 18:37:10 peter * removed unused code Revision 1.18 2001/02/20 13:14:18 marco * Fix from Peter for passing a procedure of method to a other method in a method Revision 1.17 2001/02/08 13:09:03 jonas * fixed web bug 1396: tpointerord is now a cardinal instead of a longint, but added a hack in ncnv so that pointer(-1) still works Revision 1.16 2000/12/31 11:14:10 jonas + implemented/fixed docompare() mathods for all nodes (not tested) + nopt.pas, nadd.pas, i386/n386opt.pas: optimized nodes for adding strings and constant strings/chars together * n386add.pas: don't copy temp strings (of size 256) to another temp string when adding Revision 1.15 2000/12/08 12:41:01 jonas * fixed bug in sign extension patch Revision 1.14 2000/12/07 17:19:42 jonas * new constant handling: from now on, hex constants >$7fffffff are parsed as unsigned constants (otherwise, $80000000 got sign extended and became $ffffffff80000000), all constants in the longint range become longints, all constants >$7fffffff and <=cardinal($ffffffff) are cardinals and the rest are int64's. * added lots of longint typecast to prevent range check errors in the compiler and rtl * type casts of symbolic ordinal constants are now preserved * fixed bug where the original resulttype.def wasn't restored correctly after doing a 64bit rangecheck Revision 1.13 2000/11/29 00:30:32 florian * unused units removed from uses clause * some changes for widestrings Revision 1.12 2000/11/20 16:06:04 jonas + allow evaluation of 64bit constant expressions at compile time * disable range checking for explicit typecasts of constant expressions Revision 1.11 2000/11/12 23:24:11 florian * interfaces are basically running Revision 1.10 2000/11/04 14:25:20 florian + merged Attila's changes for interfaces, not tested yet Revision 1.9 2000/10/31 22:02:48 peter * symtable splitted, no real code changes Revision 1.8 2000/10/14 21:52:55 peter * fixed memory leaks Revision 1.7 2000/10/14 10:14:50 peter * moehrendorf oct 2000 rewrite Revision 1.6 2000/10/01 19:48:24 peter * lot of compile updates for cg11 Revision 1.5 2000/09/28 19:49:52 florian *** empty log message *** Revision 1.4 2000/09/27 18:14:31 florian * fixed a lot of syntax errors in the n*.pas stuff Revision 1.3 2000/09/26 20:06:13 florian * hmm, still a lot of work to get things compilable Revision 1.2 2000/09/26 14:59:34 florian * more conversion work done Revision 1.1 2000/09/25 15:37:14 florian * more fixes }