{ Copyright (c) 2011 Contains different functions that are used in the context of parsing generics. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit pgenutil; {$i fpcdefs.inc} interface uses { common } cclasses, { global } globtype, { symtable } symtype,symdef,symbase; procedure generate_specialization(var tt:tdef;parse_class_parent:boolean;_prettyname:string;parsedtype:tdef;symname:string;parsedpos:tfileposinfo); procedure generate_specialization(var tt:tdef;parse_class_parent:boolean;_prettyname:string); function parse_generic_parameters(allowconstraints:boolean):tfphashobjectlist; function parse_generic_specialization_types(genericdeflist:tfpobjectlist;poslist:tfplist;out prettyname,specializename:ansistring):boolean; procedure insert_generic_parameter_types(def:tstoreddef;genericdef:tstoreddef;genericlist:tfphashobjectlist); procedure maybe_insert_generic_rename_symbol(const name:tidstring;genericlist:tfphashobjectlist); function generate_generic_name(const name:tidstring;specializename:ansistring;owner_hierarchy:string):tidstring; procedure split_generic_name(const name:tidstring;out nongeneric:string;out count:longint); function resolve_generic_dummysym(const name:tidstring):tsym; function could_be_generic(const name:tidstring):boolean;inline; type tspecializationstate = record oldsymtablestack : tsymtablestack; oldextendeddefs : TFPHashObjectList; oldgenericdummysyms: tfphashobjectlist; end; procedure specialization_init(genericdef:tdef;var state:tspecializationstate); procedure specialization_done(var state:tspecializationstate); implementation uses { common } cutils,fpccrc, { global } globals,tokens,verbose,finput, { symtable } symconst,symsym,symtable,defcmp,procinfo, { modules } fmodule, { pass 1 } htypechk, node,nobj,nmem, { parser } scanner, pbase,pexpr,pdecsub,ptype; procedure maybe_add_waiting_unit(tt:tdef); var hmodule : tmodule; begin if not assigned(tt) or not (df_generic in tt.defoptions) then exit; hmodule:=find_module_from_symtable(tt.owner); if not assigned(hmodule) then internalerror(2012092401); if hmodule=current_module then exit; if hmodule.state<>ms_compiled then begin {$ifdef DEBUG_UNITWAITING} Writeln('Unit ', current_module.modulename^, ' waiting for ', hmodule.modulename^); {$endif DEBUG_UNITWAITING} if current_module.waitingforunit.indexof(hmodule)<0 then current_module.waitingforunit.add(hmodule); if hmodule.waitingunits.indexof(current_module)<0 then hmodule.waitingunits.add(current_module); end; end; function check_generic_constraints(genericdef:tstoreddef;paradeflist:tfpobjectlist;poslist:tfplist):boolean; var i,j, intfcount : longint; formaldef, paradef : tstoreddef; objdef, paraobjdef, formalobjdef : tobjectdef; intffound : boolean; filepos : tfileposinfo; begin { check whether the given specialization parameters fit to the eventual constraints of the generic } if not assigned(genericdef.genericparas) or (genericdef.genericparas.count=0) then internalerror(2012101001); if genericdef.genericparas.count<>paradeflist.count then internalerror(2012101002); if paradeflist.count<>poslist.count then internalerror(2012120801); result:=true; for i:=0 to genericdef.genericparas.count-1 do begin filepos:=pfileposinfo(poslist[i])^; formaldef:=tstoreddef(ttypesym(genericdef.genericparas[i]).typedef); if formaldef.typ=undefineddef then { the parameter is of unspecified type, so no need to check } continue; if not (df_genconstraint in formaldef.defoptions) or not assigned(formaldef.genconstraintdata) then internalerror(2013021602); paradef:=tstoreddef(paradeflist[i]); { undefineddef is compatible with anything } if formaldef.typ=undefineddef then continue; if paradef.typ<>formaldef.typ then begin case formaldef.typ of recorddef: MessagePos(filepos,type_e_record_type_expected); objectdef: case tobjectdef(formaldef).objecttype of odt_class, odt_javaclass: MessagePos1(filepos,type_e_class_type_expected,paradef.typename); odt_interfacecom, odt_interfacecorba, odt_dispinterface, odt_interfacejava: MessagePos1(filepos,type_e_interface_type_expected,paradef.typename); else internalerror(2012101003); end; errordef: { ignore } ; else internalerror(2012101004); end; result:=false; end else begin { the paradef types are the same, so do special checks for the cases in which they are needed } if formaldef.typ=objectdef then begin paraobjdef:=tobjectdef(paradef); formalobjdef:=tobjectdef(formaldef); if not (formalobjdef.objecttype in [odt_class,odt_javaclass,odt_interfacecom,odt_interfacecorba,odt_interfacejava,odt_dispinterface]) then internalerror(2012101102); if formalobjdef.objecttype in [odt_interfacecom,odt_interfacecorba,odt_interfacejava,odt_dispinterface] then begin { this is either a concerete interface or class type (the latter without specific implemented interfaces) } case paraobjdef.objecttype of odt_interfacecom, odt_interfacecorba, odt_interfacejava, odt_dispinterface: begin if (oo_is_forward in paraobjdef.objectoptions) and (paraobjdef.objecttype=formalobjdef.objecttype) and (df_genconstraint in formalobjdef.defoptions) and ( (formalobjdef.objecttype=odt_interfacecom) and (formalobjdef.childof=interface_iunknown) ) or ( (formalobjdef.objecttype=odt_interfacecorba) and (formalobjdef.childof=nil) ) then continue; if not def_is_related(paraobjdef,formalobjdef.childof) then begin MessagePos2(filepos,type_e_incompatible_types,paraobjdef.typename,formalobjdef.childof.typename); result:=false; end; end; odt_class, odt_javaclass: begin objdef:=paraobjdef; intffound:=false; while assigned(objdef) do begin for j:=0 to objdef.implementedinterfaces.count-1 do if timplementedinterface(objdef.implementedinterfaces[j]).intfdef=formalobjdef.childof then begin intffound:=true; break; end; if intffound then break; objdef:=objdef.childof; end; result:=intffound; if not result then MessagePos2(filepos,parser_e_class_doesnt_implement_interface,paraobjdef.typename,formalobjdef.childof.typename); end; else begin MessagePos1(filepos,type_e_class_or_interface_type_expected,paraobjdef.typename); result:=false; end; end; end else begin { this is either a "class" or a concrete instance with or without implemented interfaces } if not (paraobjdef.objecttype in [odt_class,odt_javaclass]) then begin MessagePos1(filepos,type_e_class_type_expected,paraobjdef.typename); result:=false; continue; end; { for forward declared classes we allow pure TObject/class declarations } if (oo_is_forward in paraobjdef.objectoptions) and (df_genconstraint in formaldef.defoptions) then begin if (formalobjdef.childof=class_tobject) and not formalobjdef.implements_any_interfaces then continue; end; if assigned(formalobjdef.childof) and not def_is_related(paradef,formalobjdef.childof) then begin MessagePos2(filepos,type_e_incompatible_types,paraobjdef.typename,formalobjdef.childof.typename); result:=false; end; intfcount:=0; for j:=0 to formalobjdef.implementedinterfaces.count-1 do begin objdef:=paraobjdef; while assigned(objdef) do begin intffound:=assigned( find_implemented_interface(objdef, timplementedinterface(formalobjdef.implementedinterfaces[j]).intfdef ) ); if intffound then break; objdef:=objdef.childof; end; if intffound then inc(intfcount) else MessagePos2(filepos,parser_e_class_doesnt_implement_interface,paraobjdef.typename,timplementedinterface(formalobjdef.implementedinterfaces[j]).intfdef.typename); end; if intfcount<>formalobjdef.implementedinterfaces.count then result:=false; end; end; end; end; end; function parse_generic_specialization_types_internal(genericdeflist:tfpobjectlist;poslist:tfplist;out prettyname,specializename:ansistring;parsedtype:tdef;parsedpos:tfileposinfo):boolean; var old_block_type : tblock_type; first : boolean; typeparam : tnode; parampos : pfileposinfo; tmpparampos : tfileposinfo; begin result:=true; if genericdeflist=nil then internalerror(2012061401); { set the block type to type, so that the parsed type are returned as ttypenode (e.g. classes are in non type-compatible blocks returned as tloadvmtaddrnode) } old_block_type:=block_type; { if parsedtype is set, then the first type identifer was already parsed (happens in inline specializations) and thus we only need to parse the remaining types and do as if the first one was already given } first:=not assigned(parsedtype); if assigned(parsedtype) then begin genericdeflist.Add(parsedtype); specializename:='$'+parsedtype.fulltypename; prettyname:=parsedtype.typesym.prettyname; if assigned(poslist) then begin New(parampos); parampos^:=parsedpos; poslist.add(parampos); end; end else begin specializename:=''; prettyname:=''; end; while not (token in [_GT,_RSHARPBRACKET]) do begin { "first" is set to false at the end of the loop! } if not first then consume(_COMMA); block_type:=bt_type; tmpparampos:=current_filepos; typeparam:=factor(false,true); if typeparam.nodetype=typen then begin if tstoreddef(typeparam.resultdef).is_generic and ( not parse_generic or not defs_belong_to_same_generic(typeparam.resultdef,current_genericdef) ) then Message(parser_e_no_generics_as_params); if assigned(poslist) then begin New(parampos); parampos^:=tmpparampos; poslist.add(parampos); end; genericdeflist.Add(typeparam.resultdef); if not assigned(typeparam.resultdef.typesym) then message(type_e_generics_cannot_reference_itself) else begin { we use the full name of the type to uniquely identify it } specializename:=specializename+'$'+typeparam.resultdef.fulltypename; if not first then prettyname:=prettyname+','; prettyname:=prettyname+typeparam.resultdef.fullownerhierarchyname+typeparam.resultdef.typesym.prettyname; end; end else begin Message(type_e_type_id_expected); result:=false; end; typeparam.free; first:=false; end; block_type:=old_block_type; end; function parse_generic_specialization_types(genericdeflist:tfpobjectlist;poslist:tfplist;out prettyname,specializename:ansistring):boolean; var dummypos : tfileposinfo; begin FillChar(dummypos, SizeOf(tfileposinfo), 0); result:=parse_generic_specialization_types_internal(genericdeflist,poslist,prettyname,specializename,nil,dummypos); end; procedure generate_specialization(var tt:tdef;parse_class_parent:boolean;_prettyname:string); var dummypos : tfileposinfo; begin FillChar(dummypos, SizeOf(tfileposinfo), 0); generate_specialization(tt,parse_class_parent,_prettyname,nil,'',dummypos); end; procedure generate_specialization(var tt:tdef;parse_class_parent:boolean;_prettyname:string;parsedtype:tdef;symname:string;parsedpos:tfileposinfo); procedure unset_forwarddef(def: tdef); var st : TSymtable; i : longint; begin case def.typ of procdef: tprocdef(def).forwarddef:=false; objectdef, recorddef: begin st:=def.getsymtable(gs_record); for i:=0 to st.deflist.count-1 do unset_forwarddef(tdef(st.deflist[i])); end; end; end; var st : TSymtable; srsym : tsym; pt2 : tnode; hadtypetoken, errorrecovery, found, first, err : boolean; errval, i, gencount : longint; genericdef,def : tstoreddef; generictype : ttypesym; genericdeflist : TFPObjectList; generictypelist : tfphashobjectlist; prettyname,specializename : ansistring; ufinalspecializename, countstr,genname,ugenname,finalspecializename : string; vmtbuilder : TVMTBuilder; specializest : tsymtable; item : tobject; old_current_structdef : tabstractrecorddef; old_current_genericdef,old_current_specializedef : tstoreddef; tempst : tglobalsymtable; old_block_type: tblock_type; hashedid: thashedidstring; state : tspecializationstate; hmodule : tmodule; oldcurrent_filepos : tfileposinfo; poslist : tfplist; recordbuf: tdynamicarray; begin { retrieve generic def that we are going to replace } genericdef:=tstoreddef(tt); tt:=nil; { either symname must be given or genericdef needs to be valid } errorrecovery:=false; if (symname='') and (not assigned(genericdef) or not assigned(genericdef.typesym) or (genericdef.typesym.typ<>typesym)) then begin errorrecovery:=true; tt:=generrordef; end; { Only parse the parameters for recovery or for recording in genericbuf } if errorrecovery then begin first:=assigned(parsedtype); if not first and not try_to_consume(_LT) then consume(_LSHARPBRACKET); gencount:=0; { handle "<>" } if not first and ((token=_RSHARPBRACKET) or (token=_GT)) then Message(type_e_type_id_expected) else repeat if not first then begin pt2:=factor(false,true); pt2.free; end; first:=false; inc(gencount); until not try_to_consume(_COMMA); if not try_to_consume(_GT) then consume(_RSHARPBRACKET); { we need to return a def that can later pass some checks like whether it's an interface or not } if not errorrecovery and (not assigned(tt) or (tt.typ=undefineddef)) then begin if (symname='') and genericdef.is_generic then { this happens in non-Delphi modes } tt:=genericdef else begin { find the corresponding generic symbol so that any checks done on the returned def will be handled correctly } str(gencount,countstr); if symname='' then genname:=ttypesym(genericdef.typesym).realname else genname:=symname; genname:=genname+'$'+countstr; ugenname:=upper(genname); { first check whether the found name is the same as that of the current def or one of its (generic) surrounding defs; this is necessary as the symbol of the generic can not yet be used for lookup as it still contains a reference to an errordef) } def:=current_genericdef; repeat if def.typ in [objectdef,recorddef] then if tabstractrecorddef(def).objname^=ugenname then begin tt:=def; break; end; def:=tstoreddef(def.owner.defowner); until not assigned(def) or not (df_generic in def.defoptions); { it's not part of the current object hierarchy, so search for the symbol } if not assigned(tt) then begin srsym:=nil; if not searchsym(ugenname,srsym,st) or (srsym.typ<>typesym) then begin identifier_not_found(genname); tt:=generrordef; exit; end; tt:=ttypesym(srsym).typedef; { this happens in non-Delphi modes if we encounter a specialization of the generic class or record we're currently parsing } if (tt.typ=errordef) and assigned(current_structdef) and (current_structdef.objname^=ugenname) then tt:=current_structdef; end; end; end; exit; end; if not assigned(parsedtype) and not try_to_consume(_LT) then begin consume(_LSHARPBRACKET); { handle "<>" } if (token=_GT) or (token=_RSHARPBRACKET) then begin Message(type_e_type_id_expected); if not try_to_consume(_GT) then try_to_consume(_RSHARPBRACKET); tt:=generrordef; exit; end; end; genericdeflist:=TFPObjectList.Create(false); poslist:=tfplist.create; { Parse type parameters } err:=not parse_generic_specialization_types_internal(genericdeflist,poslist,prettyname,specializename,parsedtype,parsedpos); if err then begin if not try_to_consume(_GT) then try_to_consume(_RSHARPBRACKET); genericdeflist.free; for i:=0 to poslist.count-1 do dispose(pfileposinfo(poslist[i])); poslist.free; tt:=generrordef; exit; end; { use the name of the symbol as procvars return a user friendly version of the name } if symname='' then genname:=ttypesym(genericdef.typesym).realname else genname:=symname; { in case of non-Delphi mode the type name could already be a generic def (but maybe the wrong one) } if assigned(genericdef) and ([df_generic,df_specialization]*genericdef.defoptions<>[]) then begin { remove the type count suffix from the generic's name } for i:=Length(genname) downto 1 do if genname[i]='$' then begin genname:=copy(genname,1,i-1); break; end; { in case of a specialization we've only reached the specialization checksum yet } if df_specialization in genericdef.defoptions then for i:=length(genname) downto 1 do if genname[i]='$' then begin genname:=copy(genname,1,i-1); break; end; end else begin split_generic_name(genname,ugenname,gencount); if genname<>ugenname then genname:=ugenname; end; { search a generic with the given count of params } countstr:=''; str(genericdeflist.Count,countstr); genname:=genname+'$'+countstr; ugenname:=upper(genname); if assigned(genericdef) and (genericdef.owner.symtabletype in [objectsymtable,recordsymtable]) then begin if genericdef.owner.symtabletype = objectsymtable then found:=searchsym_in_class(tobjectdef(genericdef.owner.defowner),tobjectdef(genericdef.owner.defowner),ugenname,srsym,st,[]) else found:=searchsym_in_record(tabstractrecorddef(genericdef.owner.defowner),ugenname,srsym,st); if not found then found:=searchsym(ugenname,srsym,st); end else found:=searchsym(ugenname,srsym,st); if not found or (srsym.typ<>typesym) then begin identifier_not_found(genname); if not try_to_consume(_GT) then try_to_consume(_RSHARPBRACKET); for i:=0 to poslist.count-1 do dispose(pfileposinfo(poslist[i])); poslist.free; genericdeflist.Free; tt:=generrordef; exit; end; { we've found the correct def } genericdef:=tstoreddef(ttypesym(srsym).typedef); if not check_generic_constraints(genericdef,genericdeflist,poslist) then begin { the parameters didn't fit the constraints, so don't continue with the specialization } genericdeflist.free; for i:=0 to poslist.count-1 do dispose(pfileposinfo(poslist[i])); poslist.free; tt:=generrordef; if not try_to_consume(_GT) then try_to_consume(_RSHARPBRACKET); exit; end; { build the new type's name } finalspecializename:=generate_generic_name(genname,specializename,genericdef.ownerhierarchyname); ufinalspecializename:=upper(finalspecializename); prettyname:=genericdef.typesym.prettyname+'<'+prettyname+'>'; { select the symtable containing the params } case genericdef.typ of procdef: st:=genericdef.GetSymtable(gs_para); objectdef, recorddef: st:=genericdef.GetSymtable(gs_record); arraydef: st:=tarraydef(genericdef).symtable; procvardef: st:=genericdef.GetSymtable(gs_para); else internalerror(200511182); end; generictypelist:=tfphashobjectlist.create(false); { build the list containing the types for the generic params } if not assigned(genericdef.genericparas) then internalerror(2013092601); if genericdeflist.count<>genericdef.genericparas.count then internalerror(2013092603); for i:=0 to genericdef.genericparas.Count-1 do begin srsym:=tsym(genericdef.genericparas[i]); if not (sp_generic_para in srsym.symoptions) then internalerror(2013092602); generictypelist.add(srsym.realname,tdef(genericdeflist[i]).typesym); end; { Special case if we are referencing the current defined object } if assigned(current_structdef) and (current_structdef.objname^=ufinalspecializename) then tt:=current_structdef; { Can we reuse an already specialized type? } { for this first check whether we are currently specializing a nested type of the current (main) specialization (this is necessary, because during that time the symbol of the main specialization will still contain a reference to an errordef) } if not assigned(tt) and assigned(current_specializedef) then begin def:=current_specializedef; repeat if def.typ in [objectdef,recorddef] then if tabstractrecorddef(def).objname^=ufinalspecializename then begin tt:=def; break; end; def:=tstoreddef(def.owner.defowner); until not assigned(def) or not (df_specialization in def.defoptions); end; { if the genericdef is the def we are currently parsing (or one of its parents) then we can not use it for specializing as the tokenbuffer is not yet set (and we aren't done with parsing anyway), so for now we treat those still as generic defs without doing a partial specialization } if not assigned(tt) then begin def:=current_genericdef; while assigned(def) and (def.typ in [recorddef,objectdef]) do begin if def=genericdef then begin tt:=def; break; end; def:=tstoreddef(def.owner.defowner); end; end; { decide in which symtable to put the specialization } if parse_generic and not assigned(tt) then begin if not assigned(current_genericdef) then internalerror(2014050901); if assigned(current_procinfo) and (df_generic in current_procinfo.procdef.defoptions) then { if we are parsing the definition of a method we specialize into the local symtable of it } specializest:=current_procinfo.procdef.getsymtable(gs_local) else { we specialize the partial specialization into the symtable of the currently parsed generic } case current_genericdef.typ of procvardef, procdef: specializest:=current_genericdef.getsymtable(gs_local); objectdef, recorddef: specializest:=current_genericdef.getsymtable(gs_record); arraydef: specializest:=tarraydef(current_genericdef).symtable; else internalerror(2014050902); end; end else if current_module.is_unit and current_module.in_interface then specializest:=current_module.globalsymtable else specializest:=current_module.localsymtable; if not assigned(specializest) then internalerror(2014050910); { now check whether there is a specialization somewhere else } if not assigned(tt) then begin hashedid.id:=ufinalspecializename; srsym:=tsym(specializest.findwithhash(hashedid)); if assigned(srsym) then begin if srsym.typ<>typesym then internalerror(200710171); tt:=ttypesym(srsym).typedef; end else { the generic could have been specialized in the globalsymtable already, so search there as well } if (specializest<>current_module.globalsymtable) and assigned(current_module.globalsymtable) then begin srsym:=tsym(current_module.globalsymtable.findwithhash(hashedid)); if assigned(srsym) then begin if srsym.typ<>typesym then internalerror(2011121101); tt:=ttypesym(srsym).typedef; end; end; end; if not assigned(tt) then begin specialization_init(genericdef,state); { push a temporary global symtable so that the specialization is added to the correct symtable; this symtable does not contain any other symbols, so that the type resolution can not be influenced by symbols in the current unit } tempst:=tspecializesymtable.create(current_module.modulename^,current_module.moduleid); symtablestack.push(tempst); { Reparse the original type definition } if not err then begin old_current_specializedef:=nil; old_current_genericdef:=nil; old_current_structdef:=nil; if parse_class_parent then begin old_current_structdef:=current_structdef; old_current_genericdef:=current_genericdef; old_current_specializedef:=current_specializedef; if genericdef.owner.symtabletype in [recordsymtable,objectsymtable] then current_structdef:=tabstractrecorddef(genericdef.owner.defowner) else current_structdef:=nil; current_genericdef:=nil; current_specializedef:=nil; end; maybe_add_waiting_unit(genericdef); { First a new typesym so we can reuse this specialization and references to this specialization can be handled } srsym:=ctypesym.create(finalspecializename,generrordef); specializest.insert(srsym); { specializations are declarations as such it is the wisest to declare set the blocktype to "type"; otherwise we'll experience unexpected side effects like the addition of classrefdefs if we have a generic that's derived from another generic } old_block_type:=block_type; block_type:=bt_type; if not assigned(genericdef.generictokenbuf) then internalerror(200511171); hmodule:=find_module_from_symtable(genericdef.owner); if hmodule=nil then internalerror(2012051202); oldcurrent_filepos:=current_filepos; { use the index the module got from the current compilation process } current_filepos.moduleindex:=hmodule.unit_index; current_tokenpos:=current_filepos; if parse_generic then begin recordbuf:=current_scanner.recordtokenbuf; current_scanner.recordtokenbuf:=nil; end else recordbuf:=nil; current_scanner.startreplaytokens(genericdef.generictokenbuf); hadtypetoken:=false; read_named_type(tt,srsym,genericdef,generictypelist,false,hadtypetoken); current_filepos:=oldcurrent_filepos; ttypesym(srsym).typedef:=tt; tt.typesym:=srsym; if _prettyname<>'' then ttypesym(tt.typesym).fprettyname:=_prettyname else ttypesym(tt.typesym).fprettyname:=prettyname; { Note regarding hint directives: There is no need to remove the flags for them from the specialized generic symbol, because hint directives that follow the specialization are handled by the code in pdecl.types_dec and added to the type symbol. E.g.: TFoo = TBar deprecated; Here the symbol TBar$1$Blubb will contain the "sp_hint_deprecated" flag while the TFoo symbol won't.} case tt.typ of { Build VMT indexes for classes and read hint directives } objectdef: begin try_consume_hintdirective(srsym.symoptions,srsym.deprecatedmsg); consume(_SEMICOLON); vmtbuilder:=TVMTBuilder.Create(tobjectdef(tt)); vmtbuilder.generate_vmt; vmtbuilder.free; end; { handle params, calling convention, etc } procvardef: begin if not check_proc_directive(true) then begin try_consume_hintdirective(ttypesym(srsym).symoptions,ttypesym(srsym).deprecatedmsg); consume(_SEMICOLON); end; parse_var_proc_directives(ttypesym(srsym)); handle_calling_convention(tprocvardef(tt)); if try_consume_hintdirective(ttypesym(srsym).symoptions,ttypesym(srsym).deprecatedmsg) then consume(_SEMICOLON); end; else { parse hint directives for records and arrays } begin try_consume_hintdirective(srsym.symoptions,srsym.deprecatedmsg); consume(_SEMICOLON); end; end; { Consume the semicolon if it is also recorded } try_to_consume(_SEMICOLON); if assigned(recordbuf) then begin if assigned(current_scanner.recordtokenbuf) then internalerror(2014050909); current_scanner.recordtokenbuf:=recordbuf; end; block_type:=old_block_type; if parse_class_parent then begin current_structdef:=old_current_structdef; current_genericdef:=old_current_genericdef; current_specializedef:=old_current_specializedef; end; end; { extract all created symbols and defs from the temporary symtable and add them to the specializest } for i:=tempst.SymList.Count-1 downto 0 do begin item:=tempst.SymList.Items[i]; { using changeowner the symbol is automatically added to the new symtable } tsym(item).ChangeOwner(specializest); end; for i:=tempst.DefList.Count-1 downto 0 do begin item:=tempst.DefList.Items[i]; { using changeowner the def is automatically added to the new symtable } tdef(item).ChangeOwner(specializest); { for partial specializations we implicitely declare any methods as having their implementations although we'll not specialize them in reality } if parse_generic then unset_forwarddef(tdef(item)); end; { if a generic was declared during the specialization we need to flag the specialize symtable accordingly } if sto_has_generic in tempst.tableoptions then specializest.includeoption(sto_has_generic); tempst.free; specialization_done(state); end; if not (token in [_GT, _RSHARPBRACKET]) then begin consume(_RSHARPBRACKET); exit; end else consume(token); genericdeflist.free; generictypelist.free; if assigned(genericdef) then begin { check the hints of the found generic symbol } srsym:=genericdef.typesym; check_hints(srsym,srsym.symoptions,srsym.deprecatedmsg); end; end; function parse_generic_parameters(allowconstraints:boolean):tfphashobjectlist; var generictype : ttypesym; i,firstidx : longint; srsymtable : tsymtable; basedef,def : tdef; defname : tidstring; allowconstructor, doconsume : boolean; constraintdata : tgenericconstraintdata; old_block_type : tblock_type; begin result:=tfphashobjectlist.create(false); firstidx:=0; old_block_type:=block_type; block_type:=bt_type; repeat if token=_ID then begin generictype:=ctypesym.create(orgpattern,cundefinedtype); { type parameters need to be added as strict private } generictype.visibility:=vis_strictprivate; include(generictype.symoptions,sp_generic_para); result.add(orgpattern,generictype); end; consume(_ID); if try_to_consume(_COLON) then begin if not allowconstraints then { TODO } Message(parser_e_illegal_expression{ parser_e_generic_constraints_not_allowed_here}); { construct a name which can be used for a type specification } constraintdata:=tgenericconstraintdata.create; defname:=''; str(current_module.deflist.count,defname); defname:='$gendef'+defname; allowconstructor:=m_delphi in current_settings.modeswitches; basedef:=generrordef; repeat doconsume:=true; case token of _CONSTRUCTOR: begin if not allowconstructor or (gcf_constructor in constraintdata.flags) then Message(parser_e_illegal_expression); include(constraintdata.flags,gcf_constructor); allowconstructor:=false; end; _CLASS: begin if gcf_class in constraintdata.flags then Message(parser_e_illegal_expression); if basedef=generrordef then include(constraintdata.flags,gcf_class) else Message(parser_e_illegal_expression); end; _RECORD: begin if ([gcf_constructor,gcf_class]*constraintdata.flags<>[]) or (constraintdata.interfaces.count>0) then Message(parser_e_illegal_expression) else begin srsymtable:=trecordsymtable.create(defname,0); basedef:=crecorddef.create(defname,srsymtable); include(constraintdata.flags,gcf_record); allowconstructor:=false; end; end; else begin { after single_type "token" is the trailing ",", ";" or ">"! } doconsume:=false; { def is already set to a class or record } if gcf_record in constraintdata.flags then Message(parser_e_illegal_expression); single_type(def, [stoAllowSpecialization]); { only types that are inheritable are allowed } if (def.typ<>objectdef) or not (tobjectdef(def).objecttype in [odt_class,odt_interfacecom,odt_interfacecorba,odt_interfacejava,odt_javaclass]) then Message1(type_e_class_or_interface_type_expected,def.typename) else case tobjectdef(def).objecttype of odt_class, odt_javaclass: begin if gcf_class in constraintdata.flags then { "class" + concrete class is not allowed } Message(parser_e_illegal_expression) else { do we already have a concrete class? } if basedef<>generrordef then Message(parser_e_illegal_expression) else basedef:=def; end; odt_interfacecom, odt_interfacecorba, odt_interfacejava, odt_dispinterface: constraintdata.interfaces.add(def); end; end; end; if doconsume then consume(token); until not try_to_consume(_COMMA); if ([gcf_class,gcf_constructor]*constraintdata.flags<>[]) or (constraintdata.interfaces.count>1) or ( (basedef.typ=objectdef) and (tobjectdef(basedef).objecttype in [odt_javaclass,odt_class]) ) then begin if basedef.typ=errordef then { don't pass an errordef as a parent to a tobjectdef } basedef:=class_tobject else if (basedef.typ<>objectdef) or not (tobjectdef(basedef).objecttype in [odt_javaclass,odt_class]) then internalerror(2012101101); basedef:=cobjectdef.create(tobjectdef(basedef).objecttype,defname,tobjectdef(basedef)); for i:=0 to constraintdata.interfaces.count-1 do tobjectdef(basedef).implementedinterfaces.add( timplementedinterface.create(tobjectdef(constraintdata.interfaces[i]))); end else if constraintdata.interfaces.count=1 then begin if basedef.typ<>errordef then internalerror(2013021601); def:=tdef(constraintdata.interfaces[0]); basedef:=cobjectdef.create(tobjectdef(def).objecttype,defname,tobjectdef(def)); constraintdata.interfaces.delete(0); end; if basedef.typ<>errordef then with tstoreddef(basedef) do begin genconstraintdata:=tgenericconstraintdata.create; genconstraintdata.flags:=constraintdata.flags; genconstraintdata.interfaces.assign(constraintdata.interfaces); include(defoptions,df_genconstraint); end; for i:=firstidx to result.count-1 do ttypesym(result[i]).typedef:=basedef; { we need a typesym in case we do a Delphi-mode inline specialization with this parameter; so just use the first sym } if not assigned(basedef.typesym) then basedef.typesym:=ttypesym(result[firstidx]); firstidx:=result.count; constraintdata.free; end else if token=_SEMICOLON then { a semicolon terminates a type parameter group } firstidx:=result.count; until not (try_to_consume(_COMMA) or try_to_consume(_SEMICOLON)); block_type:=old_block_type; end; procedure insert_generic_parameter_types(def:tstoreddef;genericdef:tstoreddef;genericlist:tfphashobjectlist); var i : longint; generictype,sym : ttypesym; st : tsymtable; begin def.genericdef:=genericdef; if not assigned(genericlist) then exit; if assigned(genericdef) then include(def.defoptions,df_specialization) else if genericlist.count>0 then include(def.defoptions,df_generic); case def.typ of recorddef,objectdef: st:=tabstractrecorddef(def).symtable; arraydef: st:=tarraydef(def).symtable; procvardef,procdef: st:=tabstractprocdef(def).parast; else internalerror(201101020); end; if (genericlist.count>0) and not assigned(def.genericparas) then def.genericparas:=tfphashobjectlist.create(false); for i:=0 to genericlist.count-1 do begin generictype:=ttypesym(genericlist[i]); if assigned(generictype.owner) then begin sym:=ctypesym.create(genericlist.nameofindex(i),generictype.typedef); { type parameters need to be added as strict private } sym.visibility:=vis_strictprivate; st.insert(sym); include(sym.symoptions,sp_generic_para); end else begin st.insert(generictype); include(generictype.symoptions,sp_generic_para); end; def.genericparas.add(genericlist.nameofindex(i),generictype); end; end; procedure maybe_insert_generic_rename_symbol(const name:tidstring;genericlist:tfphashobjectlist); var gensym : ttypesym; begin { for generics in non-Delphi modes we insert a private type symbol that has the same base name as the currently parsed generic and that references this defs } if not (m_delphi in current_settings.modeswitches) and ( ( parse_generic and assigned(genericlist) and (genericlist.count>0) ) or ( assigned(current_specializedef) and assigned(current_structdef.genericdef) and (current_structdef.genericdef.typ in [objectdef,recorddef]) and (pos('$',name)>0) ) ) then begin { we need to pass nil as def here, because the constructor wants to set the typesym of the def which is not what we want } gensym:=ctypesym.create(copy(name,1,pos('$',name)-1),nil); gensym.typedef:=current_structdef; include(gensym.symoptions,sp_internal); { the symbol should be only visible to the generic class itself } gensym.visibility:=vis_strictprivate; symtablestack.top.insert(gensym); end; end; function generate_generic_name(const name:tidstring;specializename:ansistring;owner_hierarchy:string):tidstring; var crc : cardinal; begin if specializename='' then internalerror(2012061901); { build the new type's name } crc:=UpdateCrc32(0,specializename[1],length(specializename)); result:=name+'$crc'+hexstr(crc,8); if owner_hierarchy<>'' then begin crc:=UpdateCrc32(0,owner_hierarchy[1],length(owner_hierarchy)); result:=result+'$crc'+hexstr(crc,8); end; end; procedure split_generic_name(const name:tidstring;out nongeneric:string;out count:longint); var i,code : longint; countstr : string; begin for i:=length(name) downto 1 do if name[i]='$' then begin nongeneric:=copy(name,1,i-1); countstr:=copy(name,i+1,length(name)-i); val(countstr,count,code); if code<>0 then break; exit; end; nongeneric:=name; count:=0; end; function resolve_generic_dummysym(const name:tidstring):tsym; var list : tfpobjectlist; begin list:=tfpobjectlist(current_module.genericdummysyms.find(name)); if assigned(list) and (list.count>0) then result:=tgenericdummyentry(list.last).resolvedsym else result:=nil; end; function could_be_generic(const name:tidstring):boolean; begin result:=(name<>'') and (current_module.genericdummysyms.findindexof(name)>=0); end; procedure specialization_init(genericdef:tdef;var state: tspecializationstate); var pu : tused_unit; hmodule : tmodule; unitsyms : TFPHashObjectList; sym : tsym; i : Integer; begin if not assigned(genericdef) then internalerror(200705151); { Setup symtablestack at definition time to get types right, however this is not perfect, we should probably record the resolved symbols } state.oldsymtablestack:=symtablestack; state.oldextendeddefs:=current_module.extendeddefs; state.oldgenericdummysyms:=current_module.genericdummysyms; current_module.extendeddefs:=TFPHashObjectList.create(true); current_module.genericdummysyms:=tfphashobjectlist.create(true); symtablestack:=tdefawaresymtablestack.create; hmodule:=find_module_from_symtable(genericdef.owner); if hmodule=nil then internalerror(200705152); { collect all unit syms in the generic's unit as we need to establish their unitsym.module link again so that unit identifiers can be used } unitsyms:=tfphashobjectlist.create(false); if (hmodule<>current_module) and assigned(hmodule.globalsymtable) then for i:=0 to hmodule.globalsymtable.symlist.count-1 do begin sym:=tsym(hmodule.globalsymtable.symlist[i]); if sym.typ=unitsym then unitsyms.add(upper(sym.realname),sym); end; { add all units if we are specializing inside the current unit (as the generic could have been declared in the implementation part), but load only interface units, if we are in a different unit as then the generic needs to be in the interface section } pu:=tused_unit(hmodule.used_units.first); while assigned(pu) do begin if not assigned(pu.u.globalsymtable) then { in certain circular, but valid unit constellations it can happen that we specialize a generic in a different unit that was used in the implementation section of the generic's unit and were the interface is still being parsed and thus the localsymtable is in reality the global symtable } if pu.u.in_interface then symtablestack.push(pu.u.localsymtable) else internalerror(200705153) else symtablestack.push(pu.u.globalsymtable); sym:=tsym(unitsyms.find(pu.u.modulename^)); if assigned(sym) and not assigned(tunitsym(sym).module) then tunitsym(sym).module:=pu.u; pu:=tused_unit(pu.next); end; unitsyms.free; if assigned(hmodule.globalsymtable) then symtablestack.push(hmodule.globalsymtable); { push the localsymtable if needed } if ((hmodule<>current_module) or not current_module.in_interface) and assigned(hmodule.localsymtable) then symtablestack.push(hmodule.localsymtable); end; procedure specialization_done(var state: tspecializationstate); begin { Restore symtablestack } current_module.extendeddefs.free; current_module.extendeddefs:=state.oldextendeddefs; current_module.genericdummysyms.free; current_module.genericdummysyms:=state.oldgenericdummysyms; symtablestack.free; symtablestack:=state.oldsymtablestack; { clear the state record to be on the safe side } fillchar(state, sizeof(state), 0); end; end.