{ $Id$ Copyright (c) 2000-2002 by Florian Klaempfl Type checking and register allocation for type converting nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ncnv; {$i fpcdefs.inc} interface uses node, symtype, defutil,defcmp, nld ; type ttypeconvnode = class(tunarynode) totype : ttype; convtype : tconverttype; constructor create(node : tnode;const t : ttype);virtual; constructor create_explicit(node : tnode;const t : ttype); constructor create_internal(node : tnode;const t : ttype); constructor create_proc_to_procvar(node : tnode); constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override; procedure ppuwrite(ppufile:tcompilerppufile);override; procedure buildderefimpl;override; procedure derefimpl;override; function getcopy : tnode;override; function pass_1 : tnode;override; function det_resulttype:tnode;override; procedure mark_write;override; function docompare(p: tnode) : boolean; override; function assign_allowed:boolean; procedure second_call_helper(c : tconverttype); private function resulttype_int_to_int : tnode; function resulttype_cord_to_pointer : tnode; function resulttype_chararray_to_string : tnode; function resulttype_string_to_chararray : tnode; function resulttype_string_to_string : tnode; function resulttype_char_to_string : tnode; function resulttype_char_to_chararray : tnode; function resulttype_int_to_real : tnode; function resulttype_real_to_real : tnode; function resulttype_real_to_currency : tnode; function resulttype_cchar_to_pchar : tnode; function resulttype_cstring_to_pchar : tnode; function resulttype_char_to_char : tnode; function resulttype_arrayconstructor_to_set : tnode; function resulttype_pchar_to_string : tnode; function resulttype_interface_to_guid : tnode; function resulttype_dynarray_to_openarray : tnode; function resulttype_pwchar_to_string : tnode; function resulttype_variant_to_dynarray : tnode; function resulttype_dynarray_to_variant : tnode; function resulttype_call_helper(c : tconverttype) : tnode; function resulttype_variant_to_enum : tnode; function resulttype_enum_to_variant : tnode; function resulttype_proc_to_procvar : tnode; protected function first_int_to_int : tnode;virtual; function first_cstring_to_pchar : tnode;virtual; function first_string_to_chararray : tnode;virtual; function first_char_to_string : tnode;virtual; function first_nothing : tnode;virtual; function first_array_to_pointer : tnode;virtual; function first_int_to_real : tnode;virtual; function first_real_to_real : tnode;virtual; function first_pointer_to_array : tnode;virtual; function first_cchar_to_pchar : tnode;virtual; function first_bool_to_int : tnode;virtual; function first_int_to_bool : tnode;virtual; function first_bool_to_bool : tnode;virtual; function first_proc_to_procvar : tnode;virtual; function first_load_smallset : tnode;virtual; function first_cord_to_pointer : tnode;virtual; function first_ansistring_to_pchar : tnode;virtual; function first_arrayconstructor_to_set : tnode;virtual; function first_class_to_intf : tnode;virtual; function first_char_to_char : tnode;virtual; function first_call_helper(c : tconverttype) : tnode; { these wrapper are necessary, because the first_* stuff is called } { through a table. Without the wrappers override wouldn't have } { any effect } function _first_int_to_int : tnode; function _first_cstring_to_pchar : tnode; function _first_string_to_chararray : tnode; function _first_char_to_string : tnode; function _first_nothing : tnode; function _first_array_to_pointer : tnode; function _first_int_to_real : tnode; function _first_real_to_real: tnode; function _first_pointer_to_array : tnode; function _first_cchar_to_pchar : tnode; function _first_bool_to_int : tnode; function _first_int_to_bool : tnode; function _first_bool_to_bool : tnode; function _first_proc_to_procvar : tnode; function _first_load_smallset : tnode; function _first_cord_to_pointer : tnode; function _first_ansistring_to_pchar : tnode; function _first_arrayconstructor_to_set : tnode; function _first_class_to_intf : tnode; function _first_char_to_char : tnode; procedure _second_int_to_int;virtual; procedure _second_string_to_string;virtual; procedure _second_cstring_to_pchar;virtual; procedure _second_string_to_chararray;virtual; procedure _second_array_to_pointer;virtual; procedure _second_pointer_to_array;virtual; procedure _second_chararray_to_string;virtual; procedure _second_char_to_string;virtual; procedure _second_int_to_real;virtual; procedure _second_real_to_real;virtual; procedure _second_cord_to_pointer;virtual; procedure _second_proc_to_procvar;virtual; procedure _second_bool_to_int;virtual; procedure _second_int_to_bool;virtual; procedure _second_bool_to_bool;virtual; procedure _second_load_smallset;virtual; procedure _second_ansistring_to_pchar;virtual; procedure _second_class_to_intf;virtual; procedure _second_char_to_char;virtual; procedure _second_nothing; virtual; procedure second_int_to_int;virtual;abstract; procedure second_string_to_string;virtual;abstract; procedure second_cstring_to_pchar;virtual;abstract; procedure second_string_to_chararray;virtual;abstract; procedure second_array_to_pointer;virtual;abstract; procedure second_pointer_to_array;virtual;abstract; procedure second_chararray_to_string;virtual;abstract; procedure second_char_to_string;virtual;abstract; procedure second_int_to_real;virtual;abstract; procedure second_real_to_real;virtual;abstract; procedure second_cord_to_pointer;virtual;abstract; procedure second_proc_to_procvar;virtual;abstract; procedure second_bool_to_int;virtual;abstract; procedure second_int_to_bool;virtual;abstract; procedure second_bool_to_bool;virtual;abstract; procedure second_load_smallset;virtual;abstract; procedure second_ansistring_to_pchar;virtual;abstract; procedure second_class_to_intf;virtual;abstract; procedure second_char_to_char;virtual;abstract; procedure second_nothing; virtual;abstract; end; ttypeconvnodeclass = class of ttypeconvnode; tasnode = class(tbinarynode) constructor create(l,r : tnode);virtual; function pass_1 : tnode;override; function det_resulttype:tnode;override; function getcopy: tnode;override; destructor destroy; override; protected call: tnode; end; tasnodeclass = class of tasnode; tisnode = class(tbinarynode) constructor create(l,r : tnode);virtual; function pass_1 : tnode;override; function det_resulttype:tnode;override; procedure pass_2;override; end; tisnodeclass = class of tisnode; var ctypeconvnode : ttypeconvnodeclass; casnode : tasnodeclass; cisnode : tisnodeclass; procedure inserttypeconv(var p:tnode;const t:ttype); procedure inserttypeconv_internal(var p:tnode;const t:ttype); procedure arrayconstructor_to_set(var p : tnode); implementation uses cclasses,globtype,systems, cutils,verbose,globals,widestr, symconst,symdef,symsym,symbase,symtable, ncon,ncal,nset,nadd,ninl,nmem,nmat,nutils, cgbase,procinfo, htypechk,pass_1,cpuinfo; {***************************************************************************** Helpers *****************************************************************************} procedure inserttypeconv(var p:tnode;const t:ttype); begin if not assigned(p.resulttype.def) then begin resulttypepass(p); if codegenerror then exit; end; { don't insert obsolete type conversions } if equal_defs(p.resulttype.def,t.def) and not ((p.resulttype.def.deftype=setdef) and (tsetdef(p.resulttype.def).settype <> tsetdef(t.def).settype)) then begin p.resulttype:=t; end else begin p:=ctypeconvnode.create(p,t); resulttypepass(p); end; end; procedure inserttypeconv_internal(var p:tnode;const t:ttype); begin if not assigned(p.resulttype.def) then begin resulttypepass(p); if codegenerror then exit; end; { don't insert obsolete type conversions } if equal_defs(p.resulttype.def,t.def) and not ((p.resulttype.def.deftype=setdef) and (tsetdef(p.resulttype.def).settype <> tsetdef(t.def).settype)) then begin p.resulttype:=t; end else begin p:=ctypeconvnode.create_internal(p,t); resulttypepass(p); end; end; {***************************************************************************** Array constructor to Set Conversion *****************************************************************************} procedure arrayconstructor_to_set(var p : tnode); var constp : tsetconstnode; buildp, p2,p3,p4 : tnode; htype : ttype; constset : Pconstset; constsetlo, constsethi : TConstExprInt; procedure update_constsethi(t:ttype); begin if ((t.def.deftype=orddef) and (torddef(t.def).high>=constsethi)) then begin if torddef(t.def).typ=uwidechar then begin constsethi:=255; if htype.def=nil then htype:=t; end else begin constsethi:=torddef(t.def).high; if htype.def=nil then begin if (constsethi>255) or (torddef(t.def).low<0) then htype:=u8inttype else htype:=t; end; if constsethi>255 then constsethi:=255; end; end else if ((t.def.deftype=enumdef) and (tenumdef(t.def).max>=constsethi)) then begin if htype.def=nil then htype:=t; constsethi:=tenumdef(t.def).max; end; end; procedure do_set(pos : longint); begin if (pos and not $ff)<>0 then Message(parser_e_illegal_set_expr); if pos>constsethi then constsethi:=pos; if posarrayconstructorn then internalerror(200205105); new(constset); constset^:=[]; htype.reset; constsetlo:=0; constsethi:=0; constp:=csetconstnode.create(nil,htype); constp.value_set:=constset; buildp:=constp; hp:=tarrayconstructornode(p); if assigned(hp.left) then begin while assigned(hp) do begin p4:=nil; { will contain the tree to create the set } {split a range into p2 and p3 } if hp.left.nodetype=arrayconstructorrangen then begin p2:=tarrayconstructorrangenode(hp.left).left; p3:=tarrayconstructorrangenode(hp.left).right; tarrayconstructorrangenode(hp.left).left:=nil; tarrayconstructorrangenode(hp.left).right:=nil; end else begin p2:=hp.left; hp.left:=nil; p3:=nil; end; resulttypepass(p2); if assigned(p3) then resulttypepass(p3); if codegenerror then break; case p2.resulttype.def.deftype of enumdef, orddef: begin getrange(p2.resulttype.def,lr,hr); if assigned(p3) then begin { this isn't good, you'll get problems with type t010 = 0..10; ts = set of t010; var s : ts;b : t010 begin s:=[1,2,b]; end. if is_integer(p3^.resulttype.def) then begin inserttypeconv(p3,u8bitdef); end; } if assigned(htype.def) and not(equal_defs(htype.def,p3.resulttype.def)) then begin aktfilepos:=p3.fileinfo; CGMessage(type_e_typeconflict_in_set); end else begin if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then begin if not(is_integer(p3.resulttype.def)) then htype:=p3.resulttype else begin inserttypeconv(p3,u8inttype); inserttypeconv(p2,u8inttype); end; for l:=tordconstnode(p2).value to tordconstnode(p3).value do do_set(l); p2.free; p3.free; end else begin update_constsethi(p2.resulttype); inserttypeconv(p2,htype); update_constsethi(p3.resulttype); inserttypeconv(p3,htype); if assigned(htype.def) then inserttypeconv(p3,htype) else inserttypeconv(p3,u8inttype); p4:=csetelementnode.create(p2,p3); end; end; end else begin { Single value } if p2.nodetype=ordconstn then begin if not(is_integer(p2.resulttype.def)) then update_constsethi(p2.resulttype) else inserttypeconv(p2,u8inttype); do_set(tordconstnode(p2).value); p2.free; end else begin update_constsethi(p2.resulttype); if assigned(htype.def) then inserttypeconv(p2,htype) else inserttypeconv(p2,u8inttype); p4:=csetelementnode.create(p2,nil); end; end; end; stringdef : begin { if we've already set elements which are constants } { throw an error } if ((htype.def=nil) and assigned(buildp)) or not(is_char(htype.def)) then CGMessage(type_e_typeconflict_in_set) else for l:=1 to length(pstring(tstringconstnode(p2).value_str)^) do do_set(ord(pstring(tstringconstnode(p2).value_str)^[l])); if htype.def=nil then htype:=cchartype; p2.free; end; else CGMessage(type_e_ordinal_expr_expected); end; { insert the set creation tree } if assigned(p4) then buildp:=caddnode.create(addn,buildp,p4); { load next and dispose current node } p2:=hp; hp:=tarrayconstructornode(tarrayconstructornode(p2).right); tarrayconstructornode(p2).right:=nil; p2.free; end; if (htype.def=nil) then htype:=u8inttype; end else begin { empty set [], only remove node } p.free; end; { set the initial set type } constp.resulttype.setdef(tsetdef.create(htype,constsethi)); { determine the resulttype for the tree } resulttypepass(buildp); { set the new tree } p:=buildp; end; {***************************************************************************** TTYPECONVNODE *****************************************************************************} constructor ttypeconvnode.create(node : tnode;const t:ttype); begin inherited create(typeconvn,node); convtype:=tc_none; totype:=t; if t.def=nil then internalerror(200103281); fileinfo:=node.fileinfo; end; constructor ttypeconvnode.create_explicit(node : tnode;const t:ttype); begin self.create(node,t); include(flags,nf_explicit); end; constructor ttypeconvnode.create_internal(node : tnode;const t:ttype); begin self.create(node,t); { handle like explicit conversions } include(flags,nf_explicit); include(flags,nf_internal); end; constructor ttypeconvnode.create_proc_to_procvar(node : tnode); begin self.create(node,voidtype); convtype:=tc_proc_2_procvar; end; constructor ttypeconvnode.ppuload(t:tnodetype;ppufile:tcompilerppufile); begin inherited ppuload(t,ppufile); ppufile.gettype(totype); convtype:=tconverttype(ppufile.getbyte); end; procedure ttypeconvnode.ppuwrite(ppufile:tcompilerppufile); begin inherited ppuwrite(ppufile); ppufile.puttype(totype); ppufile.putbyte(byte(convtype)); end; procedure ttypeconvnode.buildderefimpl; begin inherited buildderefimpl; totype.buildderef; end; procedure ttypeconvnode.derefimpl; begin inherited derefimpl; totype.resolve; end; function ttypeconvnode.getcopy : tnode; var n : ttypeconvnode; begin n:=ttypeconvnode(inherited getcopy); n.convtype:=convtype; n.totype:=totype; getcopy:=n; end; function ttypeconvnode.resulttype_cord_to_pointer : tnode; var t : tnode; begin result:=nil; if left.nodetype=ordconstn then begin { check if we have a valid pointer constant (JM) } if (sizeof(pointer) > sizeof(TConstPtrUInt)) then if (sizeof(TConstPtrUInt) = 4) then begin if (tordconstnode(left).value < low(longint)) or (tordconstnode(left).value > high(cardinal)) then CGMessage(parser_e_range_check_error); end else if (sizeof(TConstPtrUInt) = 8) then begin if (tordconstnode(left).value < low(int64)) or (tordconstnode(left).value > high(qword)) then CGMessage(parser_e_range_check_error); end else internalerror(2001020801); t:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype); result:=t; end else internalerror(200104023); end; function ttypeconvnode.resulttype_chararray_to_string : tnode; begin result := ccallnode.createinternres( 'fpc_chararray_to_'+tstringdef(resulttype.def).stringtypname, ccallparanode.create(left,nil),resulttype); left := nil; end; function ttypeconvnode.resulttype_string_to_chararray : tnode; var arrsize : aint; begin with tarraydef(resulttype.def) do begin if highrange= arrsize) and (tstringdef(left.resulttype.def).string_typ=st_shortstring) then begin { handled separately } result := nil; exit; end; result := ccallnode.createinternres( 'fpc_'+tstringdef(left.resulttype.def).stringtypname+ '_to_chararray',ccallparanode.create(left,ccallparanode.create( cordconstnode.create(arrsize,s32inttype,true),nil)),resulttype); left := nil; end; function ttypeconvnode.resulttype_string_to_string : tnode; var procname: string[31]; stringpara : tcallparanode; pw : pcompilerwidestring; pc : pchar; begin result:=nil; if left.nodetype=stringconstn then begin { convert ascii 2 unicode } {$ifdef ansistring_bits} if (tstringdef(resulttype.def).string_typ=st_widestring) and (tstringconstnode(left).st_type in [st_ansistring16,st_ansistring32, st_ansistring64,st_shortstring,st_longstring]) then {$else} if (tstringdef(resulttype.def).string_typ=st_widestring) and (tstringconstnode(left).st_type in [st_ansistring,st_shortstring,st_longstring]) then {$endif} begin initwidestring(pw); ascii2unicode(tstringconstnode(left).value_str,tstringconstnode(left).len,pw); ansistringdispose(tstringconstnode(left).value_str,tstringconstnode(left).len); pcompilerwidestring(tstringconstnode(left).value_str):=pw; end else { convert unicode 2 ascii } {$ifdef ansistring_bits} if (tstringconstnode(left).st_type=st_widestring) and (tstringdef(resulttype.def).string_typ in [st_ansistring16,st_ansistring32, st_ansistring64,st_shortstring,st_longstring]) then {$else} if (tstringconstnode(left).st_type=st_widestring) and (tstringdef(resulttype.def).string_typ in [st_ansistring,st_shortstring,st_longstring]) then {$endif} begin pw:=pcompilerwidestring(tstringconstnode(left).value_str); getmem(pc,getlengthwidestring(pw)+1); unicode2ascii(pw,pc); donewidestring(pw); tstringconstnode(left).value_str:=pc; end; tstringconstnode(left).st_type:=tstringdef(resulttype.def).string_typ; tstringconstnode(left).resulttype:=resulttype; result:=left; left:=nil; end else begin { get the correct procedure name } procname := 'fpc_'+tstringdef(left.resulttype.def).stringtypname+ '_to_'+tstringdef(resulttype.def).stringtypname; { create parameter (and remove left node from typeconvnode } { since it's reused as parameter) } stringpara := ccallparanode.create(left,nil); left := nil; { when converting to shortstrings, we have to pass high(destination) too } if (tstringdef(resulttype.def).string_typ = st_shortstring) then stringpara.right := ccallparanode.create(cinlinenode.create( in_high_x,false,self.getcopy),nil); { and create the callnode } result := ccallnode.createinternres(procname,stringpara,resulttype); end; end; function ttypeconvnode.resulttype_char_to_string : tnode; var procname: string[31]; para : tcallparanode; hp : tstringconstnode; ws : pcompilerwidestring; begin result:=nil; if left.nodetype=ordconstn then begin if tstringdef(resulttype.def).string_typ=st_widestring then begin initwidestring(ws); concatwidestringchar(ws,tcompilerwidechar(chr(tordconstnode(left).value))); hp:=cstringconstnode.createwstr(ws); donewidestring(ws); end else hp:=cstringconstnode.createstr(chr(tordconstnode(left).value),tstringdef(resulttype.def).string_typ); result:=hp; end else { shortstrings are handled 'inline' } if tstringdef(resulttype.def).string_typ <> st_shortstring then begin { create the parameter } para := ccallparanode.create(left,nil); left := nil; { and the procname } procname := 'fpc_char_to_' +tstringdef(resulttype.def).stringtypname; { and finally the call } result := ccallnode.createinternres(procname,para,resulttype); end else begin { create word(byte(char) shl 8 or 1) for litte endian machines } { and word(byte(char) or 256) for big endian machines } left := ctypeconvnode.create_internal(left,u8inttype); if (target_info.endian = endian_little) then left := caddnode.create(orn, cshlshrnode.create(shln,left,cordconstnode.create(8,s32inttype,false)), cordconstnode.create(1,s32inttype,false)) else left := caddnode.create(orn,left, cordconstnode.create(1 shl 8,s32inttype,false)); left := ctypeconvnode.create_internal(left,u16inttype); resulttypepass(left); end; end; function ttypeconvnode.resulttype_char_to_chararray : tnode; begin if resulttype.def.size <> 1 then begin { convert first to string, then to chararray } inserttypeconv(left,cshortstringtype); inserttypeconv(left,resulttype); result:=left; left := nil; exit; end; result := nil; end; function ttypeconvnode.resulttype_char_to_char : tnode; var hp : tordconstnode; begin result:=nil; if left.nodetype=ordconstn then begin if (torddef(resulttype.def).typ=uchar) and (torddef(left.resulttype.def).typ=uwidechar) then begin hp:=cordconstnode.create( ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value))), cchartype,true); result:=hp; end else if (torddef(resulttype.def).typ=uwidechar) and (torddef(left.resulttype.def).typ=uchar) then begin hp:=cordconstnode.create( asciichar2unicode(chr(tordconstnode(left).value)), cwidechartype,true); result:=hp; end else internalerror(200105131); exit; end; end; function ttypeconvnode.resulttype_int_to_int : tnode; var v : TConstExprInt; begin result:=nil; if left.nodetype=ordconstn then begin v:=tordconstnode(left).value; if is_currency(resulttype.def) then v:=v*10000; if (resulttype.def.deftype=pointerdef) then result:=cpointerconstnode.create(TConstPtrUInt(v),resulttype) else begin if is_currency(left.resulttype.def) then v:=v div 10000; result:=cordconstnode.create(v,resulttype,false); end; end else if left.nodetype=pointerconstn then begin v:=tpointerconstnode(left).value; if (resulttype.def.deftype=pointerdef) then result:=cpointerconstnode.create(v,resulttype) else begin if is_currency(resulttype.def) then v:=v*10000; result:=cordconstnode.create(v,resulttype,false); end; end else begin { multiply by 10000 for currency. We need to use getcopy to pass the argument because the current node is always disposed. Only inserting the multiply in the left node is not possible because it'll get in an infinite loop to convert int->currency } if is_currency(resulttype.def) then begin result:=caddnode.create(muln,getcopy,cordconstnode.create(10000,resulttype,false)); include(result.flags,nf_is_currency); end else if is_currency(left.resulttype.def) then begin result:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,resulttype,false)); include(result.flags,nf_is_currency); end; end; end; function ttypeconvnode.resulttype_int_to_real : tnode; var rv : bestreal; begin result:=nil; if left.nodetype=ordconstn then begin rv:=tordconstnode(left).value; if is_currency(resulttype.def) then rv:=rv*10000.0 else if is_currency(left.resulttype.def) then rv:=rv/10000.0; result:=crealconstnode.create(rv,resulttype); end else begin { multiply by 10000 for currency. We need to use getcopy to pass the argument because the current node is always disposed. Only inserting the multiply in the left node is not possible because it'll get in an infinite loop to convert int->currency } if is_currency(resulttype.def) then begin result:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,resulttype)); include(result.flags,nf_is_currency); end else if is_currency(left.resulttype.def) then begin result:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,resulttype)); include(result.flags,nf_is_currency); end; end; end; function ttypeconvnode.resulttype_real_to_currency : tnode; begin if not is_currency(resulttype.def) then internalerror(200304221); result:=nil; left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resulttype)); include(left.flags,nf_is_currency); resulttypepass(left); { Convert constants directly, else call Round() } if left.nodetype=realconstn then result:=cordconstnode.create(round(trealconstnode(left).value_real),resulttype,false) else result:=ccallnode.createinternres('fpc_round_real', ccallparanode.create(left,nil),resulttype); left:=nil; end; function ttypeconvnode.resulttype_real_to_real : tnode; begin result:=nil; if is_currency(left.resulttype.def) and not(is_currency(resulttype.def)) then begin left:=caddnode.create(slashn,left,crealconstnode.create(10000.0,left.resulttype)); include(left.flags,nf_is_currency); resulttypepass(left); end else if is_currency(resulttype.def) and not(is_currency(left.resulttype.def)) then begin left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resulttype)); include(left.flags,nf_is_currency); resulttypepass(left); end; if left.nodetype=realconstn then result:=crealconstnode.create(trealconstnode(left).value_real,resulttype); end; function ttypeconvnode.resulttype_cchar_to_pchar : tnode; begin result:=nil; if is_pwidechar(resulttype.def) then inserttypeconv(left,cwidestringtype) else inserttypeconv(left,cshortstringtype); { evaluate again, reset resulttype so the convert_typ will be calculated again and cstring_to_pchar will be used for futher conversion } convtype:=tc_none; result:=det_resulttype; end; function ttypeconvnode.resulttype_cstring_to_pchar : tnode; begin result:=nil; if is_pwidechar(resulttype.def) then inserttypeconv(left,cwidestringtype); end; function ttypeconvnode.resulttype_arrayconstructor_to_set : tnode; var hp : tnode; begin result:=nil; if left.nodetype<>arrayconstructorn then internalerror(5546); { remove typeconv node } hp:=left; left:=nil; { create a set constructor tree } arrayconstructor_to_set(hp); result:=hp; end; function ttypeconvnode.resulttype_pchar_to_string : tnode; begin result := ccallnode.createinternres( 'fpc_pchar_to_'+tstringdef(resulttype.def).stringtypname, ccallparanode.create(left,nil),resulttype); left := nil; end; function ttypeconvnode.resulttype_interface_to_guid : tnode; begin if assigned(tobjectdef(left.resulttype.def).iidguid) then result:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid^); end; function ttypeconvnode.resulttype_dynarray_to_openarray : tnode; begin { a dynamic array is a pointer to an array, so to convert it to } { an open array, we have to dereference it (JM) } result := ctypeconvnode.create_internal(left,voidpointertype); resulttypepass(result); { left is reused } left := nil; result := cderefnode.create(result); include(result.flags,nf_no_checkpointer); result.resulttype := resulttype; end; function ttypeconvnode.resulttype_pwchar_to_string : tnode; begin result := ccallnode.createinternres( 'fpc_pwidechar_to_'+tstringdef(resulttype.def).stringtypname, ccallparanode.create(left,nil),resulttype); left := nil; end; function ttypeconvnode.resulttype_variant_to_dynarray : tnode; begin result := ccallnode.createinternres( 'fpc_variant_to_dynarray', ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(resulttype.def),initrtti)), ccallparanode.create(left,nil) ),resulttype); resulttypepass(result); left:=nil; end; function ttypeconvnode.resulttype_dynarray_to_variant : tnode; begin result := ccallnode.createinternres( 'fpc_dynarray_to_variant', ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(resulttype.def),initrtti)), ccallparanode.create(ctypeconvnode.create_explicit(left,voidpointertype),nil) ),resulttype); resulttypepass(result); left:=nil; end; function ttypeconvnode.resulttype_variant_to_enum : tnode; begin result := ctypeconvnode.create_internal(left,sinttype); result := ctypeconvnode.create_internal(result,resulttype); resulttypepass(result); { left is reused } left := nil; end; function ttypeconvnode.resulttype_enum_to_variant : tnode; begin result := ctypeconvnode.create_internal(left,sinttype); result := ctypeconvnode.create_internal(result,cvarianttype); resulttypepass(result); { left is reused } left := nil; end; procedure copyparasym(p:TNamedIndexItem;arg:pointer); var newparast : tsymtable absolute arg; vs : tparavarsym; begin if tsym(p).typ<>paravarsym then exit; with tparavarsym(p) do begin vs:=tparavarsym.create(realname,paranr,varspez,vartype,varoptions); vs.defaultconstsym:=defaultconstsym; newparast.insert(vs); end; end; function ttypeconvnode.resulttype_proc_to_procvar : tnode; var pd : tabstractprocdef; begin result:=nil; pd:=tabstractprocdef(left.resulttype.def); { create procvardef } resulttype.setdef(tprocvardef.create(pd.parast.symtablelevel)); tprocvardef(resulttype.def).proctypeoption:=pd.proctypeoption; tprocvardef(resulttype.def).proccalloption:=pd.proccalloption; tprocvardef(resulttype.def).procoptions:=pd.procoptions; tprocvardef(resulttype.def).rettype:=pd.rettype; { method ? then set the methodpointer flag } if (pd.owner.symtabletype=objectsymtable) then include(tprocvardef(resulttype.def).procoptions,po_methodpointer); { only need the address of the method? this is needed for @tobject.create. In this case there will be a loadn without a methodpointer. } if (left.nodetype=loadn) and not assigned(tloadnode(left).left) then include(tprocvardef(resulttype.def).procoptions,po_addressonly); { Add parameters use only references, we don't need to keep the parast. We use the parast from the original function to calculate our parameter data and reset it afterwards } pd.parast.foreach_static(@copyparasym,tprocvardef(resulttype.def).parast); tprocvardef(resulttype.def).calcparas; end; function ttypeconvnode.resulttype_call_helper(c : tconverttype) : tnode; {$ifdef fpc} const resulttypeconvert : array[tconverttype] of pointer = ( {none} nil, {equal} nil, {not_possible} nil, { string_2_string } @ttypeconvnode.resulttype_string_to_string, { char_2_string } @ttypeconvnode.resulttype_char_to_string, { char_2_chararray } @ttypeconvnode.resulttype_char_to_chararray, { pchar_2_string } @ttypeconvnode.resulttype_pchar_to_string, { cchar_2_pchar } @ttypeconvnode.resulttype_cchar_to_pchar, { cstring_2_pchar } @ttypeconvnode.resulttype_cstring_to_pchar, { ansistring_2_pchar } nil, { string_2_chararray } @ttypeconvnode.resulttype_string_to_chararray, { chararray_2_string } @ttypeconvnode.resulttype_chararray_to_string, { array_2_pointer } nil, { pointer_2_array } nil, { int_2_int } @ttypeconvnode.resulttype_int_to_int, { int_2_bool } nil, { bool_2_bool } nil, { bool_2_int } nil, { real_2_real } @ttypeconvnode.resulttype_real_to_real, { int_2_real } @ttypeconvnode.resulttype_int_to_real, { real_2_currency } @ttypeconvnode.resulttype_real_to_currency, { proc_2_procvar } @ttypeconvnode.resulttype_proc_to_procvar, { arrayconstructor_2_set } @ttypeconvnode.resulttype_arrayconstructor_to_set, { load_smallset } nil, { cord_2_pointer } @ttypeconvnode.resulttype_cord_to_pointer, { intf_2_string } nil, { intf_2_guid } @ttypeconvnode.resulttype_interface_to_guid, { class_2_intf } nil, { char_2_char } @ttypeconvnode.resulttype_char_to_char, { normal_2_smallset} nil, { dynarray_2_openarray} @ttypeconvnode.resulttype_dynarray_to_openarray, { pwchar_2_string} @ttypeconvnode.resulttype_pwchar_to_string, { variant_2_dynarray} @ttypeconvnode.resulttype_variant_to_dynarray, { dynarray_2_variant} @ttypeconvnode.resulttype_dynarray_to_variant, { variant_2_enum} @ttypeconvnode.resulttype_variant_to_enum, { enum_2_variant} @ttypeconvnode.resulttype_enum_to_variant ); type tprocedureofobject = function : tnode of object; var r : packed record proc : pointer; obj : pointer; end; begin result:=nil; { this is a little bit dirty but it works } { and should be quite portable too } r.proc:=resulttypeconvert[c]; r.obj:=self; if assigned(r.proc) then result:=tprocedureofobject(r)(); end; {$else} begin case c of tc_string_2_string: resulttype_string_to_string; tc_char_2_string : resulttype_char_to_string; tc_char_2_chararray: resulttype_char_to_chararray; tc_pchar_2_string : resulttype_pchar_to_string; tc_cchar_2_pchar : resulttype_cchar_to_pchar; tc_cstring_2_pchar : resulttype_cstring_to_pchar; tc_string_2_chararray : resulttype_string_to_chararray; tc_chararray_2_string : resulttype_chararray_to_string; tc_real_2_real : resulttype_real_to_real; tc_int_2_real : resulttype_int_to_real; tc_real_2_currency : resulttype_real_to_currency; tc_arrayconstructor_2_set : resulttype_arrayconstructor_to_set; tc_cord_2_pointer : resulttype_cord_to_pointer; tc_intf_2_guid : resulttype_interface_to_guid; tc_char_2_char : resulttype_char_to_char; tc_dynarray_2_openarray : resulttype_dynarray_to_openarray; tc_pwchar_2_string : resulttype_pwchar_to_string; tc_variant_2_dynarray : resulttype_variant_to_dynarray; tc_dynarray_2_variant : resulttype_dynarray_to_variant; end; end; {$Endif fpc} function ttypeconvnode.det_resulttype:tnode; var htype : ttype; hp : tnode; currprocdef, aprocdef : tprocdef; eq : tequaltype; cdoptions : tcompare_defs_options; begin result:=nil; resulttype:=totype; resulttypepass(left); if codegenerror then exit; { When absolute force tc_equal } if (nf_absolute in flags) then begin convtype:=tc_equal; if not(tstoreddef(resulttype.def).is_intregable) and not(tstoreddef(resulttype.def).is_fpuregable) then make_not_regable(left); exit; end; { tp procvar support. Skip typecasts to record or set. Those convert on the procvar value. This is used to access the fields of a methodpointer } if not(nf_load_procvar in flags) and not(resulttype.def.deftype in [recorddef,setdef]) then maybe_call_procvar(left,true); { convert array constructors to sets, because there is no conversion possible for array constructors } if (resulttype.def.deftype<>arraydef) and is_array_constructor(left.resulttype.def) then begin arrayconstructor_to_set(left); resulttypepass(left); end; if convtype=tc_none then begin cdoptions:=[cdo_check_operator,cdo_allow_variant]; if nf_explicit in flags then include(cdoptions,cdo_explicit); if nf_internal in flags then include(cdoptions,cdo_internal); eq:=compare_defs_ext(left.resulttype.def,resulttype.def,left.nodetype,convtype,aprocdef,cdoptions); case eq of te_exact, te_equal : begin { because is_equal only checks the basetype for sets we need to check here if we are loading a smallset into a normalset } if (resulttype.def.deftype=setdef) and (left.resulttype.def.deftype=setdef) and ((tsetdef(resulttype.def).settype = smallset) xor (tsetdef(left.resulttype.def).settype = smallset)) then begin { constant sets can be converted by changing the type only } if (left.nodetype=setconstn) then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; if (tsetdef(resulttype.def).settype <> smallset) then convtype:=tc_load_smallset else convtype := tc_normal_2_smallset; exit; end else begin { Only leave when there is no conversion to do. We can still need to call a conversion routine, like the routine to convert a stringconstnode } if convtype in [tc_equal,tc_not_possible] then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; end; end; te_convert_l1, te_convert_l2, te_convert_l3 : begin { nothing to do } end; te_convert_operator : begin include(current_procinfo.flags,pi_do_call); inc(aprocdef.procsym.refs); hp:=ccallnode.create(ccallparanode.create(left,nil),Tprocsym(aprocdef.procsym),nil,nil,[]); { tell explicitly which def we must use !! (PM) } tcallnode(hp).procdefinition:=aprocdef; left:=nil; result:=hp; exit; end; te_incompatible : begin { Procedures have a resulttype.def of voiddef and functions of their own resulttype.def. They will therefore always be incompatible with a procvar. Because isconvertable cannot check for procedures we use an extra check for them.} if (m_tp_procvar in aktmodeswitches) and (resulttype.def.deftype=procvardef) then begin if (left.nodetype=calln) and (tcallnode(left).para_count=0) then begin if assigned(tcallnode(left).right) then begin { this is already a procvar, if it is really equal is checked below } convtype:=tc_equal; hp:=tcallnode(left).right.getcopy; currprocdef:=tprocdef(hp.resulttype.def); end else begin convtype:=tc_proc_2_procvar; currprocdef:=Tprocsym(Tcallnode(left).symtableprocentry).search_procdef_byprocvardef(Tprocvardef(resulttype.def)); hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry), currprocdef,tcallnode(left).symtableproc); if (tcallnode(left).symtableprocentry.owner.symtabletype=objectsymtable) then begin if assigned(tcallnode(left).methodpointer) then begin { Under certain circumstances the methodpointer is a loadvmtaddrn which isn't possible if it is used as a method pointer, so fix this. If you change this, ensure that tests/tbs/tw2669.pp still works } if tcallnode(left).methodpointer.nodetype=loadvmtaddrn then tloadnode(hp).set_mp(tloadvmtaddrnode(tcallnode(left).methodpointer).left.getcopy) else tloadnode(hp).set_mp(tcallnode(left).methodpointer.getcopy); end else tloadnode(hp).set_mp(load_self_node); end; resulttypepass(hp); end; left.free; left:=hp; { Now check if the procedure we are going to assign to the procvar, is compatible with the procvar's type } if not(nf_explicit in flags) and (proc_to_procvar_equal(currprocdef, tprocvardef(resulttype.def),true)=te_incompatible) then IncompatibleTypes(left.resulttype.def,resulttype.def); exit; end; end; { Handle explicit type conversions } if nf_explicit in flags then begin { do common tc_equal cast } convtype:=tc_equal; { ordinal constants can be resized to 1,2,4,8 bytes } if (left.nodetype=ordconstn) then begin { Insert typeconv for ordinal to the correct size first on left, after that the other conversion can be done } htype.reset; case longint(resulttype.def.size) of 1 : htype:=s8inttype; 2 : htype:=s16inttype; 4 : htype:=s32inttype; 8 : htype:=s64inttype; end; { we need explicit, because it can also be an enum } if assigned(htype.def) then inserttypeconv_internal(left,htype) else CGMessage2(type_e_illegal_type_conversion,left.resulttype.def.gettypename,resulttype.def.gettypename); end; { check if the result could be in a register } if (not(tstoreddef(resulttype.def).is_intregable) and not(tstoreddef(resulttype.def).is_fpuregable)) or ((left.resulttype.def.deftype = floatdef) and (resulttype.def.deftype <> floatdef)) then make_not_regable(left); { class to class or object to object, with checkobject support } if (resulttype.def.deftype=objectdef) and (left.resulttype.def.deftype=objectdef) then begin if (cs_check_object in aktlocalswitches) then begin if is_class_or_interface(resulttype.def) then begin { we can translate the typeconvnode to 'as' when typecasting to a class or interface } hp:=casnode.create(left,cloadvmtaddrnode.create(ctypenode.create(resulttype))); left:=nil; result:=hp; exit; end; end else begin { check if the types are related } if not(nf_internal in flags) and (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(resulttype.def)))) and (not(tobjectdef(resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then begin { Give an error when typecasting class to interface, this is compatible with delphi } if is_interface(resulttype.def) and not is_interface(left.resulttype.def) then CGMessage2(type_e_classes_not_related, FullTypeName(left.resulttype.def,resulttype.def), FullTypeName(resulttype.def,left.resulttype.def)) else CGMessage2(type_w_classes_not_related, FullTypeName(left.resulttype.def,resulttype.def), FullTypeName(resulttype.def,left.resulttype.def)) end; end; end else begin { only if the same size or formal def } if not( (left.resulttype.def.deftype=formaldef) or ( not(is_open_array(left.resulttype.def)) and (left.resulttype.def.size=resulttype.def.size) ) or ( is_void(left.resulttype.def) and (left.nodetype=derefn) ) ) then CGMessage2(type_e_illegal_type_conversion,left.resulttype.def.gettypename,resulttype.def.gettypename); end; end else IncompatibleTypes(left.resulttype.def,resulttype.def); end; else internalerror(200211231); end; end; { Give hint or warning for unportable code, exceptions are - typecasts from constants - void } if not(nf_internal in flags) and (left.nodetype<>ordconstn) and not(is_void(left.resulttype.def)) and (((left.resulttype.def.deftype=orddef) and (resulttype.def.deftype in [pointerdef,procvardef,classrefdef])) or ((resulttype.def.deftype=orddef) and (left.resulttype.def.deftype in [pointerdef,procvardef,classrefdef]))) then begin { Give a warning when sizes don't match, because then info will be lost } if left.resulttype.def.size=resulttype.def.size then CGMessage(type_h_pointer_to_longint_conv_not_portable) else CGMessage(type_w_pointer_to_longint_conv_not_portable); end; { Constant folding and other node transitions to remove the typeconv node } case left.nodetype of niln : begin { nil to ordinal node } if (resulttype.def.deftype=orddef) then begin hp:=cordconstnode.create(0,resulttype,true); result:=hp; exit; end else { fold nil to any pointer type } if (resulttype.def.deftype=pointerdef) then begin hp:=cnilnode.create; hp.resulttype:=resulttype; result:=hp; exit; end else { remove typeconv after niln, but not when the result is a methodpointer. The typeconv of the methodpointer will then take care of updateing size of niln to OS_64 } if not((resulttype.def.deftype=procvardef) and (po_methodpointer in tprocvardef(resulttype.def).procoptions)) then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end; end; ordconstn : begin { ordinal contants can be directly converted } { but not char to char because it is a widechar to char or via versa } { which needs extra code to do the code page transistion } { constant ordinal to pointer } if (resulttype.def.deftype=pointerdef) and (convtype<>tc_cchar_2_pchar) then begin hp:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype); result:=hp; exit; end else if is_ordinal(resulttype.def) and not(convtype=tc_char_2_char) then begin { replace the resulttype and recheck the range } left.resulttype:=resulttype; testrange(left.resulttype.def,tordconstnode(left).value,(nf_explicit in flags)); result:=left; left:=nil; exit; end; end; pointerconstn : begin { pointerconstn to any pointer is folded too } if (resulttype.def.deftype=pointerdef) then begin left.resulttype:=resulttype; result:=left; left:=nil; exit; end { constant pointer to ordinal } else if is_ordinal(resulttype.def) then begin hp:=cordconstnode.create(TConstExprInt(tpointerconstnode(left).value), resulttype,true); result:=hp; exit; end; end; end; { check if the result could be in a register } if not(tstoreddef(resulttype.def).is_intregable) and not(tstoreddef(resulttype.def).is_fpuregable) then make_not_regable(left); { now call the resulttype helper to do constant folding } result:=resulttype_call_helper(convtype); end; procedure Ttypeconvnode.mark_write; begin left.mark_write; end; function ttypeconvnode.first_cord_to_pointer : tnode; begin result:=nil; internalerror(200104043); end; function ttypeconvnode.first_int_to_int : tnode; begin first_int_to_int:=nil; expectloc:=left.expectloc; if not is_void(left.resulttype.def) then begin if (left.expectloc<>LOC_REGISTER) and (resulttype.def.size>left.resulttype.def.size) then expectloc:=LOC_REGISTER else if (left.expectloc=LOC_CREGISTER) and (resulttype.def.size sizeof(aint) then begin result := ctypeconvnode.create_internal(left,u32inttype); result := ctypeconvnode.create(result,resulttype); left := nil; firstpass(result); exit; end; expectloc:=LOC_REGISTER; if registersint<1 then registersint:=1; end; function ttypeconvnode.first_int_to_bool : tnode; begin first_int_to_bool:=nil; { byte(boolean) or word(wordbool) or longint(longbool) must be accepted for var parameters } if (nf_explicit in flags) and (left.resulttype.def.size=resulttype.def.size) and (left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then exit; expectloc:=LOC_REGISTER; { need if bool to bool !! not very nice !! insertypeconv(left,s32inttype); left.explizit:=true; firstpass(left); } if registersint<1 then registersint:=1; end; function ttypeconvnode.first_bool_to_bool : tnode; begin first_bool_to_bool:=nil; expectloc:=LOC_REGISTER; if registersint<1 then registersint:=1; end; function ttypeconvnode.first_char_to_char : tnode; begin first_char_to_char:=first_int_to_int; end; function ttypeconvnode.first_proc_to_procvar : tnode; begin first_proc_to_procvar:=nil; if tabstractprocdef(resulttype.def).is_addressonly then begin registersint:=left.registersint; if registersint<1 then registersint:=1; expectloc:=LOC_REGISTER; end else begin if not(left.expectloc in [LOC_CREFERENCE,LOC_REFERENCE]) then CGMessage(parser_e_illegal_expression); registersint:=left.registersint; expectloc:=left.expectloc end end; function ttypeconvnode.first_load_smallset : tnode; var srsym: ttypesym; p: tcallparanode; begin if not searchsystype('FPC_SMALL_SET',srsym) then internalerror(200108313); p := ccallparanode.create(left,nil); { reused } left := nil; { convert parameter explicitely to fpc_small_set } p.left := ctypeconvnode.create_internal(p.left,srsym.restype); { create call, adjust resulttype } result := ccallnode.createinternres('fpc_set_load_small',p,resulttype); firstpass(result); end; function ttypeconvnode.first_ansistring_to_pchar : tnode; begin first_ansistring_to_pchar:=nil; expectloc:=LOC_REGISTER; if registersint<1 then registersint:=1; end; function ttypeconvnode.first_arrayconstructor_to_set : tnode; begin first_arrayconstructor_to_set:=nil; internalerror(200104022); end; function ttypeconvnode.first_class_to_intf : tnode; begin first_class_to_intf:=nil; expectloc:=LOC_REGISTER; if registersint<1 then registersint:=1; end; function ttypeconvnode._first_int_to_int : tnode; begin result:=first_int_to_int; end; function ttypeconvnode._first_cstring_to_pchar : tnode; begin result:=first_cstring_to_pchar; end; function ttypeconvnode._first_string_to_chararray : tnode; begin result:=first_string_to_chararray; end; function ttypeconvnode._first_char_to_string : tnode; begin result:=first_char_to_string; end; function ttypeconvnode._first_nothing : tnode; begin result:=first_nothing; end; function ttypeconvnode._first_array_to_pointer : tnode; begin result:=first_array_to_pointer; end; function ttypeconvnode._first_int_to_real : tnode; begin result:=first_int_to_real; end; function ttypeconvnode._first_real_to_real : tnode; begin result:=first_real_to_real; end; function ttypeconvnode._first_pointer_to_array : tnode; begin result:=first_pointer_to_array; end; function ttypeconvnode._first_cchar_to_pchar : tnode; begin result:=first_cchar_to_pchar; end; function ttypeconvnode._first_bool_to_int : tnode; begin result:=first_bool_to_int; end; function ttypeconvnode._first_int_to_bool : tnode; begin result:=first_int_to_bool; end; function ttypeconvnode._first_bool_to_bool : tnode; begin result:=first_bool_to_bool; end; function ttypeconvnode._first_proc_to_procvar : tnode; begin result:=first_proc_to_procvar; end; function ttypeconvnode._first_load_smallset : tnode; begin result:=first_load_smallset; end; function ttypeconvnode._first_cord_to_pointer : tnode; begin result:=first_cord_to_pointer; end; function ttypeconvnode._first_ansistring_to_pchar : tnode; begin result:=first_ansistring_to_pchar; end; function ttypeconvnode._first_arrayconstructor_to_set : tnode; begin result:=first_arrayconstructor_to_set; end; function ttypeconvnode._first_class_to_intf : tnode; begin result:=first_class_to_intf; end; function ttypeconvnode._first_char_to_char : tnode; begin result:=first_char_to_char; end; function ttypeconvnode.first_call_helper(c : tconverttype) : tnode; const firstconvert : array[tconverttype] of pointer = ( nil, { none } @ttypeconvnode._first_nothing, {equal} @ttypeconvnode._first_nothing, {not_possible} nil, { removed in resulttype_string_to_string } @ttypeconvnode._first_char_to_string, @ttypeconvnode._first_nothing, { char_2_chararray, needs nothing extra } nil, { removed in resulttype_chararray_to_string } @ttypeconvnode._first_cchar_to_pchar, @ttypeconvnode._first_cstring_to_pchar, @ttypeconvnode._first_ansistring_to_pchar, @ttypeconvnode._first_string_to_chararray, nil, { removed in resulttype_chararray_to_string } @ttypeconvnode._first_array_to_pointer, @ttypeconvnode._first_pointer_to_array, @ttypeconvnode._first_int_to_int, @ttypeconvnode._first_int_to_bool, @ttypeconvnode._first_bool_to_bool, @ttypeconvnode._first_bool_to_int, @ttypeconvnode._first_real_to_real, @ttypeconvnode._first_int_to_real, nil, { removed in resulttype_real_to_currency } @ttypeconvnode._first_proc_to_procvar, @ttypeconvnode._first_arrayconstructor_to_set, @ttypeconvnode._first_load_smallset, @ttypeconvnode._first_cord_to_pointer, @ttypeconvnode._first_nothing, @ttypeconvnode._first_nothing, @ttypeconvnode._first_class_to_intf, @ttypeconvnode._first_char_to_char, @ttypeconvnode._first_nothing, @ttypeconvnode._first_nothing, nil, nil, nil, nil, nil ); type tprocedureofobject = function : tnode of object; var r : packed record proc : pointer; obj : pointer; end; begin { this is a little bit dirty but it works } { and should be quite portable too } r.proc:=firstconvert[c]; r.obj:=self; if not assigned(r.proc) then internalerror(200312081); first_call_helper:=tprocedureofobject(r){$ifdef FPC}(){$endif FPC} end; function ttypeconvnode.pass_1 : tnode; begin result:=nil; firstpass(left); if codegenerror then exit; { load the value_str from the left part } registersint:=left.registersint; registersfpu:=left.registersfpu; {$ifdef SUPPORT_MMX} registersmmx:=left.registersmmx; {$endif} expectloc:=left.expectloc; result:=first_call_helper(convtype); end; function ttypeconvnode.assign_allowed:boolean; begin result:=(convtype=tc_equal) or { typecasting from void is always allowed } is_void(left.resulttype.def) or (left.resulttype.def.deftype=formaldef) or { int 2 int with same size reuses same location, or for tp7 mode also allow size < orignal size } ( (convtype=tc_int_2_int) and ( (resulttype.def.size=left.resulttype.def.size) or ((m_tp7 in aktmodeswitches) and (resulttype.def.size-1)) then CGMessage2(type_e_classes_not_related, FullTypeName(left.resulttype.def,right.resulttype.def), FullTypeName(right.resulttype.def,left.resulttype.def)) end { left is an interface } else if is_interface(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and (not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then CGMessage2(type_e_classes_not_related, FullTypeName(left.resulttype.def,right.resulttype.def), FullTypeName(right.resulttype.def,left.resulttype.def)); end else CGMessage1(type_e_class_type_expected,left.resulttype.def.typename); { call fpc_do_is helper } paras := ccallparanode.create( left, ccallparanode.create( right,nil)); result := ccallnode.createintern('fpc_do_is',paras); left := nil; right := nil; end else CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename); resulttype:=booltype; end; function tisnode.pass_1 : tnode; begin internalerror(200204254); result:=nil; end; { dummy pass_2, it will never be called, but we need one since } { you can't instantiate an abstract class } procedure tisnode.pass_2; begin end; {***************************************************************************** TASNODE *****************************************************************************} constructor tasnode.create(l,r : tnode); begin inherited create(asn,l,r); call := nil; end; destructor tasnode.destroy; begin call.free; inherited destroy; end; function tasnode.det_resulttype:tnode; var hp : tnode; begin result:=nil; resulttypepass(right); resulttypepass(left); set_varstate(right,vs_used,true); set_varstate(left,vs_used,true); if codegenerror then exit; if (right.resulttype.def.deftype=classrefdef) then begin { left must be a class } if is_class(left.resulttype.def) then begin { the operands must be related } if (not(tobjectdef(left.resulttype.def).is_related( tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and (not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related( tobjectdef(left.resulttype.def)))) then CGMessage2(type_e_classes_not_related, FullTypeName(left.resulttype.def,tclassrefdef(right.resulttype.def).pointertype.def), FullTypeName(tclassrefdef(right.resulttype.def).pointertype.def,left.resulttype.def)); end else CGMessage1(type_e_class_type_expected,left.resulttype.def.typename); resulttype:=tclassrefdef(right.resulttype.def).pointertype; end else if is_interface(right.resulttype.def) then begin { left is a class } if not(is_class(left.resulttype.def) or is_interface(left.resulttype.def)) then CGMessage1(type_e_class_type_expected,left.resulttype.def.typename); resulttype:=right.resulttype; { load the GUID of the interface } if (right.nodetype=typen) then begin if assigned(tobjectdef(right.resulttype.def).iidguid) then begin hp:=cguidconstnode.create(tobjectdef(right.resulttype.def).iidguid^); right.free; right:=hp; end else internalerror(200206282); resulttypepass(right); end; end else CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename); end; function tasnode.getcopy: tnode; begin result := inherited getcopy; if assigned(call) then tasnode(result).call := call.getcopy else tasnode(result).call := nil; end; function tasnode.pass_1 : tnode; var procname: string; begin result:=nil; if not assigned(call) then begin if is_class(left.resulttype.def) and (right.resulttype.def.deftype=classrefdef) then call := ccallnode.createinternres('fpc_do_as', ccallparanode.create(left,ccallparanode.create(right,nil)), resulttype) else begin if is_class(left.resulttype.def) then procname := 'fpc_class_as_intf' else procname := 'fpc_intf_as'; call := ccallnode.createinternres(procname, ccallparanode.create(right,ccallparanode.create(left,nil)), resulttype); end; left := nil; right := nil; firstpass(call); if codegenerror then exit; expectloc:=call.expectloc; registersint:=call.registersint; registersfpu:=call.registersfpu; {$ifdef SUPPORT_MMX} registersmmx:=call.registersmmx; {$endif SUPPORT_MMX} end; end; begin ctypeconvnode:=ttypeconvnode; casnode:=tasnode; cisnode:=tisnode; end. { $Log$ Revision 1.168 2004-12-26 16:22:01 peter * fix lineinfo for with blocks Revision 1.167 2004/12/07 16:11:52 peter * set vo_explicit_paraloc flag Revision 1.166 2004/12/05 12:28:11 peter * procvar handling for tp procvar mode fixed * proc to procvar moved from addrnode to typeconvnode * inlininginfo is now allocated only for inline routines that can be inlined, introduced a new flag po_has_inlining_info Revision 1.165 2004/12/05 12:15:11 florian * fixed compiler side of variant <-> dyn. array conversion Revision 1.164 2004/11/26 22:34:28 peter * internal flag for compare_defs_ext Revision 1.163 2004/11/21 15:35:23 peter * float routines all use internproc and compilerproc helpers Revision 1.162 2004/11/02 20:15:53 jonas * copy totype field in ttypeconvnode.getcopy() Revision 1.161 2004/11/02 12:55:16 peter * nf_internal flag for internal inserted typeconvs. This will supress the generation of warning/hints Revision 1.160 2004/11/01 23:30:11 peter * support > 32bit accesses for x86_64 * rewrote array size checking to support 64bit Revision 1.159 2004/11/01 17:15:47 peter * no checkpointer code for dynarr to openarr Revision 1.158 2004/11/01 15:31:58 peter * -Or fix for absolute Revision 1.157 2004/10/24 11:44:28 peter * small regvar fixes * loadref parameter removed from concatcopy,incrrefcount,etc Revision 1.156 2004/10/15 09:14:17 mazen - remove $IFDEF DELPHI and related code - remove $IFDEF FPCPROCVAR and related code Revision 1.155 2004/10/12 14:33:41 peter * give error when converting class to interface are not related Revision 1.154 2004/10/11 15:48:15 peter * small regvar for para fixes * function tvarsym.is_regvar added * tvarsym.getvaluesize removed, use getsize instead Revision 1.153 2004/09/26 17:45:30 peter * simple regvar support, not yet finished Revision 1.152 2004/08/08 16:00:56 florian * constant floating point assignments etc. are now overflow checked if Q+ or R+ is turned on Revision 1.151 2004/06/29 20:57:50 peter * fix pchar:=char * fix longint(smallset) Revision 1.150 2004/06/23 16:22:45 peter * include unit name in error messages when types are the same Revision 1.149 2004/06/20 08:55:29 florian * logs truncated Revision 1.148 2004/06/16 20:07:08 florian * dwarf branch merged Revision 1.147 2004/05/23 18:28:41 peter * methodpointer is loaded into a temp when it was a calln Revision 1.146 2004/05/23 15:03:40 peter * some typeconvs don't allow assignment or passing to var para Revision 1.145 2004/05/23 14:14:18 florian + added set of widechar support (limited to 256 chars, is delphi compatible) Revision 1.144 2004/04/29 19:56:37 daniel * Prepare compiler infrastructure for multiple ansistring types }