{ Copyright (c) 2006 by Florian Klaempfl Contains the base types for the AVR This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {# Base unit for processor information. This unit contains enumerations of registers, opcodes, sizes, and other such things which are processor specific. } unit cpubase; {$i fpcdefs.inc} interface uses cutils,cclasses, globtype,globals, cpuinfo, aasmbase, cgbase ; {***************************************************************************** Assembler Opcodes *****************************************************************************} type TAsmOp=(A_None, A_ADD,A_ADC,A_ADIW,A_SUB,A_SUBI,A_SBC,A_SBCI,A_SBIW,A_AND,A_ANDI, A_OR,A_ORI,A_EOR,A_COM,A_NEG,A_SBR,A_CBR,A_INC,A_DEC,A_TST,A_CLR, A_SER,A_MUL,A_MULS,A_FMUL,A_FMULS,A_FMULSU,A_RJMP,A_IJMP, A_EIJMP,A_JMP,A_RCALL,A_ICALL,R_EICALL,A_CALL,A_RET,A_RETI,A_CPSE, A_CP,A_CPC,A_CPI,A_SBxx,A_BRxx,A_MOV,A_MOVW,A_LDI,A_LDS,A_LD,A_LDD, A_STS,A_ST,A_STD,A_LPM,A_ELPM,A_SPM,A_IN,A_OUT,A_PUSH,A_POP, A_LSL,A_LSR,A_ROL,A_ROR,A_ASR,A_SWAP,A_BSET,A_BCLR,A_SBI,A_CBI, A_BST,A_BLD,A_Sxx,A_Cxx,A_BRAK,A_NOP,A_SLEEP,A_WDR); { This should define the array of instructions as string } op2strtable=array[tasmop] of string[11]; const { First value of opcode enumeration } firstop = low(tasmop); { Last value of opcode enumeration } lastop = high(tasmop); jmp_instructions = [A_BRxx,A_SBxx,A_JMP,A_RCALL,A_ICALL,A_EIJMP,A_RJMP,A_CALL,A_RET,A_RETI,A_CPSE,A_IJMP]; {***************************************************************************** Registers *****************************************************************************} type { Number of registers used for indexing in tables } tregisterindex=0..{$i ravrnor.inc}-1; const { Available Superregisters } {$i ravrsup.inc} { No Subregisters } R_SUBWHOLE = R_SUBNONE; { Available Registers } {$i ravrcon.inc} NR_XLO = NR_R26; NR_XHI = NR_R27; NR_YLO = NR_R28; NR_YHI = NR_R29; NR_ZLO = NR_R30; NR_ZHI = NR_R31; { Integer Super registers first and last } first_int_supreg = RS_R0; first_int_imreg = $10; { Float Super register first and last } first_fpu_supreg = RS_INVALID; first_fpu_imreg = RS_INVALID; { MM Super register first and last } first_mm_supreg = RS_INVALID; first_mm_imreg = RS_INVALID; {$warning TODO Calculate bsstart} regnumber_count_bsstart = 64; regnumber_table : array[tregisterindex] of tregister = ( {$i ravrnum.inc} ); regstabs_table : array[tregisterindex] of shortint = ( {$i ravrsta.inc} ); regdwarf_table : array[tregisterindex] of shortint = ( {$i ravrdwa.inc} ); { registers which may be destroyed by calls } VOLATILE_INTREGISTERS = [RS_R18..RS_R27,RS_R30..RS_R31]; VOLATILE_FPUREGISTERS = []; type totherregisterset = set of tregisterindex; {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE,C_AL,C_NV ); const cond2str : array[TAsmCond] of string[2]=('', 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls', 'ge','lt','gt','le','al','nv' ); uppercond2str : array[TAsmCond] of string[2]=('', 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS', 'GE','LT','GT','LE','AL','NV' ); {***************************************************************************** Flags *****************************************************************************} type TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS, F_GE,F_LT,F_GT,F_LE); {***************************************************************************** Operands *****************************************************************************} taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED); tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX); tupdatereg = (UR_None,UR_Update); pshifterop = ^tshifterop; tshifterop = record shiftmode : tshiftmode; rs : tregister; shiftimm : byte; end; {***************************************************************************** Constants *****************************************************************************} const max_operands = 4; {# Constant defining possibly all registers which might require saving } ALL_OTHERREGISTERS = []; general_superregisters = [RS_R0..RS_R31]; {# Table of registers which can be allocated by the code generator internally, when generating the code. } { legend: } { xxxregs = set of all possibly used registers of that type in the code } { generator } { usableregsxxx = set of all 32bit components of registers that can be } { possible allocated to a regvar or using getregisterxxx (this } { excludes registers which can be only used for parameter } { passing on ABI's that define this) } { c_countusableregsxxx = amount of registers in the usableregsxxx set } maxintregs = 15; { to determine how many registers to use for regvars } maxintscratchregs = 3; usableregsint = [RS_R4..RS_R10]; c_countusableregsint = 7; maxfpuregs = 0; fpuregs = []; usableregsfpu = []; c_countusableregsfpu = 0; mmregs = []; usableregsmm = []; c_countusableregsmm = 0; maxaddrregs = 0; addrregs = []; usableregsaddr = []; c_countusableregsaddr = 0; {***************************************************************************** Operand Sizes *****************************************************************************} type topsize = (S_NO, S_B,S_W,S_L,S_BW,S_BL,S_WL, S_IS,S_IL,S_IQ, S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX ); {***************************************************************************** Constants *****************************************************************************} const firstsaveintreg = RS_R4; lastsaveintreg = RS_R10; firstsavefpureg = RS_INVALID; lastsavefpureg = RS_INVALID; firstsavemmreg = RS_INVALID; lastsavemmreg = RS_INVALID; maxvarregs = 7; varregs : Array [1..maxvarregs] of tsuperregister = (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10); maxfpuvarregs = 1; fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister = (RS_INVALID); {***************************************************************************** Default generic sizes *****************************************************************************} { Defines the default address size for a processor, } OS_ADDR = OS_16; { the natural int size for a processor, } OS_INT = OS_16; OS_SINT = OS_S16; { the maximum float size for a processor, } OS_FLOAT = OS_F64; { the size of a vector register for a processor } OS_VECTOR = OS_M32; {***************************************************************************** Generic Register names *****************************************************************************} { Stack pointer register } NR_STACK_POINTER_REG = NR_R13; RS_STACK_POINTER_REG = RS_R13; { Frame pointer register } RS_FRAME_POINTER_REG = RS_R11; NR_FRAME_POINTER_REG = NR_R11; { Register for addressing absolute data in a position independant way, such as in PIC code. The exact meaning is ABI specific. For further information look at GCC source : PIC_OFFSET_TABLE_REGNUM } NR_PIC_OFFSET_REG = NR_R9; { Results are returned in this register (32-bit values) } NR_FUNCTION_RETURN_REG = NR_R0; RS_FUNCTION_RETURN_REG = RS_R0; { Low part of 64bit return value } NR_FUNCTION_RETURN64_LOW_REG = NR_R0; RS_FUNCTION_RETURN64_LOW_REG = RS_R0; { High part of 64bit return value } NR_FUNCTION_RETURN64_HIGH_REG = NR_R1; RS_FUNCTION_RETURN64_HIGH_REG = RS_R1; { The value returned from a function is available in this register } NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG; RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG; { The lowh part of 64bit value returned from a function } NR_FUNCTION_RESULT64_LOW_REG = NR_FUNCTION_RETURN64_LOW_REG; RS_FUNCTION_RESULT64_LOW_REG = RS_FUNCTION_RETURN64_LOW_REG; { The high part of 64bit value returned from a function } NR_FUNCTION_RESULT64_HIGH_REG = NR_FUNCTION_RETURN64_HIGH_REG; RS_FUNCTION_RESULT64_HIGH_REG = RS_FUNCTION_RETURN64_HIGH_REG; NR_FPU_RESULT_REG = NR_NO; NR_MM_RESULT_REG = NR_NO; NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG; { Offset where the parent framepointer is pushed } PARENT_FRAMEPOINTER_OFFSET = 0; {***************************************************************************** GCC /ABI linking information *****************************************************************************} const { Registers which must be saved when calling a routine declared as cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers saved should be the ones as defined in the target ABI and / or GCC. This value can be deduced from the CALLED_USED_REGISTERS array in the GCC source. } saved_standard_registers : array[0..6] of tsuperregister = (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10); { Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = 4; saved_mm_registers : array[0..0] of tsuperregister = (RS_INVALID); {***************************************************************************** Helpers *****************************************************************************} { Returns the tcgsize corresponding with the size of reg.} function reg_cgsize(const reg: tregister) : tcgsize; function cgsize2subreg(s:Tcgsize):Tsubregister; procedure inverse_flags(var f: TResFlags); function flags_to_cond(const f: TResFlags) : TAsmCond; function findreg_by_number(r:Tregister):tregisterindex; function std_regnum_search(const s:string):Tregister; function std_regname(r:Tregister):string; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} function is_pc(const r : tregister) : boolean; function dwarf_reg(r:tregister):byte; function GetHigh(const r : TRegister) : TRegister; implementation uses rgBase,verbose; const std_regname_table : array[tregisterindex] of string[7] = ( {$i ravrstd.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i ravrrni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i ravrsri.inc} ); function cgsize2subreg(s:Tcgsize):Tsubregister; begin cgsize2subreg:=R_SUBWHOLE; end; function reg_cgsize(const reg: tregister): tcgsize; const subreg2cgsize:array[Tsubregister] of Tcgsize = (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO); begin case getregtype(reg) of R_INTREGISTER : reg_cgsize:=OS_32; R_FPUREGISTER : reg_cgsize:=OS_F80; else internalerror(200303181); end; end; procedure inverse_flags(var f: TResFlags); const inv_flags: array[TResFlags] of TResFlags = (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI, F_LT,F_GE,F_LE,F_GT); begin f:=inv_flags[f]; end; function flags_to_cond(const f: TResFlags) : TAsmCond; const flag_2_cond: array[F_EQ..F_LE] of TAsmCond = (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE); begin if f>high(flag_2_cond) then internalerror(200112301); result:=flag_2_cond[f]; end; function findreg_by_number(r:Tregister):tregisterindex; begin result:=rgBase.findreg_by_number_table(r,regnumber_index); end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function std_regname(r:Tregister):string; var p : tregisterindex; begin p:=findreg_by_number_table(r,regnumber_index); if p<>0 then result:=std_regname_table[p] else result:=generic_regname(r); end; procedure shifterop_reset(var so : tshifterop); begin FillChar(so,sizeof(so),0); end; function is_pc(const r : tregister) : boolean; begin is_pc:=(r=NR_R15); end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI, C_LT,C_GE,C_LE,C_GT,C_None,C_None ); begin result := inverse[c]; end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; function rotl(d : dword;b : byte) : dword; begin result:=(d shr (32-b)) or (d shl b); end; function dwarf_reg(r:tregister):byte; begin result:=regdwarf_table[findreg_by_number(r)]; if result=-1 then internalerror(200603251); end; function GetHigh(const r : TRegister) : TRegister; begin result:=TRegister(longint(r)+1) end; end.