{ $Id$ Copyright (c) 1993-98 by Florian Klaempfl Type checking and register allocation for add node This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit tcadd; interface uses tree; procedure firstadd(var p : ptree); function isbinaryoverloaded(var p : ptree) : boolean; implementation uses globtype,systems,tokens, cobjects,verbose,globals, symconst,symtable,aasm,types, hcodegen,htypechk,pass_1, cpubase,tccnv ; function isbinaryoverloaded(var p : ptree) : boolean; var rd,ld : pdef; t : ptree; optoken : ttoken; begin isbinaryoverloaded:=false; { overloaded operator ? } { load easier access variables } rd:=p^.right^.resulttype; ld:=p^.left^.resulttype; if (p^.treetype=starstarn) or (ld^.deftype=recorddef) or ((ld^.deftype=arraydef) and not((cs_mmx in aktlocalswitches) and is_mmx_able_array(ld)) and (not (rd^.deftype in [orddef])) and (not is_chararray(ld)) ) or { <> and = are defined for classes } ((ld^.deftype=objectdef) and (not(pobjectdef(ld)^.is_class) or not(p^.treetype in [equaln,unequaln]) ) ) or (rd^.deftype=recorddef) or ((rd^.deftype=arraydef) and not((cs_mmx in aktlocalswitches) and is_mmx_able_array(rd)) and (not (ld^.deftype in [orddef])) and (not is_chararray(rd)) ) or { <> and = are defined for classes } ((rd^.deftype=objectdef) and (not(pobjectdef(rd)^.is_class) or not(p^.treetype in [equaln,unequaln]) ) ) then begin isbinaryoverloaded:=true; {!!!!!!!!! handle paras } case p^.treetype of { the nil as symtable signs firstcalln that this is an overloaded operator } addn: optoken:=_PLUS; subn: optoken:=_MINUS; muln: optoken:=_STAR; starstarn: optoken:=_STARSTAR; slashn: optoken:=_SLASH; ltn: optoken:=tokens._lt; gtn: optoken:=tokens._gt; lten: optoken:=_lte; gten: optoken:=_gte; equaln,unequaln : optoken:=_EQUAL; symdifn : optoken:=_SYMDIF; modn : optoken:=_OP_MOD; orn : optoken:=_OP_OR; xorn : optoken:=_OP_XOR; andn : optoken:=_OP_AND; divn : optoken:=_OP_DIV; shln : optoken:=_OP_SHL; shrn : optoken:=_OP_SHR; else exit; end; t:=gencallnode(overloaded_operators[optoken],nil); { we have to convert p^.left and p^.right into callparanodes } if t^.symtableprocentry=nil then begin CGMessage(parser_e_operator_not_overloaded); putnode(t); end else begin inc(t^.symtableprocentry^.refs); t^.left:=gencallparanode(p^.left,nil); t^.left:=gencallparanode(p^.right,t^.left); if p^.treetype=unequaln then t:=gensinglenode(notn,t); firstpass(t); putnode(p); p:=t; end; end; end; {***************************************************************************** FirstAdd *****************************************************************************} procedure firstadd(var p : ptree); procedure make_bool_equal_size(var p:ptree); begin if porddef(p^.left^.resulttype)^.typ>porddef(p^.right^.resulttype)^.typ then begin p^.right:=gentypeconvnode(p^.right,porddef(p^.left^.resulttype)); p^.right^.convtyp:=tc_bool_2_int; p^.right^.explizit:=true; firstpass(p^.right); end else if porddef(p^.left^.resulttype)^.typrv),booldef); gten : t:=genordinalconstnode(ord(lv>=rv),booldef); equaln : t:=genordinalconstnode(ord(lv=rv),booldef); unequaln : t:=genordinalconstnode(ord(lv<>rv),booldef); slashn : begin { int/int becomes a real } if int(rv)=0 then begin Message(parser_e_invalid_float_operation); t:=genrealconstnode(0,bestrealdef^); end else t:=genrealconstnode(int(lv)/int(rv),bestrealdef^); firstpass(t); end; else CGMessage(type_e_mismatch); end; disposetree(p); firstpass(t); p:=t; exit; end; { both real constants ? } if (lt=realconstn) and (rt=realconstn) then begin lvd:=p^.left^.value_real; rvd:=p^.right^.value_real; case p^.treetype of addn : t:=genrealconstnode(lvd+rvd,bestrealdef^); subn : t:=genrealconstnode(lvd-rvd,bestrealdef^); muln : t:=genrealconstnode(lvd*rvd,bestrealdef^); starstarn, caretn : begin if lvd<0 then begin Message(parser_e_invalid_float_operation); t:=genrealconstnode(0,bestrealdef^); end else if lvd=0 then t:=genrealconstnode(1.0,bestrealdef^) else t:=genrealconstnode(exp(ln(lvd)*rvd),bestrealdef^); end; slashn : begin if rvd=0 then begin Message(parser_e_invalid_float_operation); t:=genrealconstnode(0,bestrealdef^); end else t:=genrealconstnode(lvd/rvd,bestrealdef^); end; ltn : t:=genordinalconstnode(ord(lvdrvd),booldef); gten : t:=genordinalconstnode(ord(lvd>=rvd),booldef); equaln : t:=genordinalconstnode(ord(lvd=rvd),booldef); unequaln : t:=genordinalconstnode(ord(lvd<>rvd),booldef); else CGMessage(type_e_mismatch); end; disposetree(p); p:=t; firstpass(p); exit; end; { concating strings ? } concatstrings:=false; s1:=nil; s2:=nil; if (lt=ordconstn) and (rt=ordconstn) and is_char(ld) and is_char(rd) then begin s1:=strpnew(char(byte(p^.left^.value))); s2:=strpnew(char(byte(p^.right^.value))); l1:=1; l2:=1; concatstrings:=true; end else if (lt=stringconstn) and (rt=ordconstn) and is_char(rd) then begin s1:=getpcharcopy(p^.left); l1:=p^.left^.length; s2:=strpnew(char(byte(p^.right^.value))); l2:=1; concatstrings:=true; end else if (lt=ordconstn) and (rt=stringconstn) and is_char(ld) then begin s1:=strpnew(char(byte(p^.left^.value))); l1:=1; s2:=getpcharcopy(p^.right); l2:=p^.right^.length; concatstrings:=true; end else if (lt=stringconstn) and (rt=stringconstn) then begin s1:=getpcharcopy(p^.left); l1:=p^.left^.length; s2:=getpcharcopy(p^.right); l2:=p^.right^.length; concatstrings:=true; end; { I will need to translate all this to ansistrings !!! } if concatstrings then begin case p^.treetype of addn : t:=genpcharconstnode(concatansistrings(s1,s2,l1,l2),l1+l2); ltn : t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<0),booldef); lten : t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<=0),booldef); gtn : t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)>0),booldef); gten : t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)>=0),booldef); equaln : t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)=0),booldef); unequaln : t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<>0),booldef); end; ansistringdispose(s1,l1); ansistringdispose(s2,l2); disposetree(p); firstpass(t); p:=t; exit; end; { if both are orddefs then check sub types } if (ld^.deftype=orddef) and (rd^.deftype=orddef) then begin { 2 booleans ? } if is_boolean(ld) and is_boolean(rd) then begin case p^.treetype of andn, orn: begin calcregisters(p,0,0,0); make_bool_equal_size(p); p^.location.loc:=LOC_JUMP; end; xorn,ltn,lten,gtn,gten : begin make_bool_equal_size(p); if (p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) and (p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) then calcregisters(p,2,0,0) else calcregisters(p,1,0,0); end; unequaln, equaln: begin make_bool_equal_size(p); { Remove any compares with constants } if (p^.left^.treetype=ordconstn) then begin hp:=p^.right; b:=(p^.left^.value<>0); ot:=p^.treetype; disposetree(p^.left); putnode(p); p:=hp; if (not(b) and (ot=equaln)) or (b and (ot=unequaln)) then begin p:=gensinglenode(notn,p); firstpass(p); end; exit; end; if (p^.right^.treetype=ordconstn) then begin hp:=p^.left; b:=(p^.right^.value<>0); ot:=p^.treetype; disposetree(p^.right); putnode(p); p:=hp; if (not(b) and (ot=equaln)) or (b and (ot=unequaln)) then begin p:=gensinglenode(notn,p); firstpass(p); end; exit; end; if (p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) and (p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) then calcregisters(p,2,0,0) else calcregisters(p,1,0,0); end; else CGMessage(type_e_mismatch); end; { these one can't be in flags! } if p^.treetype in [xorn,unequaln,equaln] then begin if p^.left^.location.loc=LOC_FLAGS then begin p^.left:=gentypeconvnode(p^.left,porddef(p^.left^.resulttype)); p^.left^.convtyp:=tc_bool_2_int; p^.left^.explizit:=true; firstpass(p^.left); end; if p^.right^.location.loc=LOC_FLAGS then begin p^.right:=gentypeconvnode(p^.right,porddef(p^.right^.resulttype)); p^.right^.convtyp:=tc_bool_2_int; p^.right^.explizit:=true; firstpass(p^.right); end; { readjust registers } calcregisters(p,1,0,0); end; convdone:=true; end else { Both are chars? only convert to shortstrings for addn } if is_char(rd) and is_char(ld) then begin if p^.treetype=addn then begin p^.left:=gentypeconvnode(p^.left,cshortstringdef); p^.right:=gentypeconvnode(p^.right,cshortstringdef); firstpass(p^.left); firstpass(p^.right); { here we call STRCOPY } procinfo^.flags:=procinfo^.flags or pi_do_call; calcregisters(p,0,0,0); p^.location.loc:=LOC_MEM; end else calcregisters(p,1,0,0); convdone:=true; end { is there a 64 bit type ? } else if (porddef(rd)^.typ=s64bit) or (porddef(ld)^.typ=s64bit) then begin if (porddef(ld)^.typ<>s64bit) then begin p^.left:=gentypeconvnode(p^.left,cs64bitdef); firstpass(p^.left); end; if (porddef(rd)^.typ<>s64bit) then begin p^.right:=gentypeconvnode(p^.right,cs64bitdef); firstpass(p^.right); end; calcregisters(p,2,0,0); convdone:=true; end else if (porddef(rd)^.typ=u64bit) or (porddef(ld)^.typ=u64bit) then begin if (porddef(ld)^.typ<>u64bit) then begin p^.left:=gentypeconvnode(p^.left,cu64bitdef); firstpass(p^.left); end; if (porddef(rd)^.typ<>u64bit) then begin p^.right:=gentypeconvnode(p^.right,cu64bitdef); firstpass(p^.right); end; calcregisters(p,2,0,0); convdone:=true; end else { is there a cardinal? } if (porddef(rd)^.typ=u32bit) or (porddef(ld)^.typ=u32bit) then begin { convert constants to u32bit } if (porddef(ld)^.typ<>u32bit) then begin { s32bit will be used for when the other is also s32bit } if (porddef(rd)^.typ=s32bit) and (lt<>ordconstn) then p^.left:=gentypeconvnode(p^.left,s32bitdef) else p^.left:=gentypeconvnode(p^.left,u32bitdef); firstpass(p^.left); end; if (porddef(rd)^.typ<>u32bit) then begin { s32bit will be used for when the other is also s32bit } if (porddef(ld)^.typ=s32bit) and (rt<>ordconstn) then p^.right:=gentypeconvnode(p^.right,s32bitdef) else p^.right:=gentypeconvnode(p^.right,u32bitdef); firstpass(p^.right); end; calcregisters(p,1,0,0); { for unsigned mul we need an extra register } { p^.registers32:=p^.left^.registers32+p^.right^.registers32; } if p^.treetype=muln then inc(p^.registers32); convdone:=true; end; end else { left side a setdef, must be before string processing, else array constructor can be seen as array of char (PFV) } if (ld^.deftype=setdef) {or is_array_constructor(ld)} then begin { trying to add a set element? } if (p^.treetype=addn) and (rd^.deftype<>setdef) then begin if (rt=setelementn) then begin if not(is_equal(psetdef(ld)^.elementtype.def,rd)) then CGMessage(type_e_set_element_are_not_comp); end else CGMessage(type_e_mismatch) end else begin if not(p^.treetype in [addn,subn,symdifn,muln,equaln,unequaln {$IfNDef NoSetInclusion} ,lten,gten {$EndIf NoSetInclusion} ]) then CGMessage(type_e_set_operation_unknown); { right def must be a also be set } if (rd^.deftype<>setdef) or not(is_equal(rd,ld)) then CGMessage(type_e_set_element_are_not_comp); end; { ranges require normsets } if (psetdef(ld)^.settype=smallset) and (rt=setelementn) and assigned(p^.right^.right) then begin { generate a temporary normset def } tempdef:=new(psetdef,init(psetdef(ld)^.elementtype.def,255)); p^.left:=gentypeconvnode(p^.left,tempdef); firstpass(p^.left); dispose(tempdef,done); ld:=p^.left^.resulttype; end; { if the destination is not a smallset then insert a typeconv which loads a smallset into a normal set } if (psetdef(ld)^.settype<>smallset) and (psetdef(rd)^.settype=smallset) then begin if (p^.right^.treetype=setconstn) then begin t:=gensetconstnode(p^.right^.value_set,psetdef(p^.left^.resulttype)); t^.left:=p^.right^.left; putnode(p^.right); p^.right:=t; end else p^.right:=gentypeconvnode(p^.right,psetdef(p^.left^.resulttype)); firstpass(p^.right); end; { do constant evaluation } if (p^.right^.treetype=setconstn) and not assigned(p^.right^.left) and (p^.left^.treetype=setconstn) and not assigned(p^.left^.left) then begin new(resultset); case p^.treetype of addn : begin for i:=0 to 31 do resultset^[i]:= p^.right^.value_set^[i] or p^.left^.value_set^[i]; t:=gensetconstnode(resultset,psetdef(ld)); end; muln : begin for i:=0 to 31 do resultset^[i]:= p^.right^.value_set^[i] and p^.left^.value_set^[i]; t:=gensetconstnode(resultset,psetdef(ld)); end; subn : begin for i:=0 to 31 do resultset^[i]:= p^.left^.value_set^[i] and not(p^.right^.value_set^[i]); t:=gensetconstnode(resultset,psetdef(ld)); end; symdifn : begin for i:=0 to 31 do resultset^[i]:= p^.left^.value_set^[i] xor p^.right^.value_set^[i]; t:=gensetconstnode(resultset,psetdef(ld)); end; unequaln : begin b:=true; for i:=0 to 31 do if p^.right^.value_set^[i]=p^.left^.value_set^[i] then begin b:=false; break; end; t:=genordinalconstnode(ord(b),booldef); end; equaln : begin b:=true; for i:=0 to 31 do if p^.right^.value_set^[i]<>p^.left^.value_set^[i] then begin b:=false; break; end; t:=genordinalconstnode(ord(b),booldef); end; {$IfNDef NoSetInclusion} lten : Begin b := true; For i := 0 to 31 Do If (p^.right^.value_set^[i] And p^.left^.value_set^[i]) <> p^.left^.value_set^[i] Then Begin b := false; Break End; t := genordinalconstnode(ord(b),booldef); End; gten : Begin b := true; For i := 0 to 31 Do If (p^.left^.value_set^[i] And p^.right^.value_set^[i]) <> p^.right^.value_set^[i] Then Begin b := false; Break End; t := genordinalconstnode(ord(b),booldef); End; {$EndIf NoSetInclusion} end; dispose(resultset); disposetree(p); p:=t; firstpass(p); exit; end else if psetdef(ld)^.settype=smallset then begin calcregisters(p,1,0,0); { are we adding set elements ? } if p^.right^.treetype=setelementn then begin { we need at least two registers PM } if p^.registers32<2 then p^.registers32:=2; end; p^.location.loc:=LOC_REGISTER; end else begin calcregisters(p,0,0,0); { here we call SET... } procinfo^.flags:=procinfo^.flags or pi_do_call; p^.location.loc:=LOC_MEM; end; convdone:=true; end else { is one of the operands a string?, chararrays are also handled as strings (after conversion) } if (rd^.deftype=stringdef) or (ld^.deftype=stringdef) or ((is_chararray(rd) or is_char(rd)) and (is_chararray(ld) or is_char(ld))) then begin if is_widestring(rd) or is_widestring(ld) then begin if not(is_widestring(rd)) then p^.right:=gentypeconvnode(p^.right,cwidestringdef); if not(is_widestring(ld)) then p^.left:=gentypeconvnode(p^.left,cwidestringdef); p^.resulttype:=cwidestringdef; { this is only for add, the comparisaion is handled later } p^.location.loc:=LOC_REGISTER; end else if is_ansistring(rd) or is_ansistring(ld) then begin if not(is_ansistring(rd)) then p^.right:=gentypeconvnode(p^.right,cansistringdef); if not(is_ansistring(ld)) then p^.left:=gentypeconvnode(p^.left,cansistringdef); p^.resulttype:=cansistringdef; { this is only for add, the comparisaion is handled later } p^.location.loc:=LOC_REGISTER; end else if is_longstring(rd) or is_longstring(ld) then begin if not(is_longstring(rd)) then p^.right:=gentypeconvnode(p^.right,clongstringdef); if not(is_longstring(ld)) then p^.left:=gentypeconvnode(p^.left,clongstringdef); p^.resulttype:=clongstringdef; { this is only for add, the comparisaion is handled later } p^.location.loc:=LOC_MEM; end else begin if not(is_shortstring(rd)) then p^.right:=gentypeconvnode(p^.right,cshortstringdef); if not(is_shortstring(ld)) then p^.left:=gentypeconvnode(p^.left,cshortstringdef); p^.resulttype:=cshortstringdef; { this is only for add, the comparisaion is handled later } p^.location.loc:=LOC_MEM; end; { only if there is a type cast we need to do again } { the first pass } if p^.left^.treetype=typeconvn then firstpass(p^.left); if p^.right^.treetype=typeconvn then firstpass(p^.right); { here we call STRCONCAT or STRCMP or STRCOPY } procinfo^.flags:=procinfo^.flags or pi_do_call; if p^.location.loc=LOC_MEM then calcregisters(p,0,0,0) else calcregisters(p,1,0,0); convdone:=true; end else { is one a real float ? } if (rd^.deftype=floatdef) or (ld^.deftype=floatdef) then begin { if one is a fixed, then convert to f32bit } if ((rd^.deftype=floatdef) and (pfloatdef(rd)^.typ=f32bit)) or ((ld^.deftype=floatdef) and (pfloatdef(ld)^.typ=f32bit)) then begin if not is_integer(rd) or (p^.treetype<>muln) then p^.right:=gentypeconvnode(p^.right,s32fixeddef); if not is_integer(ld) or (p^.treetype<>muln) then p^.left:=gentypeconvnode(p^.left,s32fixeddef); firstpass(p^.left); firstpass(p^.right); calcregisters(p,1,0,0); p^.location.loc:=LOC_REGISTER; end else { convert both to bestreal } begin p^.right:=gentypeconvnode(p^.right,bestrealdef^); p^.left:=gentypeconvnode(p^.left,bestrealdef^); firstpass(p^.left); firstpass(p^.right); calcregisters(p,1,1,0); p^.location.loc:=LOC_FPU; end; convdone:=true; end else { pointer comperation and subtraction } if (rd^.deftype=pointerdef) and (ld^.deftype=pointerdef) then begin p^.location.loc:=LOC_REGISTER; { p^.right:=gentypeconvnode(p^.right,ld); } { firstpass(p^.right); } calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln : begin if is_equal(p^.right^.resulttype,voidpointerdef) then begin p^.right:=gentypeconvnode(p^.right,ld); firstpass(p^.right); end else if is_equal(p^.left^.resulttype,voidpointerdef) then begin p^.left:=gentypeconvnode(p^.left,rd); firstpass(p^.left); end else if not(is_equal(ld,rd)) then CGMessage(type_e_mismatch); end; ltn,lten,gtn,gten: begin if is_equal(p^.right^.resulttype,voidpointerdef) then begin p^.right:=gentypeconvnode(p^.right,ld); firstpass(p^.right); end else if is_equal(p^.left^.resulttype,voidpointerdef) then begin p^.left:=gentypeconvnode(p^.left,rd); firstpass(p^.left); end else if not(is_equal(ld,rd)) then CGMessage(type_e_mismatch); if not(cs_extsyntax in aktmoduleswitches) then CGMessage(type_e_mismatch); end; subn: begin if not(is_equal(ld,rd)) then CGMessage(type_e_mismatch); if not(cs_extsyntax in aktmoduleswitches) then CGMessage(type_e_mismatch); p^.resulttype:=s32bitdef; exit; end; else CGMessage(type_e_mismatch); end; convdone:=true; end else if (rd^.deftype=objectdef) and (ld^.deftype=objectdef) and pobjectdef(rd)^.is_class and pobjectdef(ld)^.is_class then begin p^.location.loc:=LOC_REGISTER; if pobjectdef(rd)^.is_related(pobjectdef(ld)) then p^.right:=gentypeconvnode(p^.right,ld) else p^.left:=gentypeconvnode(p^.left,rd); firstpass(p^.right); firstpass(p^.left); calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else if (rd^.deftype=classrefdef) and (ld^.deftype=classrefdef) then begin p^.location.loc:=LOC_REGISTER; if pobjectdef(pclassrefdef(rd)^.pointertype.def)^.is_related(pobjectdef( pclassrefdef(ld)^.pointertype.def)) then p^.right:=gentypeconvnode(p^.right,ld) else p^.left:=gentypeconvnode(p^.left,rd); firstpass(p^.right); firstpass(p^.left); calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else { allows comperasion with nil pointer } if (rd^.deftype=objectdef) and pobjectdef(rd)^.is_class then begin p^.location.loc:=LOC_REGISTER; p^.left:=gentypeconvnode(p^.left,rd); firstpass(p^.left); calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else if (ld^.deftype=objectdef) and pobjectdef(ld)^.is_class then begin p^.location.loc:=LOC_REGISTER; p^.right:=gentypeconvnode(p^.right,ld); firstpass(p^.right); calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else if (rd^.deftype=classrefdef) then begin p^.left:=gentypeconvnode(p^.left,rd); firstpass(p^.left); calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else if (ld^.deftype=classrefdef) then begin p^.right:=gentypeconvnode(p^.right,ld); firstpass(p^.right); calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else { support procvar=nil,procvar<>nil } if ((ld^.deftype=procvardef) and (rt=niln)) or ((rd^.deftype=procvardef) and (lt=niln)) then begin calcregisters(p,1,0,0); p^.location.loc:=LOC_REGISTER; case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else if (rd^.deftype=pointerdef) or is_zero_based_array(rd) then begin if is_zero_based_array(rd) then begin p^.resulttype:=new(ppointerdef,init(parraydef(rd)^.elementtype)); p^.right:=gentypeconvnode(p^.right,p^.resulttype); firstpass(p^.right); end; p^.location.loc:=LOC_REGISTER; p^.left:=gentypeconvnode(p^.left,s32bitdef); firstpass(p^.left); calcregisters(p,1,0,0); if p^.treetype=addn then begin if not(cs_extsyntax in aktmoduleswitches) or (not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then CGMessage(type_e_mismatch); { Dirty hack, to support multiple firstpasses (PFV) } if (p^.resulttype=nil) and (rd^.deftype=pointerdef) and (ppointerdef(rd)^.pointertype.def^.size>1) then begin p^.left:=gennode(muln,p^.left,genordinalconstnode(ppointerdef(rd)^.pointertype.def^.size,s32bitdef)); firstpass(p^.left); end; end else CGMessage(type_e_mismatch); convdone:=true; end else if (ld^.deftype=pointerdef) or is_zero_based_array(ld) then begin if is_zero_based_array(ld) then begin p^.resulttype:=new(ppointerdef,init(parraydef(ld)^.elementtype)); p^.left:=gentypeconvnode(p^.left,p^.resulttype); firstpass(p^.left); end; p^.location.loc:=LOC_REGISTER; p^.right:=gentypeconvnode(p^.right,s32bitdef); firstpass(p^.right); calcregisters(p,1,0,0); case p^.treetype of addn,subn : begin if not(cs_extsyntax in aktmoduleswitches) or (not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then CGMessage(type_e_mismatch); { Dirty hack, to support multiple firstpasses (PFV) } if (p^.resulttype=nil) and (ld^.deftype=pointerdef) and (ppointerdef(ld)^.pointertype.def^.size>1) then begin p^.right:=gennode(muln,p^.right, genordinalconstnode(ppointerdef(ld)^.pointertype.def^.size,s32bitdef)); firstpass(p^.right); end; end; else CGMessage(type_e_mismatch); end; convdone:=true; end else if (rd^.deftype=procvardef) and (ld^.deftype=procvardef) and is_equal(rd,ld) then begin calcregisters(p,1,0,0); p^.location.loc:=LOC_REGISTER; case p^.treetype of equaln,unequaln : ; else CGMessage(type_e_mismatch); end; convdone:=true; end else {$ifdef SUPPORT_MMX} if (cs_mmx in aktlocalswitches) and is_mmx_able_array(ld) and is_mmx_able_array(rd) and is_equal(ld,rd) then begin firstpass(p^.right); firstpass(p^.left); case p^.treetype of addn,subn,xorn,orn,andn: ; { mul is a little bit restricted } muln: if not(mmx_type(p^.left^.resulttype) in [mmxu16bit,mmxs16bit,mmxfixed16]) then CGMessage(type_e_mismatch); else CGMessage(type_e_mismatch); end; p^.location.loc:=LOC_MMXREGISTER; calcregisters(p,0,0,1); convdone:=true; end else {$endif SUPPORT_MMX} if (ld^.deftype=enumdef) and (rd^.deftype=enumdef) and (is_equal(ld,rd)) then begin calcregisters(p,1,0,0); case p^.treetype of equaln,unequaln, ltn,lten,gtn,gten : ; else CGMessage(type_e_mismatch); end; convdone:=true; end; { the general solution is to convert to 32 bit int } if not convdone then begin { but an int/int gives real/real! } if p^.treetype=slashn then begin CGMessage(type_h_use_div_for_int); p^.right:=gentypeconvnode(p^.right,bestrealdef^); p^.left:=gentypeconvnode(p^.left,bestrealdef^); firstpass(p^.left); firstpass(p^.right); { maybe we need an integer register to save } { a reference } if ((p^.left^.location.loc<>LOC_FPU) or (p^.right^.location.loc<>LOC_FPU)) and (p^.left^.registers32=p^.right^.registers32) then calcregisters(p,1,1,0) else calcregisters(p,0,1,0); p^.location.loc:=LOC_FPU; end else begin p^.right:=gentypeconvnode(p^.right,s32bitdef); p^.left:=gentypeconvnode(p^.left,s32bitdef); firstpass(p^.left); firstpass(p^.right); calcregisters(p,1,0,0); p^.location.loc:=LOC_REGISTER; end; end; if codegenerror then exit; { determines result type for comparions } { here the is a problem with multiple passes } { example length(s)+1 gets internal 'longint' type first } { if it is a arg it is converted to 'LONGINT' } { but a second first pass will reset this to 'longint' } case p^.treetype of ltn,lten,gtn,gten,equaln,unequaln: begin if (not assigned(p^.resulttype)) or (p^.resulttype^.deftype=stringdef) then p^.resulttype:=booldef; if is_64bitint(p^.left^.resulttype) then p^.location.loc:=LOC_JUMP else p^.location.loc:=LOC_FLAGS; end; xorn: begin if not assigned(p^.resulttype) then p^.resulttype:=p^.left^.resulttype; p^.location.loc:=LOC_REGISTER; end; addn: begin if not assigned(p^.resulttype) then begin { for strings, return is always a 255 char string } if is_shortstring(p^.left^.resulttype) then p^.resulttype:=cshortstringdef else p^.resulttype:=p^.left^.resulttype; end; end; else p^.resulttype:=p^.left^.resulttype; end; end; end. { $Log$ Revision 1.59 1999-12-01 12:42:33 peter * fixed bug 698 * removed some notes about unused vars Revision 1.58 1999/11/30 10:40:56 peter + ttype, tsymlist Revision 1.57 1999/11/26 13:51:29 pierre * fix for overloading of shr shl mod and div Revision 1.56 1999/11/18 15:34:48 pierre * Notes/Hints for local syms changed to Set_varstate function Revision 1.55 1999/11/17 17:05:06 pierre * Notes/hints changes Revision 1.54 1999/11/16 23:45:28 pierre * global var token was changed by overload code (form bug 707) Revision 1.53 1999/11/15 21:53:42 peter * fixed constant eval for bool xor/or/and bool Revision 1.52 1999/11/15 17:53:00 pierre + one field added for ttoken record for operator linking the id to the corresponding operator token that can now now all be overloaded * overloaded operators are resetted to nil in InitSymtable (bug when trying to compile a uint that overloads operators twice) Revision 1.51 1999/11/06 14:34:29 peter * truncated log to 20 revs Revision 1.50 1999/09/27 23:45:00 peter * procinfo is now a pointer * support for result setting in sub procedure Revision 1.49 1999/09/16 13:39:14 peter * arrayconstructor 2 set conversion is now called always in the beginning of firstadd Revision 1.48 1999/09/15 20:35:45 florian * small fix to operator overloading when in MMX mode + the compiler uses now fldz and fld1 if possible + some fixes to floating point registers + some math. functions (arctan, ln, sin, cos, sqrt, sqr, pi) are now inlined * .... ??? Revision 1.47 1999/09/13 16:28:05 peter * typo in previous commit open_array -> chararray :( Revision 1.46 1999/09/10 15:40:46 peter * fixed array check for operators, becuase array can also be a set Revision 1.45 1999/09/08 16:05:29 peter * pointer add/sub is now as expected and the same results as inc/dec Revision 1.44 1999/09/07 07:52:19 peter * > < >= <= support for boolean * boolean constants are now calculated like integer constants Revision 1.43 1999/08/23 23:44:05 pierre * setelementn registers32 corrected Revision 1.42 1999/08/07 11:29:27 peter * better fix for muln register allocation Revision 1.41 1999/08/05 21:58:57 peter * fixed register count ord*ord Revision 1.40 1999/08/04 13:03:13 jonas * all tokens now start with an underscore * PowerPC compiles!! Revision 1.39 1999/08/04 00:23:33 florian * renamed i386asm and i386base to cpuasm and cpubase Revision 1.38 1999/08/03 22:03:24 peter * moved bitmask constants to sets * some other type/const renamings Revision 1.37 1999/07/16 10:04:37 peter * merged Revision 1.36 1999/06/17 15:32:48 pierre * merged from 0-99-12 branch Revision 1.34.2.3 1999/07/16 09:54:58 peter * @procvar support in tp7 mode works again Revision 1.34.2.2 1999/06/17 15:25:07 pierre * for arrays of char operators can not be overloaded Revision 1.35 1999/06/17 13:19:57 pierre * merged from 0_99_12 branch Revision 1.34.2.1 1999/06/17 12:35:23 pierre * allow array binary operator overloading if not with orddef Revision 1.34 1999/06/02 10:11:52 florian * make cycle fixed i.e. compilation with 0.99.10 * some fixes for qword * start of register calling conventions }