{ $Id$ This file is part of the Free Pascal run time library. Copyright (c) 1998 by Florian Klaempfl member of the Free Pascal development team See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} { This unit is an equivalent to the Delphi math unit (with some improvements) About assembler usage: ---------------------- I used as few as possible assembler to allow an easy port to other processors. Today, I think it's wasted time to write assembler because different versions of a family of processors need different implementations. To improve performance, I changed all integer arguments and functions results to longint, because 16 bit instructions are lethal for a modern intel processor. (FK) What's to do: o a lot of function :), search for !!!! o some statistical functions o all financial functions o optimizations } unit math; interface {$MODE objfpc} uses sysutils; type { the original delphi functions use extended as argument, } { but I would prefer double, because 8 bytes is a very } { natural size for the processor } float = extended; tpaymenttime = (ptendofperiod,ptstartofperiod); einvalidargument = class(ematherror); { Min/max determination } function MinIntValue(const Data: array of Integer): Integer; function MaxIntValue(const Data: array of Integer): Integer; { Extra, not present in Delphi, but used frequently } function Min(Int1,Int2:Integer):Integer; function Min(Int1,Int2:Cardinal):Cardinal; function Max(Int1,Int2:Integer):Integer; function Max(Int1,Int2:Cardinal):Cardinal; { angle conversion } function degtorad(deg : float) : float; function radtodeg(rad : float) : float; function gradtorad(grad : float) : float; function radtograd(rad : float) : float; function degtograd(deg : float) : float; function gradtodeg(grad : float) : float; { one cycle are 2*Pi rad } function cycletorad(cycle : float) : float; function radtocycle(rad : float) : float; { trigoniometric functions } function tan(x : float) : float; function cotan(x : float) : float; procedure sincos(theta : float;var sinus,cosinus : float); { inverse functions } function arccos(x : float) : float; function arcsin(x : float) : float; { calculates arctan(x/y) and returns an angle in the correct quadrant } function arctan2(x,y : float) : float; { hyperbolic functions } function cosh(x : float) : float; function sinh(x : float) : float; function tanh(x : float) : float; { area functions } { delphi names: } function arccosh(x : float) : float; function arcsinh(x : float) : float; function arctanh(x : float) : float; { IMHO the function should be called as follows (FK) } function arcosh(x : float) : float; function arsinh(x : float) : float; function artanh(x : float) : float; { triangle functions } { returns the length of the hypotenuse of a right triangle } { if x and y are the other sides } function hypot(x,y : float) : float; { logarithm functions } function log10(x : float) : float; function log2(x : float) : float; function logn(n,x : float) : float; { returns natural logarithm of x+1 } function lnxpi(x : float) : float; { exponential functions } function power(base,exponent : float) : float; { base^exponent } function intpower(base : float;exponent : longint) : float; { number converting } { rounds x towards positive infinity } function ceil(x : float) : longint; { rounds x towards negative infinity } function floor(x : float) : longint; { misc. functions } { splits x into mantissa and exponent (to base 2) } procedure frexp(x : float;var mantissa,exponent : float); { returns x*(2^p) } function ldexp(x : float;p : longint) : float; { statistical functions } function mean(const data : array of float) : float; function sum(const data : array of float) : float; function sumofsquares(const data : array of float) : float; { calculates the sum and the sum of squares of data } procedure sumsandsquares(const data : array of float; var sum,sumofsquares : float); function minvalue(const data : array of float) : float; function maxvalue(const data : array of float) : float; { calculates the standard deviation } function stddev(const data : array of float) : float; { calculates the mean and stddev } procedure meanandstddev(const data : array of float; var mean,stddev : float); function variance(const data : array of float) : float; function totalvariance(const data : array of float) : float; { returns random values with gaussian distribution } function randg(mean,stddev : float) : float; { I don't know what the following functions do: } function popnstddev(const data : array of float) : float; function popnvariance(const data : array of float) : float; procedure momentskewkurtosis(const data : array of float; var m1,m2,m3,m4,skew,kurtosis : float); { geometrical function } { returns the euclidean L2 norm } function norm(const data : array of float) : float; implementation Procedure DoMathError(Const S : String); begin writeln (StdErr,'Math Error : ',S); end; Procedure InvalidArgument; begin DoMathError ('Invalid argument'); end; function degtorad(deg : float) : float; begin degtorad:=deg*(pi/180.0); end; function radtodeg(rad : float) : float; begin radtodeg:=rad*(180.0/pi); end; function gradtorad(grad : float) : float; begin gradtorad:=grad*(pi/200.0); end; function radtograd(rad : float) : float; begin radtograd:=rad*(200.0/pi); end; function degtograd(deg : float) : float; begin degtograd:=deg*(200.0/180.0); end; function gradtodeg(grad : float) : float; begin gradtodeg:=grad*(180.0/200.0); end; function cycletorad(cycle : float) : float; begin cycletorad:=(2*pi)*cycle; end; function radtocycle(rad : float) : float; begin { avoid division } radtocycle:=rad*(1/(2*pi)); end; function tan(x : float) : float; begin Tan:=Sin(x)/Cos(x) end; function cotan(x : float) : float; begin cotan:=Cos(X)/Sin(X); end; procedure sincos(theta : float;var sinus,cosinus : float); begin {$ifndef i386} sinus:=sin(theta); cosinus:=cos(theta); {$else} asm fldl 8(%ebp) fsincos fwait movl 20(%ebp),%eax fstpl (%eax) movl 16(%ebp),%eax fstpl (%eax) end; {$endif} end; function arccos(x : float) : float; { There is some discussion as to what the correct formula is for arccos and arcsin is, but I take the one from my book...} begin ArcCos:=ArcTan2(Sqrt(1-x*x),x); end; function arcsin(x : float) : float; begin ArcSin:=ArcTan2(x,Sqrt(1-x*x)) end; function arctan2( x,y : float) : float; begin {$ifndef i386} ArcTan2:=ArcTan(x/y); {$else} asm fldt 8(%ebp) fldt 18(%ebp) fpatan leave ret $20 end; {$endif} end; function cosh(x : float) : float; var temp : float; begin temp:=exp(x); cosh:=0.5*(temp+1.0/temp); end; function sinh(x : float) : float; var temp : float; begin temp:=exp(x); sinh:=0.5*(temp-1.0/temp); end; Const MaxTanh=5000; { rather arbitrary, but more or less correct } function tanh(x : float) : float; var Temp : float; begin if x>MaxTanh then exit(1.0) else if x<-MaxTanh then exit (-1.0); temp:=exp(-2*x); tanh:=(1-temp)/(1+temp) end; function arccosh(x : float) : float; begin arccosh:=arcosh(x); end; function arcsinh(x : float) : float; begin arcsinh:=arsinh(x); end; function arctanh(x : float) : float; begin if x>1 then InvalidArgument; arctanh:=artanh(x); end; function arcosh(x : float) : float; begin if x<1 then InvalidArgument; arcosh:=Ln(x+Sqrt(x*x-1)); end; function arsinh(x : float) : float; begin arsinh:=Ln(x-Sqrt(1+x*x)); end; function artanh(x : float) : float; begin If abs(x)>1 then InvalidArgument; artanh:=(Ln((1+x)/(1-x)))*0.5; end; function hypot(x,y : float) : float; begin hypot:=Sqrt(x*x+y*y) end; function log10(x : float) : float; begin log10:=ln(x)/ln(10); end; function log2(x : float) : float; begin log2:=ln(x)/ln(2) end; function logn(n,x : float) : float; begin if n<0 then InvalidArgument; logn:=ln(x)/ln(n); end; function lnxpi(x : float) : float; begin lnxpi:=ln(1+x); end; function power(base,exponent : float) : float; begin Power:=exp(exponent * ln (base)); end; function intpower(base : float;exponent : longint) : float; var i : longint; begin i:=abs(exponent); intpower:=1.0; while i>0 do begin while (i and 1)=0 do begin i:=i shr 1; base:=sqr(base); end; i:=i-1; intpower:=intpower*base; end; if exponent<0 then intpower:=1.0/intpower; end; function ceil(x : float) : longint; begin Ceil:=Trunc(x); If (x > 0) And (Frac(x) > 0) then Ceil:=Ceil+1; end; function floor(x : float) : longint; begin Floor:=Trunc(x); If (x < 0) And (Frac(x) > 0) then Floor := Floor - 1; end; procedure frexp(x : float;var mantissa,exponent : float); begin { !!!!!!! } end; function ldexp(x : float;p : longint) : float; begin ldexp:=x*intpower(2.0,p); end; function mean(const data : array of float) : float; begin mean:=sum(data); mean:=mean/(high(data)-low(data)+1); end; function sum(const data : array of float) : float; var i : longint; begin sum:=0.0; for i:=low(data) to high(data) do sum:=sum+data[i]; end; function sumofsquares(const data : array of float) : float; var i : longint; begin sumofsquares:=0.0; for i:=low(data) to high(data) do sumofsquares:=sumofsquares+sqr(data[i]); end; procedure sumsandsquares(const data : array of float; var sum,sumofsquares : float); var i : longint; temp : float; begin sumofsquares:=0.0; sum:=0.0; for i:=low(data) to high(data) do begin temp:=data[i]; sumofsquares:=sumofsquares+sqr(temp); sum:=sum+temp; end; end; function minvalue(const data : array of float) : float; var i : longint; begin { get an initial value } minvalue:=data[low(data)]; for i:=low(data) to high(data) do if data[i]maxvalue then maxvalue:=data[i]; end; function stddev(const data : array of float) : float; begin StdDev:=Sqrt(Variance(Data)); end; procedure meanandstddev(const data : array of float; var mean,stddev : float); begin end; function variance(const data : array of float) : float; begin Variance:=TotalVariance(Data)/(High(Data)-Low(Data)); end; function totalvariance(const data : array of float) : float; var S,SS : Float; begin SumsAndSquares(Data,S,SS); TotalVariance := SS-Sqr(S)/(High(Data)-Low(Data)); end; function randg(mean,stddev : float) : float; Var U1,S2 : Float; begin repeat u1:= 2*random-1; S2:=Sqr(U1)+sqr(2*random-1); until s2<1; randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean; end; function popnstddev(const data : array of float) : float; begin PopnStdDev:=Sqrt(PopnVariance(Data)); end; function popnvariance(const data : array of float) : float; begin PopnVariance:=TotalVariance(Data)/(High(Data)-Low(Data)+1); end; procedure momentskewkurtosis(const data : array of float; var m1,m2,m3,m4,skew,kurtosis : float); Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float; I : Longint; begin invN:=1.0/(High(Data)-Low(Data)+1); s:=0; ss:=0; sq:=0; sc:=0; for i:=Low(Data) to High(Data) do begin temp:=Data[i]; { faster } S:=S+temp; acc:=temp*temp; ss:=ss+acc; Acc:=acc*temp; Sc:=sc+acc; acc:=acc*temp; sq:=sq+acc; end; M1:=s*invN; M1S:=M1*M1; S2N:=SS*invN; S3N:=SC*invN; M2:=S2N-M1S; M3:=S3N-(M1*3*S2N) + 2*M1S*M1; M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S)); Skew:=M3*power(M2,-3/2); Kurtosis:=M4 / Sqr(M2); end; function norm(const data : array of float) : float; begin norm:=sqrt(sumofsquares(data)); end; function MinIntValue(const Data: array of Integer): Integer; var I: Integer; begin Result := Data[Low(Data)]; For I := Succ(Low(Data)) To High(Data) Do If Data[I] < Result Then Result := Data[I]; end; function MaxIntValue(const Data: array of Integer): Integer; var I: Integer; begin Result := Data[Low(Data)]; For I := Succ(Low(Data)) To High(Data) Do If Data[I] > Result Then Result := Data[I]; end; function Min(Int1,Int2:Integer):Integer; begin If Int1 < Int2 Then Result := Int1 Else Result := Int2; end; function Min(Int1,Int2:Cardinal):Cardinal; begin If Int1 < Int2 Then Result := Int1 Else Result := Int2; end; function Max(Int1,Int2:Integer):Integer; begin If Int1 > Int2 Then Result := Int1 Else Result := Int2; end; function Max(Int1,Int2:Cardinal):Cardinal; begin If Int1 > Int2 Then Result := Int1 Else Result := Int2; end; end. { $Log$ Revision 1.11 1999-06-04 08:44:34 jonas * Ceil and Floor are now really fixed :) Revision 1.10 1999/06/03 16:22:57 jonas * fixed ceil function Revision 1.9 1999/06/03 13:37:30 jonas * fixed floor function Revision 1.8 1999/01/15 11:44:56 peter * fixed unresolved forwards Revision 1.7 1998/12/21 13:07:06 peter * use -FE Revision 1.6 1998/11/02 12:52:46 michael Minimum/maximum functions Revision 1.5 1998/09/24 23:45:26 peter * updated for auto objpas loading Revision 1.4 1998/09/18 23:57:27 michael * Changed use_excepions to useexceptions Revision 1.3 1998/09/09 15:29:05 peter * removed some warnings Revision 1.2 1998/07/29 15:44:34 michael included sysutils and math.pp as target. They compile now. }