{ This file is part of the Free Pascal run time library. Copyright (c) 1999-2001 by the Free Pascal development team Implementation of mathematical routines (for extended type) See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} {------------------------------------------------------------------------- Using functions from AMath/DAMath libraries, which are covered by the following license: (C) Copyright 2009-2013 Wolfgang Ehrhardt This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. ----------------------------------------------------------------------------} {**************************************************************************** FPU Control word ****************************************************************************} {$push} {$codealign constmin=16} const FPC_ABSMASK_SINGLE: array[0..1] of qword=($7fffffff7fffffff,$7fffffff7fffffff); cvar; public; FPC_ABSMASK_DOUBLE: array[0..1] of qword=($7fffffffffffffff,$7fffffffffffffff); cvar; public; {$pop} procedure Set8087CW(cw:word); begin { pic-safe ; cw will not be a regvar because it's accessed from } { assembler } default8087cw:=cw; asm fnclex fldcw cw end; end; function Get8087CW:word;assembler; asm pushl $0 fnstcw (%esp) popl %eax end; procedure SetMXCSR(w : dword); begin defaultmxcsr:=w; {$ifndef OLD_ASSEMBLER} asm ldmxcsr w end; {$else} { Use convoluted code to avoid relocation on ldmxcsr opcode, and use .byte version } asm mov w,%eax subl $4,%esp mov %eax,(%esp) //ldmxcsr (%esp) .byte 0x0f,0xae,0x14,0x24 addl $4,%esp end; {$endif OLD_ASSEMBLER} end; function GetMXCSR : dword; var _w : dword; begin {$ifndef OLD_ASSEMBLER} asm stmxcsr _w end; {$else} asm { Use convoluted code to avoid relocation on ldmxcsr opcode, and use .byte version } subl $4,%esp //stmxcsr (%esp) .byte 0x0f,0xae,0x14,0x24 mov (%esp),%eax addl $4,%esp mov %eax,_w end; {$endif OLD_ASSEMBLER} result:=_w; end; function GetNativeFPUControlWord: TNativeFPUControlWord; {$if defined(SYSTEMINLINE)}inline;{$endif} begin result.cw8087:=Get8087CW; if has_sse_support then result.MXCSR:=GetMXCSR else result.MXCSR:=-1; end; procedure SetNativeFPUControlWord(const cw: TNativeFPUControlWord); {$if defined(SYSTEMINLINE)}inline;{$endif} begin Set8087CW(cw.cw8087); if cw.MXCSR<>-1 then SetMXCSR(cw.MXCSR); end; procedure SetSSECSR(w : dword); begin SetMXCSR(w); end; function GetSSECSR: dword; begin result:=GetMXCSR; end; {**************************************************************************** EXTENDED data type routines ****************************************************************************} {$define FPC_SYSTEM_HAS_ABS} function fpc_abs_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_SQR} function fpc_sqr_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_SQRT} function fpc_sqrt_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_ARCTAN} function fpc_arctan_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_LN} function fpc_ln_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_SIN} function fpc_sin_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$define FPC_SYSTEM_HAS_COS} function fpc_cos_real(d : ValReal) : ValReal;compilerproc; begin { Function is handled internal in the compiler } runerror(207); result:=0; end; {$if not defined(FPC_PIC) or defined(OLD_ASSEMBLER)} {$define DISABLE_PIC_IN_EXP_REAL} {$endif} {$define FPC_SYSTEM_HAS_EXP} { exp function adapted from AMath library (C) Copyright 2009-2013 Wolfgang Ehrhardt * translated into AT&T syntax + PIC support * return +Inf/0 for +Inf/-Inf input, instead of NaN } function fpc_exp_real(d : ValReal) : ValReal;assembler;nostackframe;compilerproc; { [esp + 4 .. esp + 13] = d } const ln2hi: double=6.9314718036912382E-001; ln2lo: double=1.9082149292705877E-010; two: single=2.0; half: single=0.5; asm {$ifndef DISABLE_PIC_IN_EXP_REAL} call .LPIC .LPIC: pop %ecx {$endif not DISABLE_PIC_IN_EXP_REAL} fldt 4(%esp) fldl2e fmul %st(1),%st { z = d * log2(e) } frndint { Calculate frac(z) using modular arithmetic to avoid precision loss. } fldl ln2hi{$ifndef DISABLE_PIC_IN_EXP_REAL}-.LPIC(%ecx){$endif} fmul %st(1),%st fsubrp %st,%st(2) fldl ln2lo{$ifndef DISABLE_PIC_IN_EXP_REAL}-.LPIC(%ecx){$endif} fmul %st(1),%st fsubrp %st,%st(2) fxch %st(1) { (d-int(z)*ln2_hi)-int(z)*ln2_lo } fldl2e fmulp %st,%st(1) { frac(z) } { The above code can result in |frac(z)|>1, particularly when rounding mode is not "round to nearest". f2xm1 is undefined in this case, so a check is necessary. Furthermore, frac(z) evaluates to NaN for d=+-Inf. } fsts 4(%esp) { Save frac(z) as single. Usually a lot faster than saving 80-bit extended. } mov 4(%esp), %eax shr $23, %eax movzbl %al, %eax sub $127, %eax { eax = single(frac(z)) exponent. If < 0, |frac(z)| < 1. } jae .LFracOutOfRange f2xm1 .LGot2PowFracZM1: fld1 faddp %st,%st(1) fscale fstp %st(1) ret $12 .LFracOutOfRange: jne .LForceZeroFrac { Safeguard against |frac(z)| ≥ 2, or Inf / NaN. If single(frac(z)) exponent is 0, 1 ≤ |frac(z)| < 2. } { Calculate 2**frac(z)-1 as N*(N+2), where N=2**(frac(z)/2)-1 } fmuls half{$ifndef DISABLE_PIC_IN_EXP_REAL}-.LPIC(%ecx){$endif} f2xm1 fld %st fadds two{$ifndef DISABLE_PIC_IN_EXP_REAL}-.LPIC(%ecx){$endif} fmulp %st,%st(1) jmp .LGot2PowFracZM1 .LForceZeroFrac: fstp %st fld1 fscale fstp %st(1) end; {$define FPC_SYSTEM_HAS_FRAC} function fpc_frac_real(d : ValReal) : ValReal;assembler;nostackframe;compilerproc; { [esp + 4 .. esp + 13] = d. } asm { Extended exponent bias is 16383 and mantissa is 63 bits not counting explicit 1. In memory: bit 0, byte 0 bit 64, byte 8 ↓ ↓ M0 M1 ... M61 M62 1 E14 E13 ... E1 E0 S └───────────────┘ E = 16383 + exponent Numbers with E < 16383 have abs < 1 so frac = itself; Numbers with E ≥ 16383 + 63 = 16446 have frac = 0, except for E = 32767 (Inf, NaN) that have frac = NaN. Numbers with 16383 ≤ E < 16383 + 63 have (16383 + 63 - E) mantissa bits after the point. Zero them manually instead of changing and restoring the control word. FISTTP + FILD is faster but FISTTP is a SSE3 instruction despite its appearance. :( } movzwl 12(%esp), %ecx and $0x7FFF, %ecx { ecx = E } sub $16383, %ecx { ecx = E - 16383 = exponent. } jb .LLoad { exponent < 0 ⇒ abs(number) < 1 ⇒ frac is the number itself. } sub $63, %ecx jae .LZeroOrSpecial fldt 4(%esp) neg %ecx { ecx = 63 - exponent = number of mantissa bits after point = number of bottom mantissa bits that must be zeroed. } or $-1, %eax { eax = all ones, so “eax shl N” will have N bottom zeros. } shl %cl, %eax { This shifts by ecx mod 32. } shr $5, %ecx { 0 if first 32 bits must be masked by eax, 1 if second 32 bits must be masked by eax and first 32 bits must be zeroed. } and 4(%esp,%ecx,4), %eax movl $0, 4(%esp) { If ecx = 0, gets instantly overwritten instead of branching. } mov %eax, 4(%esp,%ecx,4) fldt 4(%esp) fsubrp %st(0), %st(1) { For some reason this matches fsubP st(1), st(0) in Intel syntax. o_O } ret $12 .LLoad: fldt 4(%esp) ret $12 .LZeroOrSpecial: cmp $(16384 - 63), %ecx { E = MAX, number is Inf/NaN? } je .LInfNaN fldz ret $12 .LInfNaN: { Bother a bit to explicitly handle infinity instead of jumping to fldt + fsubrp + ret that would conveniently substract Inf/NaN from itself and give NaN. Such subtracting is likely to be very slow even on newer CPUs whose SSE units handle infinities/NaNs at full speed. I’d prefer frac(Inf) = 0, but x86-64 version returns NaN too. } mov 8(%esp), %eax { Check if mantissa bits 0:62 are all zeros. } shl $1, %eax { Ignore bit 63. } or 4(%esp), %eax jnz .LLoad { Not all zeros, NaN; return itself. } movl $0xFFC00000, 4(%esp) { 32-bit qNaN that, when loaded with flds on my CPU, produces the same bitpattern as actual subtraction of two infinities. ^^" } flds 4(%esp) end; {$define FPC_SYSTEM_HAS_INT} function fpc_int_real(d : ValReal) : ValReal;assembler;nostackframe;compilerproc; { [esp + 4 .. esp + 13] = d. } asm { See fpc_frac_real. } movzwl 12(%esp), %ecx and $0x7FFF, %ecx { ecx = E } sub $16383, %ecx { ecx = E - 16383 = exponent. } jb .LZero { exponent < 0 ⇒ abs(number) < 1 ⇒ int is 0 (assuming its sign is not important). } sub $63, %ecx jae .LReload { exponent > 63 ⇒ the number is either too large to have a fraction or an Inf/NaN ⇒ int is the number itself. } neg %ecx { ecx = 63 - exponent = number of mantissa bits after point = number of bottom mantissa bits that must be zeroed. } or $-1, %eax { eax = all ones, so “eax shl N” will have N bottom zeros. } shl %cl, %eax { This shifts by ecx mod 32. } shr $5, %ecx { 0 if first 32 bits must be masked by eax, 1 if second 32 bits must be masked by eax and first 32 bits must be zeroed. } and 4(%esp,%ecx,4), %eax movl $0, 4(%esp) { If ecx = 0, gets instantly overwritten instead of branching. } mov %eax, 4(%esp,%ecx,4) .LReload: fldt 4(%esp) ret $12 .LZero: fldz end; {$define FPC_SYSTEM_HAS_TRUNC} function fpc_trunc_real(d : ValReal) : int64;assembler;compilerproc; asm subl $12,%esp fldt d fnstcw (%esp) movw (%esp),%cx orw $0x0f00,(%esp) fldcw (%esp) movw %cx,(%esp) fistpq 4(%esp) fldcw (%esp) fwait movl 4(%esp),%eax movl 8(%esp),%edx end; {$define FPC_SYSTEM_HAS_ROUND} { keep for bootstrapping with 2.0.x } function fpc_round_real(d : ValReal) : int64;compilerproc;assembler; var res : int64; asm fldt d fistpq res fwait movl res,%eax movl res+4,%edx end;