{ $Id$ Copyright (c) 1998-2000 by Florian Klaempfl Type checking and register allocation for memory related nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit tcmem; {$i defines.inc} interface uses tree; procedure firstloadvmt(var p : ptree); procedure firsthnew(var p : ptree); procedure firstnew(var p : ptree); procedure firsthdispose(var p : ptree); procedure firstsimplenewdispose(var p : ptree); procedure firstaddr(var p : ptree); procedure firstdoubleaddr(var p : ptree); procedure firstderef(var p : ptree); procedure firstsubscript(var p : ptree); procedure firstvec(var p : ptree); procedure firstself(var p : ptree); procedure firstwith(var p : ptree); implementation uses globtype,systems, cutils,cobjects,verbose,globals, symconst,symtable,aasm,types, htypechk,pass_1,cpubase {$ifdef newcg} ,cgbase {$else newcg} ,hcodegen {$endif newcg} ; {***************************************************************************** FirstLoadVMT *****************************************************************************} procedure firstloadvmt(var p : ptree); begin p^.registers32:=1; p^.location.loc:=LOC_REGISTER; end; {***************************************************************************** FirstHNew *****************************************************************************} procedure firsthnew(var p : ptree); begin end; {***************************************************************************** FirstNewN *****************************************************************************} procedure firstnew(var p : ptree); begin { Standardeinleitung } if assigned(p^.left) then firstpass(p^.left); if codegenerror then exit; if assigned(p^.left) then begin p^.registers32:=p^.left^.registers32; p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} end; { result type is already set } procinfo^.flags:=procinfo^.flags or pi_do_call; if assigned(p^.left) then p^.location.loc:=LOC_REGISTER else p^.location.loc:=LOC_REFERENCE; end; {***************************************************************************** FirstDispose *****************************************************************************} procedure firsthdispose(var p : ptree); begin firstpass(p^.left); if codegenerror then exit; p^.registers32:=p^.left^.registers32; p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} if p^.registers32<1 then p^.registers32:=1; { if p^.left^.location.loc<>LOC_REFERENCE then CGMessage(cg_e_illegal_expression); } if p^.left^.location.loc=LOC_CREGISTER then inc(p^.registers32); p^.location.loc:=LOC_REFERENCE; p^.resulttype:=ppointerdef(p^.left^.resulttype)^.pointertype.def; end; {***************************************************************************** FirstSimpleNewDispose *****************************************************************************} procedure firstsimplenewdispose(var p : ptree); begin { this cannot be in a register !! } make_not_regable(p^.left); firstpass(p^.left); if codegenerror then exit; { check the type } if p^.left^.resulttype=nil then p^.left^.resulttype:=generrordef; if (p^.left^.resulttype^.deftype<>pointerdef) then CGMessage1(type_e_pointer_type_expected,p^.left^.resulttype^.typename); if (p^.left^.location.loc<>LOC_REFERENCE) {and (p^.left^.location.loc<>LOC_CREGISTER)} then CGMessage(cg_e_illegal_expression); p^.registers32:=p^.left^.registers32; p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} p^.resulttype:=voiddef; procinfo^.flags:=procinfo^.flags or pi_do_call; end; {***************************************************************************** FirstAddr *****************************************************************************} procedure firstaddr(var p : ptree); var hp : ptree; hp2 : pparaitem; hp3 : pabstractprocdef; begin make_not_regable(p^.left); if not(assigned(p^.resulttype)) then begin { tp @procvar support (type of @procvar is a void pointer) Note: we need to leave the addrn in the tree, else we can't see the difference between @procvar and procvar. we set the procvarload flag so a secondpass does nothing for this node (PFV) } if (m_tp_procvar in aktmodeswitches) then begin hp:=p^.left; case hp^.treetype of calln : begin { is it a procvar? } hp:=hp^.right; if assigned(hp) then begin { remove calln node } putnode(p^.left); p^.left:=hp; firstpass(hp); p^.procvarload:=true; end; end; loadn, subscriptn, typeconvn, vecn, derefn : begin firstpass(hp); if codegenerror then exit; if hp^.resulttype^.deftype=procvardef then begin p^.procvarload:=true; end; end; end; end; if p^.procvarload then begin p^.registers32:=p^.left^.registers32; p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} if p^.registers32<1 then p^.registers32:=1; p^.location.loc:=p^.left^.location.loc; p^.resulttype:=voidpointerdef; exit; end; { proc 2 procvar ? } if p^.left^.treetype=calln then begin { generate a methodcallnode or proccallnode } { we shouldn't convert things like @tcollection.load } if (p^.left^.symtableprocentry^.owner^.symtabletype=objectsymtable) and not(assigned(p^.left^.methodpointer) and (p^.left^.methodpointer^.treetype=typen)) then begin hp:=genloadmethodcallnode(pprocsym(p^.left^.symtableprocentry),p^.left^.symtableproc, getcopy(p^.left^.methodpointer)); disposetree(p); firstpass(hp); p:=hp; exit; end else hp:=genloadcallnode(pprocsym(p^.left^.symtableprocentry),p^.left^.symtableproc); { result is a procedure variable } { No, to be TP compatible, you must return a pointer to the procedure that is stored in the procvar.} if not(m_tp_procvar in aktmodeswitches) then begin p^.resulttype:=new(pprocvardef,init); { it could also be a procvar, not only pprocsym ! } if p^.left^.symtableprocentry^.typ=varsym then hp3:=pabstractprocdef(pvarsym(p^.left^.symtableentry)^.vartype.def) else hp3:=pabstractprocdef(pprocsym(p^.left^.symtableprocentry)^.definition); pprocvardef(p^.resulttype)^.proctypeoption:=hp3^.proctypeoption; pprocvardef(p^.resulttype)^.proccalloptions:=hp3^.proccalloptions; pprocvardef(p^.resulttype)^.procoptions:=hp3^.procoptions; pprocvardef(p^.resulttype)^.rettype:=hp3^.rettype; pprocvardef(p^.resulttype)^.symtablelevel:=hp3^.symtablelevel; { method ? then set the methodpointer flag } if (hp3^.owner^.symtabletype=objectsymtable) and (pobjectdef(hp3^.owner^.defowner)^.is_class) then include(pprocvardef(p^.resulttype)^.procoptions,po_methodpointer); { we need to process the parameters reverse so they are inserted in the correct right2left order (PFV) } hp2:=pparaitem(hp3^.para^.last); while assigned(hp2) do begin pprocvardef(p^.resulttype)^.concatpara(hp2^.paratype,hp2^.paratyp,hp2^.defaultvalue); hp2:=pparaitem(hp2^.previous); end; end else p^.resulttype:=voidpointerdef; disposetree(p^.left); p^.left:=hp; end else begin firstpass(p^.left); { what are we getting the address from an absolute sym? } hp:=p^.left; while assigned(hp) and (hp^.treetype in [vecn,derefn,subscriptn]) do hp:=hp^.left; if assigned(hp) and (hp^.treetype=loadn) and ((hp^.symtableentry^.typ=absolutesym) and pabsolutesym(hp^.symtableentry)^.absseg) then begin if not(cs_typed_addresses in aktlocalswitches) then p^.resulttype:=voidfarpointerdef else p^.resulttype:=new(ppointerdef,initfardef(p^.left^.resulttype)); end else begin if not(cs_typed_addresses in aktlocalswitches) then p^.resulttype:=voidpointerdef else p^.resulttype:=new(ppointerdef,initdef(p^.left^.resulttype)); end; end; end; firstpass(p^.left); { this is like the function addr } inc(parsing_para_level); set_varstate(p^.left,false); dec(parsing_para_level); if codegenerror then exit; { don't allow constants } if is_constnode(p^.left) then begin aktfilepos:=p^.left^.fileinfo; CGMessage(type_e_no_addr_of_constant); end else begin { we should allow loc_mem for @string } if not(p^.left^.location.loc in [LOC_MEM,LOC_REFERENCE]) then begin aktfilepos:=p^.left^.fileinfo; CGMessage(cg_e_illegal_expression); end; end; p^.registers32:=p^.left^.registers32; p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} if p^.registers32<1 then p^.registers32:=1; { is this right for object of methods ?? } p^.location.loc:=LOC_REGISTER; end; {***************************************************************************** FirstDoubleAddr *****************************************************************************} procedure firstdoubleaddr(var p : ptree); begin make_not_regable(p^.left); firstpass(p^.left); inc(parsing_para_level); set_varstate(p^.left,false); dec(parsing_para_level); if p^.resulttype=nil then p^.resulttype:=voidpointerdef; if codegenerror then exit; if (p^.left^.resulttype^.deftype)<>procvardef then CGMessage(cg_e_illegal_expression); if (p^.left^.location.loc<>LOC_REFERENCE) then CGMessage(cg_e_illegal_expression); p^.registers32:=p^.left^.registers32; p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} if p^.registers32<1 then p^.registers32:=1; p^.location.loc:=LOC_REGISTER; end; {***************************************************************************** FirstDeRef *****************************************************************************} procedure firstderef(var p : ptree); begin firstpass(p^.left); set_varstate(p^.left,true); if codegenerror then begin p^.resulttype:=generrordef; exit; end; p^.registers32:=max(p^.left^.registers32,1); p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} if p^.left^.resulttype^.deftype<>pointerdef then CGMessage(cg_e_invalid_qualifier); p^.resulttype:=ppointerdef(p^.left^.resulttype)^.pointertype.def; p^.location.loc:=LOC_REFERENCE; end; {***************************************************************************** FirstSubScript *****************************************************************************} procedure firstsubscript(var p : ptree); begin firstpass(p^.left); if codegenerror then begin p^.resulttype:=generrordef; exit; end; p^.resulttype:=p^.vs^.vartype.def; p^.registers32:=p^.left^.registers32; p^.registersfpu:=p^.left^.registersfpu; {$ifdef SUPPORT_MMX} p^.registersmmx:=p^.left^.registersmmx; {$endif SUPPORT_MMX} { classes must be dereferenced implicit } if (p^.left^.resulttype^.deftype=objectdef) and pobjectdef(p^.left^.resulttype)^.is_class then begin if p^.registers32=0 then p^.registers32:=1; p^.location.loc:=LOC_REFERENCE; end else begin if (p^.left^.location.loc<>LOC_MEM) and (p^.left^.location.loc<>LOC_REFERENCE) then CGMessage(cg_e_illegal_expression); set_location(p^.location,p^.left^.location); end; end; {***************************************************************************** FirstVec *****************************************************************************} procedure firstvec(var p : ptree); var harr : pdef; ct : tconverttype; {$ifdef consteval} tcsym : ptypedconstsym; {$endif} begin firstpass(p^.left); firstpass(p^.right); if codegenerror then exit; { range check only for arrays } if (p^.left^.resulttype^.deftype=arraydef) then begin if (isconvertable(p^.right^.resulttype,parraydef(p^.left^.resulttype)^.rangetype.def, ct,ordconstn,false)=0) and not(is_equal(p^.right^.resulttype,parraydef(p^.left^.resulttype)^.rangetype.def)) then CGMessage(type_e_mismatch); end; { Never convert a boolean or a char !} { maybe type conversion } if (p^.right^.resulttype^.deftype<>enumdef) and not(is_char(p^.right^.resulttype)) and not(is_boolean(p^.right^.resulttype)) then begin p^.right:=gentypeconvnode(p^.right,s32bitdef); firstpass(p^.right); if codegenerror then exit; end; { are we accessing a pointer[], then convert the pointer to an array first, in FPC this is allowed for all pointers in delphi/tp7 it's only allowed for pchars } if (p^.left^.resulttype^.deftype=pointerdef) and ((m_fpc in aktmodeswitches) or is_pchar(p^.left^.resulttype)) then begin { convert pointer to array } harr:=new(parraydef,init(0,$7fffffff,s32bitdef)); parraydef(harr)^.elementtype.def:=ppointerdef(p^.left^.resulttype)^.pointertype.def; p^.left:=gentypeconvnode(p^.left,harr); firstpass(p^.left); if codegenerror then exit; p^.resulttype:=parraydef(harr)^.elementtype.def end; { determine return type } if not assigned(p^.resulttype) then if p^.left^.resulttype^.deftype=arraydef then p^.resulttype:=parraydef(p^.left^.resulttype)^.elementtype.def else if p^.left^.resulttype^.deftype=stringdef then begin { indexed access to strings } case pstringdef(p^.left^.resulttype)^.string_typ of { st_widestring : p^.resulttype:=cwchardef; } st_ansistring : p^.resulttype:=cchardef; st_longstring : p^.resulttype:=cchardef; st_shortstring : p^.resulttype:=cchardef; end; end else CGMessage(type_e_array_required); { the register calculation is easy if a const index is used } if p^.right^.treetype=ordconstn then begin {$ifdef consteval} { constant evaluation } if (p^.left^.treetype=loadn) and (p^.left^.symtableentry^.typ=typedconstsym) then begin tcsym:=ptypedconstsym(p^.left^.symtableentry); if tcsym^.defintion^.typ=stringdef then begin end; end; {$endif} p^.registers32:=p^.left^.registers32; { for ansi/wide strings, we need at least one register } if is_ansistring(p^.left^.resulttype) or is_widestring(p^.left^.resulttype) then p^.registers32:=max(p^.registers32,1); end else begin { this rules are suboptimal, but they should give } { good results } p^.registers32:=max(p^.left^.registers32,p^.right^.registers32); { for ansi/wide strings, we need at least one register } if is_ansistring(p^.left^.resulttype) or is_widestring(p^.left^.resulttype) then p^.registers32:=max(p^.registers32,1); { need we an extra register when doing the restore ? } if (p^.left^.registers32<=p^.right^.registers32) and { only if the node needs less than 3 registers } { two for the right node and one for the } { left address } (p^.registers32<3) then inc(p^.registers32); { need we an extra register for the index ? } if (p^.right^.location.loc<>LOC_REGISTER) { only if the right node doesn't need a register } and (p^.right^.registers32<1) then inc(p^.registers32); { not correct, but what works better ? if p^.left^.registers32>0 then p^.registers32:=max(p^.registers32,2) else min. one register p^.registers32:=max(p^.registers32,1); } end; p^.registersfpu:=max(p^.left^.registersfpu,p^.right^.registersfpu); {$ifdef SUPPORT_MMX} p^.registersmmx:=max(p^.left^.registersmmx,p^.right^.registersmmx); {$endif SUPPORT_MMX} if p^.left^.location.loc in [LOC_CREGISTER,LOC_REFERENCE] then p^.location.loc:=LOC_REFERENCE else p^.location.loc:=LOC_MEM; end; {***************************************************************************** FirstSelf *****************************************************************************} procedure firstself(var p : ptree); begin if (p^.resulttype^.deftype=classrefdef) or ((p^.resulttype^.deftype=objectdef) and pobjectdef(p^.resulttype)^.is_class ) then p^.location.loc:=LOC_CREGISTER else p^.location.loc:=LOC_REFERENCE; end; {***************************************************************************** FirstWithN *****************************************************************************} procedure firstwith(var p : ptree); var symtable : pwithsymtable; i : longint; begin if assigned(p^.left) and assigned(p^.right) then begin firstpass(p^.left); unset_varstate(p^.left); set_varstate(p^.left,true); if codegenerror then exit; symtable:=p^.withsymtable; for i:=1 to p^.tablecount do begin if (p^.left^.treetype=loadn) and (p^.left^.symtable=aktprocsym^.definition^.localst) then symtable^.direct_with:=true; symtable^.withnode:=p; symtable:=pwithsymtable(symtable^.next); end; firstpass(p^.right); if codegenerror then exit; left_right_max(p); p^.resulttype:=voiddef; end else begin { optimization } disposetree(p); p:=nil; end; end; end. { $Log$ Revision 1.8 2000-09-24 21:19:53 peter * delphi compile fixes Revision 1.7 2000/08/27 16:11:55 peter * moved some util functions from globals,cobjects to cutils * splitted files into finput,fmodule Revision 1.6 2000/08/20 15:05:45 peter * don't allow pointer indexing in non-fpc modes * array type required message instead of type mismatch (merged) Revision 1.5 2000/08/04 22:00:52 peter * merges from fixes Revision 1.4 2000/08/02 19:49:59 peter * first things for default parameters Revision 1.3 2000/07/13 12:08:28 michael + patched to 1.1.0 with former 1.09patch from peter Revision 1.2 2000/07/13 11:32:52 michael + removed logs }