{ $Id$ This file is part of the Free Pascal run time library. Copyright (c) 2000 by Jonas Maebe and other members of the Free Pascal development team Implementation of mathematical Routines (only for real) See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} const longint_to_real_helper: int64 = $4330000080000000; cardinal_to_real_helper: int64 = $4330000000000000; int_to_real_factor: double = double(high(cardinal))+1.0; {**************************************************************************** EXTENDED data type routines ****************************************************************************} {$define FPC_SYSTEM_HAS_PI} function pi : double;[internproc:in_pi]; {$define FPC_SYSTEM_HAS_ABS} function abs(d : extended) : extended;[internproc:in_abs_extended]; {$define FPC_SYSTEM_HAS_SQR} function sqr(d : extended) : extended;[internproc:in_sqr_extended]; { function arctan(d : extended) : extended;[internconst:in_arctan_extended]; begin runerror(207); end; function ln(d : extended) : extended;[internconst:in_ln_extended]; begin runerror(207); end; function sin(d : extended) : extended;[internconst: in_sin_extended]; begin runerror(207); end; function cos(d : extended) : extended;[internconst:in_cos_extended]; begin runerror(207); end; function exp(d : extended) : extended;[internconst:in_const_exp]; begin runerror(207); end; } const factor: double = double(int64(1) shl 32); factor2: double = double(int64(1) shl 31); {$define FPC_SYSTEM_HAS_TRUNC} function trunc(d : extended) : int64;assembler;[internconst:in_const_trunc]; { input: d in fr1 } { output: result in r3 } assembler; var temp: packed record case byte of 0: (l1,l2: longint); 1: (d: double); end; asm // store d in temp stfd f1,temp // extract sign bit (record in cr0) lwz r3,temp rlwinm. r3,r3,1,31,31 // make d positive fabs f1,f1 // load 2^32 in f2 {$ifndef macos} lis r4,factor@ha lfd f2,factor@l(r4) {$else} lwz r4,factor[TC](r2) lfd f2,0(r4) {$endif} // check if value is < 0 // f3 := d / 2^32; fdiv f3,f1,f2 // round fctiwz f4,f3 // store stfd f4,temp // and load into r4 lwz r3,temp+4 // convert back to float lis r0,0x4330 stw r0,temp xoris r0,r3,0x8000 stw r0,temp+4 {$ifndef macos} lis r4,longint_to_real_helper@ha lfd f0,longint_to_real_helper@l(r4) {$else} lwz r4,longint_to_real_helper[TC](r2) lfd f0,0(r4) {$endif} lfd f3,temp fsub f3,f3,f0 // f4 := d "mod" 2^32 ( = d - ((d / 2^32) * 2^32)) fnmsub f4,f3,f2,f1 // now, convert to unsigned 32 bit // load 2^31 in f2 {$ifndef macos} lis r4,factor2@ha lfd f2,factor2@l(r4) {$else} lwz r4,factor2[TC](r2) lfd f2,0(r4) {$endif} // subtract 2^31 fsub f3,f4,f2 // was the value > 2^31? fcmpu cr1,f4,f2 // use diff if >= 2^31 fsel f4,f3,f3,f4 // next part same as conversion to signed integer word fctiwz f4,f4 stfd f4,temp lwz r4,temp+4 // add 2^31 if value was >=2^31 blt cr1, .LTruncNoAdd xoris r4,r4,0x8000 .LTruncNoAdd: // negate value if it was negative to start with beq cr0,.LTruncPositive subfic r4,r4,0 subfze r3,r3 .LTruncPositive: end; {$define FPC_SYSTEM_HAS_ROUND} {$ifdef hascompilerproc} function round(d : extended) : int64;[internconst:in_const_round, external name 'FPC_ROUND']; function fpc_round(d : extended) : int64;assembler;[public, alias:'FPC_ROUND'];{$ifdef hascompilerproc}compilerproc;{$endif hascompilerproc} {$else} function round(d : extended) : int64;assembler;[internconst:in_const_round]; {$endif hascompilerproc} { exactly the same as trunc, except that one fctiwz has become fctiw } { input: d in fr1 } { output: result in r3 } assembler; var temp: packed record case byte of 0: (l1,l2: longint); 1: (d: double); end; asm // store d in temp stfd f1, temp // extract sign bit (record in cr0) lwz r4,temp rlwinm. r4,r4,1,31,31 // make d positive fabs f1,f1 // load 2^32 in f2 {$ifndef macos} lis r4,factor@ha lfd f2,factor@l(r4) {$else} lwz r4,factor[TC](r2) lfd f2,0(r4) {$endif} // check if value is < 0 // f3 := d / 2^32; fdiv f3,f1,f2 // round fctiwz f4,f3 // store stfd f4,temp // and load into r4 lwz r3,temp+4 // convert back to float lis r0,0x4330 stw r0,temp xoris r0,r3,0x8000 stw r0,temp+4 {$ifndef macos} lis r4,longint_to_real_helper@ha lfd f0,longint_to_real_helper@l(r4) {$else} lwz r4,longint_to_real_helper[TC](r2) lfd f0,0(r4) {$endif} lfd f3,temp fsub f3,f3,f0 // f4 := d "mod" 2^32 ( = d - ((d / 2^32) * 2^32)) fnmsub f4,f3,f2,f1 // now, convert to unsigned 32 bit // load 2^31 in f2 {$ifndef macos} lis r4,factor2@ha lfd f2,factor2@l(r4) {$else} lwz r4,factor2[TC](r2) lfd f2,0(r4) {$endif} // subtract 2^31 fsub f3,f4,f2 // was the value > 2^31? fcmpu cr1,f4,f2 // use diff if >= 2^31 fsel f4,f3,f3,f4 // next part same as conversion to signed integer word fctiw f4,f4 stfd f4,temp lwz r4,temp+4 // add 2^31 if value was >=2^31 blt cr1, .LRoundNoAdd xoris r4,r4,0x8000 .LRoundNoAdd: // negate value if it was negative to start with beq cr0,.LRoundPositive subfic r4,r4,0 subfze r3,r3 .LRoundPositive: end; {$define FPC_SYSTEM_HAS_POWER} function power(bas,expo : extended) : extended; begin if bas=0 then begin if expo<>0 then power:=0.0 else HandleError(207); end else if expo=0 then power:=1 else { bas < 0 is not allowed } if bas<0 then handleerror(207) else power:=exp(ln(bas)*expo); end; {**************************************************************************** Longint data type routines ****************************************************************************} {$define FPC_SYSTEM_HAS_POWER_INT64} function power(bas,expo : int64) : int64; begin if bas=0 then begin if expo<>0 then power:=0 else HandleError(207); end else if expo=0 then power:=1 else begin if bas<0 then begin if odd(expo) then power:=-round(exp(ln(-bas)*expo)) else power:=round(exp(ln(-bas)*expo)); end else power:=round(exp(ln(bas)*expo)); end; end; {**************************************************************************** Helper routines to support old TP styled reals ****************************************************************************} { warning: the following converts a little-endian TP-style real } { to a big-endian double. So don't byte-swap the TP real! } {$define FPC_SYSTEM_HAS_REAL2DOUBLE} function real2double(r : real48) : double; var res : array[0..7] of byte; exponent : word; begin { copy mantissa } res[6]:=0; res[5]:=r[1] shl 5; res[4]:=(r[1] shr 3) or (r[2] shl 5); res[3]:=(r[2] shr 3) or (r[3] shl 5); res[2]:=(r[3] shr 3) or (r[4] shl 5); res[1]:=(r[4] shr 3) or (r[5] and $7f) shl 5; res[0]:=(r[5] and $7f) shr 3; { copy exponent } { correct exponent: } exponent:=(word(r[0])+(1023-129)); res[1]:=res[1] or ((exponent and $f) shl 4); res[0]:=exponent shr 4; { set sign } res[0]:=res[0] or (r[5] and $80); real2double:=double(res); end; {**************************************************************************** Int to real helpers ****************************************************************************} {$define FPC_SYSTEM_HAS_INT64_TO_DOUBLE} function fpc_int64_to_double(i: int64): double; compilerproc; assembler; { input: high(i) in r4, low(i) in r3 } { output: double(i) in f0 } var temp: packed record case byte of 0: (l1,l2: cardinal); 1: (d: double); end; asm lis r0,0x4330 stw r0,temp xoris r3,r3,0x8000 stw r3,temp+4 {$ifndef macos} lis r3,longint_to_real_helper@ha lfd f1,longint_to_real_helper@l(r3) {$else} lwz r3,longint_to_real_helper[TC](r2) lfd f1,0(r3) {$endif} lfd f0,temp stw r4,temp+4 fsub f0,f0,f1 {$ifndef macos} lis r4,cardinal_to_real_helper@ha lfd f1,cardinal_to_real_helper@l(r4) lis r4,int_to_real_factor@ha lfd f3,temp lfd f2,int_to_real_factor@l(r4) {$else} lwz r4,cardinal_to_real_helper[TC](r2) lwz r3,int_to_real_factor[TC](r2) lfd f3,temp lfd f1,0(r4) lfd f2,0(r3) {$endif} fsub f3,f3,f1 fmadd f1,f0,f2,f3 end; {$define FPC_SYSTEM_HAS_QWORD_TO_DOUBLE} function fpc_qword_to_double(q: qword): double; compilerproc; assembler; { input: high(q) in r4, low(q) in r3 } { output: double(q) in f0 } var temp: packed record case byte of 0: (l1,l2: cardinal); 1: (d: double); end; asm lis r0,0x4330 stw r0,temp stw r3,temp+4 lfd f0,temp {$ifndef macos} lis r3,cardinal_to_real_helper@ha lfd f1,cardinal_to_real_helper@l(r3) {$else} lwz r3,longint_to_real_helper[TC](r2) lfd f1,0(r3) {$endif} stw r4,temp+4 fsub f0,f0,f1 lfd f3,temp {$ifndef macos} lis r4,int_to_real_factor@ha lfd f2,int_to_real_factor@l(r4) {$else} lwz r4,int_to_real_factor[TC](r2) lfd f2,0(r4) {$endif} fsub f3,f3,f1 fmadd f1,f0,f2,f3 end; { $Log$ Revision 1.32 2003-12-07 19:55:37 jonas - reverted previous patch, solved with the new assembler reader (which didn't understand the new syntax) Revision 1.30 2003/11/15 19:01:27 florian * fixed rtl to work with the integrated fpc ppc assembler reader Revision 1.29 2003/09/04 16:07:31 florian * fixed qword_to_double conversion on powerpc Revision 1.28 2003/09/03 14:09:37 florian * arm fixes to the common rtl code * some generic math code fixed * ... Revision 1.27 2003/08/08 22:02:05 olle * small bugfix macos Revision 1.26 2003/06/14 12:41:08 jonas * fixed compilation problems (removed unnecessary modified registers lists from procedures) Revision 1.25 2003/05/31 20:22:06 jonas * fixed 64 bit results of trunc and round Revision 1.24 2003/05/30 23:56:41 florian * fixed parameter passing for int64 Revision 1.23 2003/05/24 13:39:32 jonas * fsqrt is an optional instruction in the ppc architecture and isn't implemented by any current ppc afaik, so use the generic sqrt routine instead (adapted so it works with compilerproc) Revision 1.22 2003/05/16 16:04:33 jonas * fixed round() (almost the same as trunc) Revision 1.21 2003/05/11 18:09:45 jonas * fixed qword and int64 to double conversion Revision 1.20 2003/05/02 15:12:19 jonas - removed empty ppc-specific frac() + added correct generic frac() implementation for doubles (translated from glibc code) Revision 1.19 2003/04/26 20:36:24 jonas * trunc now also supports int64 (no NaN's etc though) Revision 1.18 2003/04/26 17:20:16 florian * fixed trunc, now it's working at least for longint range Revision 1.17 2003/04/23 21:28:21 peter * fpc_round added, needed for int64 currency Revision 1.16 2003/01/16 11:29:11 olle * changed access of globals to be indirect via TOC Revision 1.15 2003/01/15 01:09:04 florian * changed power(...) prototype to int64 Revision 1.14 2002/11/28 11:04:16 olle * macos: refs to globals in asm adapted to macos Revision 1.13 2002/10/21 18:08:28 jonas * round has int64 instead of longint result Revision 1.12 2002/09/08 13:00:21 jonas * made pi an internproc instead of internconst Revision 1.11 2002/09/07 16:01:26 peter * old logs removed and tabs fixed Revision 1.10 2002/08/18 22:11:10 florian * fixed remaining assembler errors Revision 1.9 2002/08/18 21:37:48 florian * several errors in inline assembler fixed Revision 1.8 2002/08/10 17:14:36 jonas * various fixes, mostly changing the names of the modifies registers to upper case since that seems to be required by the compiler Revision 1.7 2002/07/31 16:58:12 jonas * fixed conversion from int64/qword to double errors Revision 1.6 2002/07/29 21:28:17 florian * several fixes to get further with linux/ppc system unit compilation Revision 1.5 2002/07/28 21:39:29 florian * made abs a compiler proc if it is generic Revision 1.4 2002/07/28 20:43:49 florian * several fixes for linux/powerpc * several fixes to MT }