fpc/rtl/powerpc/int64p.inc
Jonas Maebe 1b42affa8f * optimized PowerPC version of changes in r35454
git-svn-id: trunk@35458 -
2017-02-19 20:27:39 +00:00

217 lines
8.6 KiB
PHP

{
This file is part of the Free Pascal run time library.
Copyright (c) 1999-2000 by the Free Pascal development team
This file contains some helper routines for int64 and qword
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{$define FPC_SYSTEM_HAS_DIV_QWORD}
function fpc_div_qword(n,z : qword) : qword;assembler;[public,alias: 'FPC_DIV_QWORD']; compilerproc;
{ from the ppc compiler writers guide }
assembler; nostackframe;
asm
// (R5:R6) = (R5:R6) / (R3:R4) (64b) = (64b / 64b)
// quo dvd dvs
//
// Remainder is returned in R3:R4.
//
// Code comment notation:
// msw = most-significant (high-order) word, i.e. bits 0..31
// lsw = least-significant (low-order) word, i.e. bits 32..63
// LZ = Leading Zeroes
// SD = Significant Digits
//
// R5:R6 = dvd (input dividend); quo (output quotient)
// R3:R4 = dvs (input divisor); rem (output remainder)
//
// R7:R8 = tmp
// count the number of leading 0s in the dividend
or. R0,R3,R4 // dvs = 0?
cmpwi cr1,R5,0 // dvd.msw == 0?
cntlzw R0,R5 // R0 = dvd.msw.LZ
cntlzw R9,R6 // R9 = dvd.lsw.LZ
bne+ .LNoDivByZero
b FPC_DIVBYZERO
.LNoDivByZero:
bne cr1,.Llab1 // if(dvd.msw == 0) dvd.LZ = dvd.msw.LZ
addi R0,R9,32 // dvd.LZ = dvd.lsw.LZ + 32
.Llab1:
// count the number of leading 0s in the divisor
cmpwi cr0,R3,0 // dvd.msw == 0?
cntlzw R9,R3 // R9 = dvs.msw.LZ
cntlzw R10,R4 // R10 = dvs.lsw.LZ
bne cr0,.Llab2 // if(dvs.msw == 0) dvs.LZ = dvs.msw.LZ
addi R9,R10,32 // dvs.LZ = dvs.lsw.LZ + 32
.Llab2:
// determine shift amounts to minimize the number of iterations
cmpw cr0,R0,R9 // compare dvd.LZ to dvs.LZ
subfic R10,R0,64 // R10 = dvd.SD
bgt cr0,.Llab9 // if(dvs > dvd) quotient = 0
addi R9,R9,1 // ++dvs.LZ (or --dvs.SD)
subfic R9,R9,64 // R9 = dvs.SD
add R0,R0,R9 // (dvd.LZ + dvs.SD) = left shift of dvd for
// initial dvd
subf R9,R9,R10 // (dvd.SD - dvs.SD) = right shift of dvd for
// initial tmp
mtctr R9 // number of iterations = dvd.SD - dvs.SD
// R7:R8 = R5:R6 >> R9
cmpwi cr0,R9,32 // compare R9 to 32
addi R7,R9,-32
blt cr0,.Llab3 // if(R9 < 32) jump to .Llab3
srw R8,R5,R7 // tmp.lsw = dvd.msw >> (R9 - 32)
li R7,0 // tmp.msw = 0
b .Llab4
.Llab3:
srw R8,R6,R9 // R8 = dvd.lsw >> R9
subfic R7,R9,32
slw R7,R5,R7 // R7 = dvd.msw << 32 - R9
or R8,R8,R7 // tmp.lsw = R8 | R7
srw R7,R5,R9 // tmp.msw = dvd.msw >> R9
.Llab4:
// R5:R6 = R5:R6 << R0
cmpwi cr0,R0,32 // compare R0 to 32
addic R9,R0,-32
blt cr0,.Llab5 // if(R0 < 32) jump to .Llab5
slw R5,R6,R9 // dvd.msw = dvd.lsw << R9
li R6,0 // dvd.lsw = 0
b .Llab6
.Llab5:
slw R5,R5,R0 // R5 = dvd.msw << R0
subfic R9,R0,32
srw R9,R6,R9 // R9 = dvd.lsw >> 32 - R0
or R5,R5,R9 // dvd.msw = R5 | R9
slw R6,R6,R0 // dvd.lsw = dvd.lsw << R0
.Llab6:
// restoring division shift and subtract loop
li R10,-1 // R10 = -1
addic R7,R7,0 // clear carry bit before loop starts
.Llab7:
// tmp:dvd is considered one large register
// each portion is shifted left 1 bit by adding it to itself
// adde sums the carry from the previous and creates a new carry
adde R6,R6,R6 // shift dvd.lsw left 1 bit
adde R5,R5,R5 // shift dvd.msw to left 1 bit
adde R8,R8,R8 // shift tmp.lsw to left 1 bit
adde R7,R7,R7 // shift tmp.msw to left 1 bit
subfc R0,R4,R8 // tmp.lsw - dvs.lsw
subfe. R9,R3,R7 // tmp.msw - dvs.msw
blt cr0,.Llab8 // if(result < 0) clear carry bit
mr R8,R0 // move lsw
mr R7,R9 // move msw
addic R0,R10,1 // set carry bit
.Llab8:
bdnz .Llab7
// write quotient and remainder
adde R4,R6,R6 // quo.lsw (lsb = CA)
adde R3,R5,R5 // quo.msw (lsb from lsw)
mr R6,R8 // rem.lsw
mr R5,R7 // rem.msw
b .Lqworddivdone // return
.Llab9:
// Quotient is 0 (dvs > dvd)
li R4,0 // dvd.lsw = 0
li R3,0 // dvd.msw = 0
.Lqworddivdone:
end;
{$define FPC_SYSTEM_HAS_MOD_QWORD}
function int_div_qword(n,z : qword) : qword;external name 'FPC_DIV_QWORD';
function fpc_mod_qword(n,z : qword) : qword;assembler;[public,alias: 'FPC_MOD_QWORD']; compilerproc;
assembler;
var
oldlr: pointer;
asm
mflr r0
stw r0,oldlr
bl INT_DIV_QWORD
lwz r0,oldlr
mtlr r0
mr R3,R5
mr R4,R6
end;
{$ifndef VER3_0}
{$define FPC_SYSTEM_HAS_MUL_QWORD}
function fpc_mul_qword(f1,f2 : qword) : qword;[public,alias: 'FPC_MUL_QWORD']; compilerproc;
assembler; nostackframe;
asm
// (r3:r4) = (r3:r4) * (r5:r6)
// res f1 f2
or. r10,r3,r5 // are both msw's 0?
mulhwu r8,r4,r6 // msw of product of lsw's
beq .LDone // if both msw's are zero, skip cross products
mullw r9,r4,r5 // lsw of first cross-product
mullw r7,r3,r6 // lsw of second cross-product
add r8,r8,r9 // add
add r8,r8,r7 // add
.LDone:
mullw r4,r4,r6 // lsw of product of lsw's
mr r3,r8 // get msw of product in correct register
end;
function fpc_mul_qword_checkoverflow(f1,f2 : qword) : qword;[public,alias: 'FPC_MUL_QWORD_CHECKOVERFLOW']; compilerproc;
assembler; nostackframe;
asm
// (r3:r4) = (r3:r4) * (r5:r6)
// res f1 f2
or. r10,r3,r5 // are both msw's 0?
mulhwu r8,r4,r6 // msw of product of lsw's
beq .LDone // if both msw's are zero, skip cross products
mullw r9,r4,r5 // lsw of first cross-product
cntlzw r11,r3 // count leading zeroes of msw1
cntlzw r12,r5 // count leading zeroes of msw2
mullw r7,r3,r6 // lsw of second cross-product
add r12,r11,r12 // sum of leading zeroes
mr r10,r8
add r8,r8,r9 // add
cmplwi cr1,r12,64 // >= 64 leading zero bits in total? If so, no overflow
add r8,r8,r7 // add
bge+ cr1,.LDone // if the sum of leading zero's >= 64 (or checkoverflow was 0)
// there's no overflow, otherwise more thorough check
add r7,r7,r9
mulhwu r3,r6,r3
addc r7,r7,r10 // add the msw of the product of the lsw's, record carry
cntlzw r9,r5
cntlzw r10,r4 // get leading zeroes count of lsw f1
mulhwu r5,r4,r5
addze r3,r3
subfic r0,r11,31 // if msw f1 = 0, then r0 := -1, else r0 >= 0
cntlzw r7,r6
subfic r11,r9,31 // same for f2
srawi r0,r0,31 // if msw f1 = 0, then r0 := 1, else r0 := 0
srawi r11,r11,31
and r10,r10,r0 // if msw f1 <> 0, the leading zero count lsw f1 := 0
and r9,r7,r11 // same for f2
or. r5,r5,r3
add r9,r9,r10 // add leading zero counts of lsw's to sum if appropriate
add r9,r9,r12
cmplwi cr7,r9,64 // is the sum now >= 64?
cmplwi cr1,r9,62 // or <= 62?
bge+ cr7,.LDone // >= 64 leading zeroes -> no overflow
ble+ cr1,.LOverflow // <= 62 leading zeroes -> overflow
// for 63 zeroes, we need additional checks
// sum of lsw's cross products can't have produced a carry,
// because the sum of leading zeroes is 63 -> at least
// one of these cross products is 0
beq+ .LDone
.LOverflow:
b FPC_OVERFLOW
.LDone:
mullw r4,r4,r6 // lsw of product of lsw's
mr r3,r8 // get msw of product in correct register
end;
{$endif VER3_0}