fpc/utils/tply/lexbase.pas
pierre 7bcb8e911c ------------------------------------------------------------------------
r40619 | pierre | 2018-12-23 16:17:49 +0000 (Sun, 23 Dec 2018) | 8 lines

  * in lexbase and yaccbase units,
    use DirectorySeparator instead of '\' in functions
    path, root and addext.
  * in plex and pyacc programs, for unix,
    try to find installed yyparse.cod using
    path of paramstr(0).


------------------------------------------------------------------------
--- Merging r40619 into '.':
U    utils/tply/pyacc.pas
U    utils/tply/plex.pas
U    utils/tply/yaccbase.pas
U    utils/tply/lexbase.pas
U    utils/tply/pyacc.y
--- Recording mergeinfo for merge of r40619 into '.':
 U   .

git-svn-id: branches/fixes_3_2@40627 -
2018-12-24 08:34:03 +00:00

1169 lines
32 KiB
ObjectPascal

{
This module collects the basic data types and operations used in the TP
Lex program, and other basic stuff that does not belong anywhere else:
- Lex input and output files and corresponding bookkeeping information
used by the parser
- symbolic character constants
- dynamically allocated strings and character classes
- integer sets
- generic quicksort and hash table routines
- utilities for list-generating
- other tiny utilities
Copyright (c) 1990-92 Albert Graef <ag@muwiinfa.geschichte.uni-mainz.de>
Copyright (C) 1996 Berend de Boer <berend@pobox.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
$Revision: 1.2 $
$Modtime: 96-08-01 10:21 $
$History: LEXBASE.PAS $
*
* ***************** Version 2 *****************
* User: Berend Date: 96-10-10 Time: 21:16
* Updated in $/Lex and Yacc/tply
* Updated for protected mode, windows and Delphi 1.X and 2.X.
}
unit LexBase;
interface
const
(* symbolic character constants: *)
bs = #8; (* backspace character *)
tab = #9; (* tab character *)
nl = #10; (* newline character *)
cr = #13; (* carriage return *)
ff = #12; (* form feed character *)
var
(* Filenames: *)
lfilename : String;
pasfilename : String;
lstfilename : String;
codfilename : String;
codfilepath1,
codfilepath2 : String; { Under linux, binary and conf file
are not in the same path}
(* Lex input, output, list and code template file: *)
yyin, yylst, yyout, yycod : Text;
(* the following values are initialized and updated by the parser: *)
line : String; (* current input line *)
lno : Integer; (* current line number *)
const
max_elems = 1000; (* maximum size of integer sets *)
type
(* String and character class pointers: *)
StrPtr = ^String;
CClass = set of Char;
CClassPtr = ^CClass;
(* Sorted integer sets: *)
IntSet = array [0..max_elems] of Integer;
(* word 0 is size *)
IntSetPtr = ^IntSet;
(* Regular expressions: *)
RegExpr = ^Node;
NodeType = (mark_node, (* marker node *)
char_node, (* character node *)
str_node, (* string node *)
cclass_node, (* character class node *)
star_node, (* star node *)
plus_node, (* plus node *)
opt_node, (* option node *)
cat_node, (* concatenation node *)
alt_node); (* alternatives node (|) *)
Node = record case node_type : NodeType of
mark_node : (rule, pos : Integer);
char_node : (c : Char);
str_node : (str : StrPtr);
cclass_node : (cc : CClassPtr);
star_node, plus_node, opt_node : (r : RegExpr);
cat_node, alt_node : (r1, r2 : RegExpr);
end;
(* Some standard character classes: *)
const
letters : CClass = ['A'..'Z','a'..'z','_'];
digits : CClass = ['0'..'9'];
alphanums : CClass = ['A'..'Z','a'..'z','_','0'..'9'];
(* Operations: *)
(* Strings and character classes: *)
function newStr(str : String) : StrPtr;
(* creates a string pointer (only the space actually needed for the given
string is allocated) *)
function newCClass(cc : CClass) : CClassPtr;
(* creates a CClass pointer *)
(* Integer sets (set arguments are passed by reference even if they are not
modified, for greater efficiency): *)
procedure empty(var M : IntSet);
(* initializes M as empty *)
procedure singleton(var M : IntSet; i : Integer);
(* initializes M as a singleton set containing the element i *)
procedure include(var M : IntSet; i : Integer);
(* include i in M *)
procedure exclude(var M : IntSet; i : Integer);
(* exclude i from M *)
procedure setunion(var M, N : IntSet);
(* adds N to M *)
procedure setminus(var M, N : IntSet);
(* removes N from M *)
procedure intersect(var M, N : IntSet);
(* removes from M all elements NOT in N *)
function size(var M : IntSet) : Integer;
(* cardinality of set M *)
function member(i : Integer; var M : IntSet) : Boolean;
(* tests for membership of i in M *)
function isempty(var M : IntSet) : Boolean;
(* checks whether M is an empty set *)
function equal(var M, N : IntSet) : Boolean;
(* checks whether M and N are equal *)
function subseteq(var M, N : IntSet) : Boolean;
(* checks whether M is a subset of N *)
function newIntSet : IntSetPtr;
(* creates a pointer to an empty integer set *)
(* Constructors for regular expressions: *)
const epsExpr : RegExpr = nil;
(* empty regular expression *)
function markExpr(rule, pos : Integer) : RegExpr;
(* markers are used to denote endmarkers of rules, as well as other
special positions in rules, e.g. the position of the lookahead
operator; they are considered nullable; by convention, we use
the following pos numbers:
- 0: endmarker position
- 1: lookahead operator position *)
function charExpr(c : Char) : RegExpr;
(* character c *)
function strExpr(str : StrPtr) : RegExpr;
(* "str" *)
function cclassExpr(cc : CClassPtr) : RegExpr;
(* [str] where str are the literals in cc *)
function starExpr(r : RegExpr) : RegExpr;
(* r* *)
function plusExpr(r : RegExpr) : RegExpr;
(* r+ *)
function optExpr(r : RegExpr) : RegExpr;
(* r? *)
function mnExpr(r : RegExpr; m, n : Integer) : RegExpr;
(* constructor expanding expression r{m,n} to the corresponding
alt expression r^m|...|r^n *)
function catExpr(r1, r2 : RegExpr) : RegExpr;
(* r1r2 *)
function altExpr(r1, r2 : RegExpr) : RegExpr;
(* r1|r2 *)
(* Unifiers for regular expressions:
The following predicates check whether the specified regular
expression r is of the denoted type; if the predicate succeeds,
the other arguments of the predicate are instantiated to the
corresponding values. *)
function is_epsExpr(r : RegExpr) : Boolean;
(* empty regular expression *)
function is_markExpr(r : RegExpr; var rule, pos : Integer) : Boolean;
(* marker expression *)
function is_charExpr(r : RegExpr; var c : Char) : Boolean;
(* character c *)
function is_strExpr(r : RegExpr; var str : StrPtr) : Boolean;
(* "str" *)
function is_cclassExpr(r : RegExpr; var cc : CClassPtr) : Boolean;
(* [str] where str are the literals in cc *)
function is_starExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
(* r1* *)
function is_plusExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
(* r1+ *)
function is_optExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
(* r1? *)
function is_catExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
(* r1r2 *)
function is_altExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
(* r1|r2 *)
(* Quicksort: *)
type
OrderPredicate = function (i, j : Integer) : Boolean;
SwapProc = procedure (i, j : Integer);
procedure quicksort(lo, hi: Integer;
less : OrderPredicate;
swap : SwapProc);
(* General inplace sorting procedure based on the quicksort algorithm.
This procedure can be applied to any sequential data structure;
only the corresponding routines less which compares, and swap which
swaps two elements i,j of the target data structure, must be
supplied as appropriate for the target data structure.
- lo, hi: the lower and higher indices, indicating the elements to
be sorted
- less(i, j): should return true if element no. i `is less than'
element no. j, and false otherwise; any total quasi-ordering may
be supplied here (if neither less(i, j) nor less(j, i) then elements
i and j are assumed to be `equal').
- swap(i, j): should swap the elements with index i and j *)
(* Generic hash table routines (based on quadratic rehashing; hence the
table size must be a prime number): *)
type
TableLookupProc = function(k : Integer) : String;
TableEntryProc = procedure(k : Integer; symbol : String);
function key(symbol : String;
table_size : Integer;
lookup : TableLookupProc;
entry : TableEntryProc) : Integer;
(* returns a hash table key for symbol; inserts the symbol into the
table if necessary
- table_size is the symbol table size and must be a fixed prime number
- lookup is the table lookup procedure which should return the string
at key k in the table ('' if entry is empty)
- entry is the table entry procedure which is assumed to store the
given symbol at the given location *)
function definedKey(symbol : String;
table_size : Integer;
lookup : TableLookupProc) : Boolean;
(* checks the table to see if symbol is in the table *)
(* Utility routines: *)
function min(i, j : Integer) : Integer;
function max(i, j : Integer) : Integer;
(* minimum and maximum of two integers *)
function nchars(cc : CClass) : Integer;
(* returns the cardinality (number of characters) of a character class *)
function upper(str : String) : String;
(* returns str converted to uppercase *)
function strip(str : String) : String;
(* returns str with leading and trailing blanks stripped off *)
function blankStr(str : String) : String;
(* returns string of same length as str, with all non-whitespace characters
replaced by blanks *)
function intStr(i : Integer) : String;
(* returns the string representation of i *)
function isInt(str : String; var i : Integer) : Boolean;
(* checks whether str represents an integer; if so, returns the
value of it in i *)
function path(filename : String) : String;
(* returns the path in filename *)
function root(filename : String) : String;
(* returns root (i.e. extension stripped from filename) of
filename *)
function addExt(filename, ext : String) : String;
(* if filename has no extension and last filename character is not '.',
add extension ext to filename *)
function file_size(filename : String) : LongInt;
(* determines file size in bytes *)
(* Utility functions for list generating routines: *)
function charStr(c : char; reserved : CClass) : String;
(* returns a print name for character c, using the standard escape
conventions; reserved is the class of `reserved' special characters
which should be quoted with \ (\ itself is always quoted) *)
function singleQuoteStr(str : String) : String;
(* returns print name of str enclosed in single quotes, using the
standard escape conventions *)
function doubleQuoteStr(str : String) : String;
(* returns print name of str enclosed in double quotes, using the
standard escape conventions *)
function cclassStr(cc : CClass) : String;
(* returns print name of character class cc, using the standard escape
conventions; if cc contains more than 128 elements, the complement
notation (^) is used; if cc is the class of all (non-null) characters
except newline, the period notation is used *)
function cclassOrCharStr(cc : CClass) : String;
(* returns a print name for character class cc (either cclassStr, or,
if cc contains only one element, character in single quotes) *)
function regExprStr(r : RegExpr) : String;
(* unparses a regular expression *)
implementation
uses LexMsgs;
(* String and character class pointers: *)
function newStr(str : String) : StrPtr;
var strp : StrPtr;
begin
getmem(strp, succ(length(str)));
move(str, strp^, succ(length(str)));
newStr := strp;
end(*newStr*);
function newCClass(cc : CClass) : CClassPtr;
var ccp : CClassPtr;
begin
new(ccp);
ccp^ := cc;
newCClass := ccp;
end(*newCClass*);
(* Integer sets: *)
procedure empty(var M : IntSet);
begin
M[0] := 0;
end(*empty*);
procedure singleton(var M : IntSet; i : Integer);
begin
M[0] := 1; M[1] := i;
end(*singleton*);
procedure include(var M : IntSet; i : Integer);
var l, r, k : Integer;
begin
(* binary search: *)
l := 1; r := M[0];
k := l + (r-l) div 2;
while (l<r) and (M[k]<>i) do
begin
if M[k]<i then
l := succ(k)
else
r := pred(k);
k := l + (r-l) div 2;
end;
if (k>M[0]) or (M[k]<>i) then
begin
if M[0]>=max_elems then fatal(intset_overflow);
if (k<=M[0]) and (M[k]<i) then
begin
move(M[k+1], M[k+2], (M[0]-k)*sizeOf(Integer));
M[k+1] := i;
end
else
begin
move(M[k], M[k+1], (M[0]-k+1)*sizeOf(Integer));
M[k] := i;
end;
inc(M[0]);
end;
end(*include*);
procedure exclude(var M : IntSet; i : Integer);
var l, r, k : Integer;
begin
(* binary search: *)
l := 1; r := M[0];
k := l + (r-l) div 2;
while (l<r) and (M[k]<>i) do
begin
if M[k]<i then
l := succ(k)
else
r := pred(k);
k := l + (r-l) div 2;
end;
if (k<=M[0]) and (M[k]=i) then
begin
move(M[k+1], M[k], (M[0]-k)*sizeOf(Integer));
dec(M[0]);
end;
end(*exclude*);
procedure setunion(var M, N : IntSet);
var
K : IntSet;
i, j, i_M, i_N : Integer;
begin
(* merge sort: *)
i := 0; i_M := 1; i_N := 1;
while (i_M<=M[0]) and (i_N<=N[0]) do
begin
inc(i);
if i>max_elems then fatal(intset_overflow);
if M[i_M]<N[i_N] then
begin
K[i] := M[i_M]; inc(i_M);
end
else if N[i_N]<M[i_M] then
begin
K[i] := N[i_N]; inc(i_N);
end
else
begin
K[i] := M[i_M]; inc(i_M); inc(i_N);
end
end;
for j := i_M to M[0] do
begin
inc(i);
if i>max_elems then fatal(intset_overflow);
K[i] := M[j];
end;
for j := i_N to N[0] do
begin
inc(i);
if i>max_elems then fatal(intset_overflow);
K[i] := N[j];
end;
K[0] := i;
move(K, M, succ(i)*sizeOf(Integer));
end(*setunion*);
procedure setminus(var M, N : IntSet);
var
K : IntSet;
i, i_M, i_N : Integer;
begin
i := 0; i_N := 1;
for i_M := 1 to M[0] do
begin
while (i_N<=N[0]) and (N[i_N]<M[i_M]) do inc(i_N);
if (i_N>N[0]) or (N[i_N]>M[i_M]) then
begin
inc(i);
K[i] := M[i_M];
end
else
inc(i_N);
end;
K[0] := i;
move(K, M, succ(i)*sizeOf(Integer));
end(*setminus*);
procedure intersect(var M, N : IntSet);
var
K : IntSet;
i, i_M, i_N : Integer;
begin
i := 0; i_N := 1;
for i_M := 1 to M[0] do
begin
while (i_N<=N[0]) and (N[i_N]<M[i_M]) do inc(i_N);
if (i_N<=N[0]) and (N[i_N]=M[i_M]) then
begin
inc(i);
K[i] := M[i_M];
inc(i_N);
end
end;
K[0] := i;
move(K, M, succ(i)*sizeOf(Integer));
end(*intersect*);
function size(var M : IntSet) : Integer;
begin
size := M[0]
end(*size*);
function member(i : Integer; var M : IntSet) : Boolean;
var l, r, k : Integer;
begin
(* binary search: *)
l := 1; r := M[0];
k := l + (r-l) div 2;
while (l<r) and (M[k]<>i) do
begin
if M[k]<i then
l := succ(k)
else
r := pred(k);
k := l + (r-l) div 2;
end;
member := (k<=M[0]) and (M[k]=i);
end(*member*);
function isempty(var M : IntSet) : Boolean;
begin
isempty := M[0]=0
end(*isempty*);
function equal(var M, N : IntSet) : Boolean;
var i : Integer;
begin
if M[0]<>N[0] then
equal := false
else
begin
for i := 1 to M[0] do
if M[i]<>N[i] then
begin
equal := false;
exit
end;
equal := true
end
end(*equal*);
function subseteq(var M, N : IntSet) : Boolean;
var
i_M, i_N : Integer;
begin
if M[0]>N[0] then
subseteq := false
else
begin
i_N := 1;
for i_M := 1 to M[0] do
begin
while (i_N<=N[0]) and (N[i_N]<M[i_M]) do inc(i_N);
if (i_N>N[0]) or (N[i_N]>M[i_M]) then
begin
subseteq := false;
exit
end
else
inc(i_N);
end;
subseteq := true
end;
end(*subseteq*);
function newIntSet : IntSetPtr;
var
MP : IntSetPtr;
begin
getmem(MP, (max_elems+1)*sizeOf(Integer));
MP^[0] := 0;
newIntSet := MP
end(*newIntSet*);
(* Constructors for regular expressions: *)
function newExpr(node_type : NodeType; n : Integer) : RegExpr;
(* returns new RegExpr node (n: number of bytes to allocate) *)
var x : RegExpr;
begin
getmem(x, sizeOf(NodeType)+n);
x^.node_type := node_type;
newExpr := x
end(*newExpr*);
function markExpr(rule, pos : Integer) : RegExpr;
var x : RegExpr;
begin
x := newExpr(mark_node, 2*sizeOf(Integer));
x^.rule := rule;
x^.pos := pos;
markExpr := x
end(*markExpr*);
function charExpr(c : Char) : RegExpr;
var x : RegExpr;
begin
x := newExpr(char_node, sizeOf(Char));
x^.c := c;
charExpr := x
end(*charExpr*);
function strExpr(str : StrPtr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(str_node, sizeOf(StrPtr));
x^.str := str;
strExpr := x
end(*strExpr*);
function cclassExpr(cc : CClassPtr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(cclass_node, sizeOf(CClassPtr));
x^.cc := cc;
cclassExpr := x
end(*cclassExpr*);
function starExpr(r : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(star_node, sizeOf(RegExpr));
x^.r := r;
starExpr := x
end(*starExpr*);
function plusExpr(r : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(plus_node, sizeOf(RegExpr));
x^.r := r;
plusExpr := x
end(*plusExpr*);
function optExpr(r : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(opt_node, sizeOf(RegExpr));
x^.r := r;
optExpr := x
end(*optExpr*);
function mnExpr(r : RegExpr; m, n : Integer) : RegExpr;
var
ri, rmn : RegExpr;
i : Integer;
begin
if (m>n) or (n=0) then
mnExpr := epsExpr
else
begin
(* construct r^m: *)
if m=0 then
ri := epsExpr
else
begin
ri := r;
for i := 2 to m do
ri := catExpr(ri, r);
end;
(* construct r{m,n}: *)
rmn := ri; (* r{m,n} := r^m *)
for i := m+1 to n do
begin
if is_epsExpr(ri) then
ri := r
else
ri := catExpr(ri, r);
rmn := altExpr(rmn, ri) (* r{m,n} := r{m,n} | r^i,
i=m+1,...,n *)
end;
mnExpr := rmn
end
end(*mnExpr*);
function catExpr(r1, r2 : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(cat_node, 2*sizeOf(RegExpr));
x^.r1 := r1;
x^.r2 := r2;
catExpr := x
end(*catExpr*);
function altExpr(r1, r2 : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(alt_node, 2*sizeOf(RegExpr));
x^.r1 := r1;
x^.r2 := r2;
altExpr := x
end(*altExpr*);
(* Unifiers for regular expressions: *)
function is_epsExpr(r : RegExpr) : Boolean;
begin
is_epsExpr := r=epsExpr
end(*is_epsExpr*);
function is_markExpr(r : RegExpr; var rule, pos : Integer) : Boolean;
begin
if r=epsExpr then
is_markExpr := false
else if r^.node_type=mark_node then
begin
is_markExpr := true;
rule := r^.rule;
pos := r^.pos;
end
else
is_markExpr := false
end(*is_markExpr*);
function is_charExpr(r : RegExpr; var c : Char) : Boolean;
begin
if r=epsExpr then
is_charExpr := false
else if r^.node_type=char_node then
begin
is_charExpr := true;
c := r^.c
end
else
is_charExpr := false
end(*is_charExpr*);
function is_strExpr(r : RegExpr; var str : StrPtr) : Boolean;
begin
if r=epsExpr then
is_strExpr := false
else if r^.node_type=str_node then
begin
is_strExpr := true;
str := r^.str;
end
else
is_strExpr := false
end(*is_strExpr*);
function is_cclassExpr(r : RegExpr; var cc : CClassPtr) : Boolean;
begin
if r=epsExpr then
is_cclassExpr := false
else if r^.node_type=cclass_node then
begin
is_cclassExpr := true;
cc := r^.cc
end
else
is_cclassExpr := false
end(*is_cclassExpr*);
function is_starExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_starExpr := false
else if r^.node_type=star_node then
begin
is_starExpr := true;
r1 := r^.r
end
else
is_starExpr := false
end(*is_starExpr*);
function is_plusExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_plusExpr := false
else if r^.node_type=plus_node then
begin
is_plusExpr := true;
r1 := r^.r
end
else
is_plusExpr := false
end(*is_plusExpr*);
function is_optExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_optExpr := false
else if r^.node_type=opt_node then
begin
is_optExpr := true;
r1 := r^.r
end
else
is_optExpr := false
end(*is_optExpr*);
function is_catExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_catExpr := false
else if r^.node_type=cat_node then
begin
is_catExpr := true;
r1 := r^.r1;
r2 := r^.r2
end
else
is_catExpr := false
end(*is_catExpr*);
function is_altExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_altExpr := false
else if r^.node_type=alt_node then
begin
is_altExpr := true;
r1 := r^.r1;
r2 := r^.r2
end
else
is_altExpr := false
end(*is_altExpr*);
(* Quicksort: *)
procedure quicksort(lo, hi: Integer;
less : OrderPredicate;
swap : SwapProc);
(* derived from the quicksort routine in QSORT.PAS in the Turbo Pascal
distribution *)
procedure sort(l, r: Integer);
var i, j, k : Integer;
begin
i := l; j := r; k := (l+r) DIV 2;
repeat
while less(i, k) do inc(i);
while less(k, j) do dec(j);
if i<=j then
begin
swap(i, j);
if k=i then k := j (* pivot element swapped! *)
else if k=j then k := i;
inc(i); dec(j);
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end(*sort*);
begin
if lo<hi then sort(lo,hi);
end(*quicksort*);
(* Generic hash table routines: *)
function hash(str : String; table_size : Integer) : Integer;
(* computes a hash key for str *)
var i, key : Integer;
begin
key := 0;
for i := 1 to length(str) do
inc(key, ord(str[i]));
hash := key mod table_size + 1;
end(*hash*);
procedure newPos(var pos, incr, count : Integer; table_size : Integer);
(* computes a new position in the table (quadratic collision strategy)
- pos: current position (+inc)
- incr: current increment (+2)
- count: current number of collisions (+1)
quadratic collision formula for position of str after n collisions:
pos(str, n) = (hash(str)+n^2) mod table_size +1
note that n^2-(n-1)^2 = 2n-1 <=> n^2 = (n-1)^2 + (2n-1) for n>0,
i.e. the increment inc=2n-1 increments by two in each collision *)
begin
inc(count);
inc(pos, incr);
if pos>table_size then pos := pos mod table_size + 1;
inc(incr, 2)
end(*newPos*);
function key(symbol : String;
table_size : Integer;
lookup : TableLookupProc;
entry : TableEntryProc) : Integer;
var pos, incr, count : Integer;
begin
pos := hash(symbol, table_size);
incr := 1;
count := 0;
while count<=table_size do
if lookup(pos)='' then
begin
entry(pos, symbol);
key := pos;
exit
end
else if lookup(pos)=symbol then
begin
key := pos;
exit
end
else
newPos(pos, incr, count, table_size);
fatal(sym_table_overflow)
end(*key*);
function definedKey(symbol : String;
table_size : Integer;
lookup : TableLookupProc) : Boolean;
var pos, incr, count : Integer;
begin
pos := hash(symbol, table_size);
incr := 1;
count := 0;
while count<=table_size do
if lookup(pos)='' then
begin
definedKey := false;
exit
end
else if lookup(pos)=symbol then
begin
definedKey := true;
exit
end
else
newPos(pos, incr, count, table_size);
definedKey := false
end(*definedKey*);
(* Utility routines: *)
function min(i, j : Integer) : Integer;
begin
if i<j then
min := i
else
min := j
end(*min*);
function max(i, j : Integer) : Integer;
begin
if i>j then
max := i
else
max := j
end(*max*);
function nchars(cc : CClass) : Integer;
var
c : Char;
count : Integer;
begin
count := 0;
for c := #0 to #255 do if c in cc then inc(count);
nchars := count;
end(*nchars*);
function upper(str : String) : String;
var i : Integer;
begin
for i := 1 to length(str) do
str[i] := upCase(str[i]);
upper := str
end(*upper*);
function strip(str : String) : String;
begin
while (length(str)>0) and ((str[1]=' ') or (str[1]=tab)) do
delete(str, 1, 1);
while (length(str)>0) and
((str[length(str)]= ' ') or
(str[length(str)]=tab)) do
delete(str, length(str), 1);
strip := str;
end(*strip*);
function blankStr(str : String) : String;
var i : Integer;
begin
for i := 1 to length(str) do
if str[i]<>tab then str[i] := ' ';
blankStr := str;
end(*blankStr*);
function intStr(i : Integer) : String;
var s : String;
begin
str(i, s);
intStr := s
end(*intStr*);
function isInt(str : String; var i : Integer) : Boolean;
var res : Integer;
begin
val(str, i, res);
isInt := res = 0;
end(*isInt*);
function path(filename : String) : String;
var i : Integer;
begin
i := length(filename);
while (i>0) and (filename[i]<>DirectorySeparator) and (filename[i]<>':') do
dec(i);
path := copy(filename, 1, i);
end(*path*);
function root(filename : String) : String;
var
i : Integer;
begin
root := filename;
for i := length(filename) downto 1 do
case filename[i] of
'.' :
begin
root := copy(filename, 1, i-1);
exit
end;
DirectorySeparator : exit;
else
end;
end(*root*);
function addExt(filename, ext : String) : String;
(* implemented with goto for maximum efficiency *)
label x;
var
i : Integer;
begin
addExt := filename;
for i := length(filename) downto 1 do
case filename[i] of
'.' : exit;
DirectorySeparator: goto x;
else
end;
x : addExt := filename+'.'+ext
end(*addExt*);
function file_size(filename : String) : LongInt;
var f : File;
begin
assign(f, filename);
reset(f, 1);
if ioresult=0 then
file_size := fileSize(f)
else
file_size := 0;
close(f);
end(*file_size*);
(* Utility functions for list generating routines: *)
function charStr(c : char; reserved : CClass) : String;
function octStr(c : char) : String;
(* return octal string representation of character c *)
begin
octStr := intStr(ord(c) div 64)+intStr((ord(c) mod 64) div 8)+
intStr(ord(c) mod 8);
end(*octStr*);
begin
case c of
#0..#7, (* nonprintable characters *)
#11,#14..#31,
#127..#255 : charStr := '\'+octStr(c);
bs : charStr := '\b';
tab : charStr := '\t';
nl : charStr := '\n';
cr : charStr := '\c';
ff : charStr := '\f';
'\' : charStr := '\\';
else if c in reserved then
charStr := '\'+c
else
charStr := c
end
end(*charStr*);
function singleQuoteStr(str : String) : String;
var
i : Integer;
str1 : String;
begin
str1 := '';
for i := 1 to length(str) do
str1 := str1+charStr(str[i], ['''']);
singleQuoteStr := ''''+str1+''''
end(*singleQuoteStr*);
function doubleQuoteStr(str : String) : String;
var
i : Integer;
str1 : String;
begin
str1 := '';
for i := 1 to length(str) do
str1 := str1+charStr(str[i], ['"']);
doubleQuoteStr := '"'+str1+'"'
end(*doubleQuoteStr*);
function cclassStr(cc : CClass) : String;
const
reserved : CClass = ['^','-',']'];
MaxChar = #255;
var
c1, c2 : Char;
str : String;
Quit: Boolean;
begin
if cc=[#1..#255]-[nl] then
cclassStr := '.'
else
begin
str := '';
if nchars(cc)>128 then
begin
str := '^';
cc := [#0..#255]-cc;
end;
c1 := chr(0);
Quit := False;
while not Quit do begin
if c1 in cc then begin
c2 := c1;
while (c2<MaxChar) and (succ(c2) in cc) do
c2 := succ(c2);
if c1=c2
then str := str+charStr(c1, reserved)
else
if c2=succ(c1)
then str := str+charStr(c1, reserved)+charStr(c2, reserved)
else str := str+charStr(c1, reserved)+'-'+charStr(c2, reserved);
c1 := c2;
end;
Quit := c1 = MaxChar;
if not Quit then
c1 := Succ(c1);
end; { of while }
cclassStr := '['+str+']'
end
end(*cclassStr*);
function cclassOrCharStr(cc : CClass) : String;
var count : Integer;
c, c1 : Char;
begin
count := 0;
for c := #0 to #255 do
if c in cc then
begin
c1 := c;
inc(count);
if count>1 then
begin
cclassOrCharStr := cclassStr(cc);
exit;
end;
end;
if count=1 then
cclassOrCharStr := singleQuoteStr(c1)
else
cclassOrCharStr := '[]';
end(*cclassOrCharStr*);
function regExprStr(r : RegExpr) : String;
function unparseExpr(r : RegExpr) : String;
var rule_no, pos : Integer;
c : Char;
str : StrPtr;
cc : CClassPtr;
r1, r2 : RegExpr;
begin
if is_epsExpr(r) then
unparseExpr := ''
else if is_markExpr(r, rule_no, pos) then
unparseExpr := '#('+intStr(rule_no)+','+intStr(pos)+')'
else if is_charExpr(r, c) then
unparseExpr := charStr(c, [ '"','.','^','$','[',']','*','+','?',
'{','}','|','(',')','/','<','>'])
else if is_strExpr(r, str) then
unparseExpr := doubleQuoteStr(str^)
else if is_cclassExpr(r, cc) then
unparseExpr := cclassStr(cc^)
else if is_starExpr(r, r1) then
unparseExpr := unparseExpr(r1)+'*'
else if is_plusExpr(r, r1) then
unparseExpr := unparseExpr(r1)+'+'
else if is_optExpr(r, r1) then
unparseExpr := unparseExpr(r1)+'?'
else if is_catExpr(r, r1, r2) then
unparseExpr := '('+unparseExpr(r1)+unparseExpr(r2)+')'
else if is_altExpr(r, r1, r2) then
unparseExpr := '('+unparseExpr(r1)+'|'+unparseExpr(r2)+')'
else
fatal('invalid expression');
end(*unparseExpr*);
begin
regExprStr := unparseExpr(r);
end(*regExprStr*);
end(*LexBase*).