fpc/compiler/arm/cpubase.pas
2021-04-26 21:51:42 +00:00

818 lines
25 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the base types for the ARM
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{# Base unit for processor information. This unit contains
enumerations of registers, opcodes, sizes, and other
such things which are processor specific.
}
unit cpubase;
{$define USEINLINE}
{$i fpcdefs.inc}
interface
uses
globtype,globals,
cpuinfo,
cgbase
;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
TAsmOp= {$i armop.inc}
{ This should define the array of instructions as string }
op2strtable=array[tasmop] of string[11];
const
{ First value of opcode enumeration }
firstop = low(tasmop);
{ Last value of opcode enumeration }
lastop = high(tasmop);
{ Last value of opcode for TCommonAsmOps set below }
LastCommonAsmOp = A_UADD16;
type
{This is a bit of a hack, because there are more than 256 ARM Assembly Ops
But FPC currently can't handle more than 256 elements in a set.}
TCommonAsmOps = Set of A_None .. LastCommonAsmOp;
{*****************************************************************************
Registers
*****************************************************************************}
type
{ Number of registers used for indexing in tables }
tregisterindex=0..{$i rarmnor.inc}-1;
const
{ Available Superregisters }
{$i rarmsup.inc}
RS_PC = RS_R15;
{ No Subregisters }
R_SUBWHOLE = R_SUBNONE;
{ Available Registers }
{$i rarmcon.inc}
{ aliases }
NR_PC = NR_R15;
{ Integer Super registers first and last }
first_int_supreg = RS_R0;
first_int_imreg = $10;
{ Float Super register first and last }
first_fpu_supreg = RS_F0;
first_fpu_imreg = $08;
{ MM Super register first and last }
first_mm_supreg = RS_S0;
first_mm_imreg = $30;
{ TODO: Calculate bsstart}
regnumber_count_bsstart = 128;
regnumber_table : array[tregisterindex] of tregister = (
{$i rarmnum.inc}
);
regstabs_table : array[tregisterindex] of shortint = (
{$i rarmsta.inc}
);
regdwarf_table : array[tregisterindex] of shortint = (
{$i rarmdwa.inc}
);
{ registers which may be destroyed by calls }
VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R14];
VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31];
VOLATILE_INTREGISTERS_DARWIN = [RS_R0..RS_R3,RS_R9,RS_R12..RS_R14];
{*****************************************************************************
Instruction post fixes
*****************************************************************************}
type
{ ARM instructions load/store and arithmetic instructions
can have several instruction post fixes which are collected
in this enumeration
}
TOpPostfix = (PF_None,
{ update condition flags
or floating point single }
PF_S,
{ floating point size }
PF_D,PF_E,PF_P,PF_EP,
{ exchange }
PF_X,
{ rounding }
PF_R,
{ load/store }
PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
{ multiple load/store address modes }
PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA,
{ multiple load/store vfp address modes }
PF_IAD,PF_DBD,PF_FDD,PF_EAD,
PF_IAS,PF_DBS,PF_FDS,PF_EAS,
PF_IAX,PF_DBX,PF_FDX,PF_EAX,
{ VFP postfixes }
PF_8,PF_16,PF_32,PF_64,
PF_I8,PF_I16,PF_I32,PF_I64,
PF_S8,PF_S16,PF_S32,PF_S64,
PF_U8,PF_U16,PF_U32,PF_U64,
PF_P8, // polynomial
PF_F32,PF_F64,
PF_F32F64,PF_F64F32,
PF_F32S16,PF_F32U16,PF_S16F32,PF_U16F32,
PF_F64S16,PF_F64U16,PF_S16F64,PF_U16F64,
PF_F32S32,PF_F32U32,PF_S32F32,PF_U32F32,
PF_F64S32,PF_F64U32,PF_S32F64,PF_U32F64
);
TOpPostfixes = set of TOpPostfix;
TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
const
cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
PF_None,
PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
PF_S,PF_D,PF_E,PF_None,PF_None);
oppostfix2str : array[TOpPostfix] of string[8] = ('',
's',
'd','e','p','ep',
'x',
'r',
'b','sb','bt','h','sh','t',
'ia','ib','da','db','fd','fa','ed','ea',
'iad','dbd','fdd','ead',
'ias','dbs','fds','eas',
'iax','dbx','fdx','eax',
'.8','.16','.32','.64',
'.i8','.i16','.i32','.i64',
'.s8','.s16','.s32','.s64',
'.u8','.u16','.u32','.u64',
'.p8',
'.f32','.f64',
'.f32.f64','.f64.f32',
'.f32.s16','.f32.u16','.s16.f32','.u16.f32',
'.f64.s16','.f64.u16','.s16.f64','.u16.f64',
'.f32.s32','.f32.u32','.s32.f32','.u32.f32',
'.f64.s32','.f64.u32','.s32.f64','.u32.f64');
roundingmode2str : array[TRoundingMode] of string[1] = ('',
'p','m','z');
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
);
TAsmConds = set of TAsmCond;
const
cond2str : array[TAsmCond] of string[2]=('',
'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
'ge','lt','gt','le','al','nv'
);
uppercond2str : array[TAsmCond] of string[2]=('',
'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
'GE','LT','GT','LE','AL','NV'
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
F_GE,F_LT,F_GT,F_LE);
{*****************************************************************************
Operands
*****************************************************************************}
taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
tupdatereg = (UR_None,UR_Update);
pshifterop = ^tshifterop;
tshifterop = record
shiftmode : tshiftmode;
rs : tregister;
shiftimm : byte;
end;
tcpumodeflag = (mfA, mfI, mfF);
tcpumodeflags = set of tcpumodeflag;
tspecialregflag = (srC, srX, srS, srF);
tspecialregflags = set of tspecialregflag;
{*****************************************************************************
Constants
*****************************************************************************}
const
max_operands = 6;
maxintregs = 15;
maxfpuregs = 8;
maxaddrregs = 0;
{*****************************************************************************
Operand Sizes
*****************************************************************************}
type
topsize = (S_NO,
S_B,S_W,S_L,S_BW,S_BL,S_WL,
S_IS,S_IL,S_IQ,
S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
);
{*****************************************************************************
Constants
*****************************************************************************}
const
maxvarregs = 7;
varregs : Array [1..maxvarregs] of tsuperregister =
(RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
maxfpuvarregs = 4;
fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
(RS_F4,RS_F5,RS_F6,RS_F7);
{*****************************************************************************
Default generic sizes
*****************************************************************************}
{ Defines the default address size for a processor, }
OS_ADDR = OS_32;
{ the natural int size for a processor,
has to match osuinttype/ossinttype as initialized in psystem }
OS_INT = OS_32;
OS_SINT = OS_S32;
{ the maximum float size for a processor, }
OS_FLOAT = OS_F64;
{ the size of a vector register for a processor }
OS_VECTOR = OS_M32;
{*****************************************************************************
Generic Register names
*****************************************************************************}
{ Stack pointer register }
NR_STACK_POINTER_REG = NR_R13;
RS_STACK_POINTER_REG = RS_R13;
{ Frame pointer register (initialized in tcpuprocinfo.init_framepointer) }
RS_FRAME_POINTER_REG: tsuperregister = RS_NO;
NR_FRAME_POINTER_REG: tregister = NR_NO;
{ Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific. For
further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
}
NR_PIC_OFFSET_REG = NR_R9;
{ Results are returned in this register (32-bit values) }
NR_FUNCTION_RETURN_REG = NR_R0;
RS_FUNCTION_RETURN_REG = RS_R0;
{ The value returned from a function is available in this register }
NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
NR_FPU_RESULT_REG = NR_F0;
NR_MM_RESULT_REG = NR_D0;
NR_RETURN_ADDRESS_REG = NR_R14;
{ Offset where the parent framepointer is pushed }
PARENT_FRAMEPOINTER_OFFSET = 0;
NR_DEFAULTFLAGS = NR_CPSR;
RS_DEFAULTFLAGS = RS_CPSR;
{ Low part of 64bit return value }
function NR_FUNCTION_RESULT64_LOW_REG: tregister;{$ifdef USEINLINE}inline;{$endif USEINLINE}
function RS_FUNCTION_RESULT64_LOW_REG: shortint;{$ifdef USEINLINE}inline;{$endif USEINLINE}
{ High part of 64bit return value }
function NR_FUNCTION_RESULT64_HIGH_REG: tregister;{$ifdef USEINLINE}inline;{$endif USEINLINE}
function RS_FUNCTION_RESULT64_HIGH_REG: shortint;{$ifdef USEINLINE}inline;{$endif USEINLINE}
{*****************************************************************************
GCC /ABI linking information
*****************************************************************************}
const
{ Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 4;
{*****************************************************************************
Helpers
*****************************************************************************}
{ Returns the tcgsize corresponding with the size of reg.}
function reg_cgsize(const reg: tregister) : tcgsize;
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
procedure inverse_flags(var f: TResFlags);
function flags_to_cond(const f: TResFlags) : TAsmCond;
function findreg_by_number(r:Tregister):tregisterindex;
function std_regnum_search(const s:string):Tregister;
function std_regname(r:Tregister):string;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
procedure shifterop_reset(var so : tshifterop); {$ifdef USEINLINE}inline;{$endif USEINLINE}
function is_pc(const r : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
function is_thumb_imm(d: aint): boolean;
{ Returns true if d is a valid constant for thumb 32 bit,
doesn't handle ROR_C detection }
function is_thumb32_imm(d : aint) : boolean;
function split_into_shifter_const(value : aint;var imm1: dword; var imm2: dword):boolean;
function is_continuous_mask(d : aword;var lsb, width: byte) : boolean;
function dwarf_reg(r:tregister):shortint;
function dwarf_reg_no_error(r:tregister):shortint;
function eh_return_data_regno(nr: longint): longint;
function IsIT(op: TAsmOp) : boolean;
function GetITLevels(op: TAsmOp) : longint;
function GenerateARMCode : boolean;
function GenerateThumbCode : boolean;
function GenerateThumb2Code : boolean;
function IsVFPFloatImmediate(ft : tfloattype;value : bestreal) : boolean;
implementation
uses
systems,rgBase,verbose;
const
std_regname_table : TRegNameTable = (
{$i rarmstd.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i rarmrni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i rarmsri.inc}
);
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
begin
case regtype of
R_MMREGISTER:
begin
case s of
{ records passed in MM registers }
OS_32,
OS_F32:
cgsize2subreg:=R_SUBFS;
OS_64,
OS_F64:
cgsize2subreg:=R_SUBFD;
else
internalerror(2009112701);
end;
end;
else
cgsize2subreg:=R_SUBWHOLE;
end;
end;
function reg_cgsize(const reg: tregister): tcgsize;
begin
case getregtype(reg) of
R_INTREGISTER :
reg_cgsize:=OS_32;
R_FPUREGISTER :
reg_cgsize:=OS_F80;
R_MMREGISTER :
begin
case getsubreg(reg) of
R_SUBFD,
R_SUBMMWHOLE:
result:=OS_F64;
R_SUBFS:
result:=OS_F32;
else
internalerror(2009112903);
end;
end;
else
internalerror(200303181);
end;
end;
function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
{ This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
end;
procedure inverse_flags(var f: TResFlags);
const
inv_flags: array[TResFlags] of TResFlags =
(F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
F_LT,F_GE,F_LE,F_GT);
begin
f:=inv_flags[f];
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
const
flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
(C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE);
begin
if f>high(flag_2_cond) then
internalerror(200112301);
result:=flag_2_cond[f];
end;
function findreg_by_number(r:Tregister):tregisterindex;
begin
result:=rgBase.findreg_by_number_table(r,regnumber_index);
end;
function std_regnum_search(const s:string):Tregister;
begin
result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
end;
function std_regname(r:Tregister):string;
var
p : tregisterindex;
begin
p:=findreg_by_number_table(r,regnumber_index);
if p<>0 then
result:=std_regname_table[p]
else
result:=generic_regname(r);
end;
procedure shifterop_reset(var so : tshifterop);{$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
FillChar(so,sizeof(so),0);
end;
function is_pc(const r : tregister) : boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
is_pc:=(r=NR_R15);
end;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
const
inverse: array[TAsmCond] of TAsmCond=(C_None,
C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
C_LT,C_GE,C_LE,C_GT,C_None,C_None
);
begin
result := inverse[c];
end;
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
result := c1 = c2;
end;
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
begin
Result := (c = C_None) or conditions_equal(Subset, c);
{ Please update as necessary. [Kit] }
if not Result then
case Subset of
C_EQ:
Result := (c in [C_GE, C_LE]);
C_LT:
Result := (c in [C_LE]);
C_GT:
Result := (c in [C_GE]);
else
Result := False;
end;
end;
function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
var
i : longint;
begin
if GenerateThumb2Code then
begin
for i:=0 to 24 do
begin
if (dword(d) and not($ff shl i))=0 then
begin
imm_shift:=i;
result:=true;
exit;
end;
end;
end
else
begin
for i:=0 to 15 do
begin
if (dword(d) and not(roldword($ff,i*2)))=0 then
begin
imm_shift:=i*2;
result:=true;
exit;
end;
end;
end;
result:=false;
end;
function is_thumb_imm(d: aint): boolean;
begin
result:=(d and $FF) = d;
end;
{$push}
{ Disable range and overflow checking here }
{$R-}{$Q-}
function is_thumb32_imm(d: aint): boolean;
var
t : aint;
i : longint;
begin
{Loading 0-255 is simple}
if (d and $FF) = d then
result:=true
{ If top and bottom are equal, check if either all 4 bytes are equal
or byte 0 and 2 or byte 1 and 3 are equal }
else if ((d shr 16)=(d and $FFFF)) and
(
((d and $FF00FF00) = 0) or
((d and $00FF00FF) = 0) or
((d shr 8)=(d and $FF))
) then
result:=true
{Can an 8-bit value be shifted accordingly?}
else
begin
result:=false;
for i:=8 to 31 do
begin
t:=RolDWord(d,i);
if ((t and $FF)=t) and
((t and $80)=$80) then
begin
result:=true;
exit;
end;
end;
end;
end;
function is_continuous_mask(d : aword;var lsb, width: byte) : boolean;
var
msb : byte;
begin
lsb:=BsfDword(d);
msb:=BsrDword(d);
width:=msb-lsb+1;
result:=(lsb<>255) and (msb<>255) and (aword(((1 shl (msb-lsb+1))-1) shl lsb) = d);
end;
{$pop}
function split_into_shifter_const(value : aint;var imm1: dword; var imm2: dword) : boolean;
var
d, i, i2: Dword;
begin
Result:=false;
{Thumb2 is not supported (YET?)}
if GenerateThumb2Code then exit;
d:=DWord(value);
for i:=0 to 15 do
begin
imm1:=d and rordword($FF, I*2);
imm2:=d and not (imm1); {remove already found bits}
{is the remainder a shifterconst? YAY! we've done it!}
{Could we start from i instead of 0?}
for i2:=0 to 15 do
begin
if (imm2 and not(rordword($FF,i2*2)))=0 then
begin
result:=true;
exit;
end;
end;
end;
end;
function dwarf_reg(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
if result=-1 then
internalerror(200603251);
end;
function dwarf_reg_no_error(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
end;
function eh_return_data_regno(nr: longint): longint;
begin
if (nr>=0) and (nr<2) then
result:=nr
else
result:=-1;
end;
{ Low part of 64bit return value }
function NR_FUNCTION_RESULT64_LOW_REG: tregister; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
if target_info.endian=endian_little then
result:=NR_R0
else
result:=NR_R1;
end;
function RS_FUNCTION_RESULT64_LOW_REG: shortint; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
if target_info.endian=endian_little then
result:=RS_R0
else
result:=RS_R1;
end;
{ High part of 64bit return value }
function NR_FUNCTION_RESULT64_HIGH_REG: tregister; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
if target_info.endian=endian_little then
result:=NR_R1
else
result:=NR_R0;
end;
function RS_FUNCTION_RESULT64_HIGH_REG: shortint; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
if target_info.endian=endian_little then
result:=RS_R1
else
result:=RS_R0;
end;
function IsIT(op: TAsmOp) : boolean;
begin
case op of
A_IT,
A_ITE, A_ITT,
A_ITEE, A_ITTE, A_ITET, A_ITTT,
A_ITEEE, A_ITTEE, A_ITETE, A_ITTTE,
A_ITEET, A_ITTET, A_ITETT, A_ITTTT:
result:=true;
else
result:=false;
end;
end;
function GetITLevels(op: TAsmOp) : longint;
begin
case op of
A_IT:
result:=1;
A_ITE, A_ITT:
result:=2;
A_ITEE, A_ITTE, A_ITET, A_ITTT:
result:=3;
A_ITEEE, A_ITTEE, A_ITETE, A_ITTTE,
A_ITEET, A_ITTET, A_ITETT, A_ITTTT:
result:=4;
else
result:=0;
end;
end;
function GenerateARMCode : boolean;
begin
Result:=current_settings.instructionset=is_arm;
end;
function GenerateThumbCode : boolean;
begin
Result:=(current_settings.instructionset=is_thumb) and not(CPUARM_HAS_THUMB2 in cpu_capabilities[current_settings.cputype]);
end;
function GenerateThumb2Code : boolean;
begin
Result:=(current_settings.instructionset=is_thumb) and (CPUARM_HAS_THUMB2 in cpu_capabilities[current_settings.cputype]);
end;
function IsVFPFloatImmediate(ft : tfloattype;value : bestreal) : boolean;
var
singlerec : tcompsinglerec;
doublerec : tcompdoublerec;
begin
Result:=false;
case ft of
s32real:
begin
singlerec.value:=value;
singlerec:=tcompsinglerec(NtoLE(DWord(singlerec)));
Result:=(singlerec.bytes[0]=0) and (singlerec.bytes[1]=0) and ((singlerec.bytes[2] and 7)=0) and
(((singlerec.bytes[3] and $7e)=$40) or ((singlerec.bytes[3] and $7e)=$3e));
end;
s64real:
begin
doublerec.value:=value;
doublerec:=tcompdoublerec(NtoLE(QWord(doublerec)));
Result:=(doublerec.bytes[0]=0) and (doublerec.bytes[1]=0) and (doublerec.bytes[2]=0) and
(doublerec.bytes[3]=0) and (doublerec.bytes[4]=0) and (doublerec.bytes[5]=0) and
((((doublerec.bytes[6] and $c0)=$0) and ((doublerec.bytes[7] and $7f)=$40)) or
(((doublerec.bytes[6] and $c0)=$c0) and ((doublerec.bytes[7] and $7f)=$3f)));
end;
else
;
end;
end;
end.