fpc/compiler/i8086/n8086mat.pas
J. Gareth "Curious Kit" Moreton 6f24c8b4ef * x86: Code generation fixes where FLAGS
register is not properly allocated.
2022-04-27 20:46:32 +00:00

448 lines
19 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Generate i8086 assembler for math nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit n8086mat;
{$i fpcdefs.inc}
interface
uses
node,nmat,ncgmat,nx86mat;
type
ti8086moddivnode = class(tmoddivnode)
function use_moddiv32bit_helper: boolean;
function first_moddivint: tnode; override;
procedure pass_generate_code;override;
end;
ti8086shlshrnode = class(tx86shlshrnode)
procedure second_64bit;override;
function first_shlshr64bitint: tnode; override;
end;
ti8086unaryminusnode = class(tx86unaryminusnode)
end;
ti8086notnode = class(tx86notnode)
end;
implementation
uses
globtype,systems,constexp,
cutils,verbose,globals,
symconst,symdef,aasmbase,aasmtai,aasmdata,aasmcpu,defutil,
cgbase,pass_2,
ncon,
cpubase,cpuinfo,
cga,ncgutil,cgobj,cgutils,
hlcgobj;
{*****************************************************************************
ti8086moddivnode
*****************************************************************************}
function ti8086moddivnode.use_moddiv32bit_helper: boolean;
begin
result:=is_32bit(left.resultdef) or
is_64bit(left.resultdef) or
is_32bit(right.resultdef) or
is_64bit(right.resultdef);
end;
function ti8086moddivnode.first_moddivint: tnode;
begin
if use_moddiv32bit_helper then
result:=inherited first_moddivint
else
result:=nil;
end;
function log2(i : word) : word;
begin
result:=0;
i:=i shr 1;
while i<>0 do
begin
i:=i shr 1;
inc(result);
end;
end;
procedure ti8086moddivnode.pass_generate_code;
var
hreg1,hreg2:Tregister;
power:longint;
hl:Tasmlabel;
op:Tasmop;
e : smallint;
d,l,r,s,m,a,n,t : word;
m_low,m_high,j,k : dword;
invertsign: Boolean;
begin
secondpass(left);
if codegenerror then
exit;
secondpass(right);
if codegenerror then
exit;
if is_64bitint(resultdef) or is_32bitint(resultdef) then
{ should be handled in pass_1 (JM) }
internalerror(2001090506);
{ put numerator in register }
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
hreg1:=left.location.register;
if (nodetype=divn) and (right.nodetype=ordconstn) then
begin
if isabspowerof2(tordconstnode(right).value,power) then
begin
{ for signed numbers, the numerator must be adjusted before the
shift instruction, but not wih unsigned numbers! Otherwise,
"Cardinal($ffffffff) div 16" overflows! (JM) }
if is_signed(left.resultdef) Then
begin
invertsign:=tordconstnode(right).value<0;
if (current_settings.optimizecputype > cpu_386) and
not(cs_opt_size in current_settings.optimizerswitches) then
{ use a sequence without jumps, saw this in
comp.compilers (JM) }
begin
{ no jumps, but more operations }
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_reg_reg(A_MOV,S_W,hreg1,hreg2);
if power=1 then
begin
{If the left value is negative, hreg2=(1 shl power)-1=1, otherwise 0.}
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,OS_16,15,hreg2);
end
else
begin
{If the left value is negative, hreg2=$ffff, otherwise 0.}
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,OS_16,15,hreg2);
{If negative, hreg2=(1 shl power)-1, otherwise 0.}
emit_const_reg(A_AND,S_W,(aint(1) shl power)-1,hreg2);
end;
{ add to the left value }
emit_reg_reg(A_ADD,S_W,hreg2,hreg1);
{ do the shift }
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,OS_16,power,hreg1);
end
else
begin
{ a jump, but fewer operations }
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_TEST,S_W,hreg1,hreg1);
current_asmdata.getjumplabel(hl);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NS,hl);
cg.a_reg_dealloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
if power=1 then
emit_reg(A_INC,S_W,hreg1)
else
emit_const_reg(A_ADD,S_W,(aint(1) shl power)-1,hreg1);
cg.a_label(current_asmdata.CurrAsmList,hl);
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,OS_16,power,hreg1);
end;
if invertsign then
emit_reg(A_NEG,S_W,hreg1);
end
else
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,OS_16,power,hreg1);
location.register:=hreg1;
end
else
begin
if is_signed(left.resultdef) then
begin
e:=tordconstnode(right).value.svalue;
d:=abs(e);
{ Determine algorithm (a), multiplier (m), and shift factor (s) for 16-bit
signed integer division. Based on: Granlund, T.; Montgomery, P.L.:
"Division by Invariant Integers using Multiplication". SIGPLAN Notices,
Vol. 29, June 1994, page 61.
}
l:=log2(d);
j:=dword($8000) mod dword(d);
k:=(dword(1) shl (16+l)) div (dword($8000-j));
m_low:=((dword(1)) shl (16+l)) div d;
m_high:=(((dword(1)) shl (16+l)) + k) div d;
while ((m_low shr 1) < (m_high shr 1)) and (l > 0) do
begin
m_low:=m_low shr 1;
m_high:=m_high shr 1;
dec(l);
end;
m:=word(m_high);
s:=l;
if (m_high shr 15)<>0 then
a:=1
else
a:=0;
cg.getcpuregister(current_asmdata.CurrAsmList,NR_AX);
emit_const_reg(A_MOV,S_W,aint(m),NR_AX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_DX);
emit_reg(A_IMUL,S_W,hreg1);
emit_reg_reg(A_MOV,S_W,hreg1,NR_AX);
if a<>0 then
begin
emit_reg_reg(A_ADD,S_W,NR_AX,NR_DX);
{
printf ("; dividend: memory location or register other than AX or DX\n");
printf ("\n");
printf ("MOV AX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV AX, dividend\n");
printf ("ADD DX, AX\n");
if (s) printf ("SAR DX, %d\n", s);
printf ("SHR AX, 15\n");
printf ("ADD DX, AX\n");
if (e < 0) printf ("NEG DX\n");
printf ("\n");
printf ("; quotient now in DX\n");
}
end;
{
printf ("; dividend: memory location of register other than AX or DX\n");
printf ("\n");
printf ("MOV AX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV AX, dividend\n");
if (s) printf ("SAR DX, %d\n", s);
printf ("SHR AX, 15\n");
printf ("ADD DX, AX\n");
if (e < 0) printf ("NEG DX\n");
printf ("\n");
printf ("; quotient now in DX\n");
}
if s<>0 then
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,OS_16,s,NR_DX);
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,OS_16,15,NR_AX);
emit_reg_reg(A_ADD,S_W,NR_AX,NR_DX);
if e<0 then
emit_reg(A_NEG,S_W,NR_DX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_DX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_AX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_DX,location.register)
end
else
begin
d:=tordconstnode(right).value.svalue;
if d>=$8000 then
begin
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_const_reg(A_CMP,S_W,aint(d),hreg1);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_const_reg(A_MOV,S_W,0,location.register);
emit_const_reg(A_SBB,S_W,-1,location.register);
cg.a_reg_dealloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
end
else
begin
{ Reduce divisor until it becomes odd }
n:=0;
t:=d;
while (t and 1)=0 do
begin
t:=t shr 1;
inc(n);
end;
{ Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,
P.L.: "Division by Invariant Integers using Multiplication".
SIGPLAN Notices, Vol. 29, June 1994, page 61.
}
l:=log2(t)+1;
j:=dword($ffff) mod dword(t);
k:=(dword(1) shl (16+l)) div (dword($ffff-j));
m_low:=((dword(1)) shl (16+l)) div t;
m_high:=(((dword(1)) shl (16+l)) + k) div t;
while ((m_low shr 1) < (m_high shr 1)) and (l>0) do
begin
m_low:=m_low shr 1;
m_high:=m_high shr 1;
l:=l-1;
end;
if (m_high shr 16)=0 then
begin
m:=word(m_high);
s:=l;
a:=0;
end
{ Generate m, s for algorithm 1. Based on: Magenheimer, D.J.; et al:
"Integer Multiplication and Division on the HP Precision Architecture".
IEEE Transactions on Computers, Vol 37, No. 8, August 1988, page 980.
}
else
begin
s:=log2(t);
m_low:=(dword(1) shl (16+s)) div dword(t);
r:=word(((dword(1)) shl (16+s)) mod dword(t));
if (r < ((t>>1)+1)) then
m:=word(m_low)
else
m:=word(m_low)+1;
a:=1;
end;
{ Reduce multiplier for either algorithm to smallest possible }
while (m and 1)=0 do
begin
m:=m shr 1;
dec(s);
end;
{ Adjust multiplier for reduction of even divisors }
inc(s,n);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_AX);
emit_const_reg(A_MOV,S_W,aint(m),NR_AX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_DX);
emit_reg(A_MUL,S_W,hreg1);
if a<>0 then
begin
{
printf ("; dividend: register other than AX or memory location\n");
printf ("\n");
printf ("MOV AX, 0%08lXh\n", m);
printf ("MUL dividend\n");
printf ("ADD AX, 0%08lXh\n", m);
printf ("ADC DX, 0\n");
if (s) printf ("SHR DX, %d\n", s);
printf ("\n");
printf ("; quotient now in DX\n");
}
emit_const_reg(A_ADD,S_W,aint(m),NR_AX);
emit_const_reg(A_ADC,S_W,0,NR_DX);
end;
if s<>0 then
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,OS_16,aint(s),NR_DX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_DX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_AX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_DX,location.register)
end;
end
end
end
else
begin
cg.getcpuregister(current_asmdata.CurrAsmList,NR_AX);
emit_reg_reg(A_MOV,S_W,hreg1,NR_AX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_DX);
{Sign extension depends on the left type.}
if torddef(left.resultdef).ordtype=u16bit then
emit_reg_reg(A_XOR,S_W,NR_DX,NR_DX)
else
emit_none(A_CWD,S_NO);
{Division depends on the right type.}
if Torddef(right.resultdef).ordtype=u16bit then
op:=A_DIV
else
op:=A_IDIV;
if right.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
emit_ref(op,S_W,right.location.reference)
else if right.location.loc in [LOC_REGISTER,LOC_CREGISTER] then
emit_reg(op,S_W,right.location.register)
else
begin
hreg1:=cg.getintregister(current_asmdata.CurrAsmList,right.location.size);
hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,u16inttype,right.location,hreg1);
emit_reg(op,S_W,hreg1);
end;
{Copy the result into a new register. Release AX & DX.}
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_DX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_AX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
if nodetype=divn then
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_AX,location.register)
else
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_DX,location.register);
end;
end;
{*****************************************************************************
TI8086SHLRSHRNODE
*****************************************************************************}
function ti8086shlshrnode.first_shlshr64bitint: tnode;
begin
result := nil;
end;
procedure ti8086shlshrnode.second_64bit;
var
hreg64hi,hreg64lo:Tregister;
v : TConstExprInt;
tmpreg64: tregister64;
begin
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
{ load left operator in a register }
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
hreg64hi:=left.location.register64.reghi;
hreg64lo:=left.location.register64.reglo;
location.register64.reglo:=hreg64lo;
location.register64.reghi:=hreg64hi;
if right.nodetype=ordconstn then
begin
v:=Tordconstnode(right).value and 63;
location.register64.reglo:=cg.getintregister(current_asmdata.CurrAsmList,OS_32);
location.register64.reghi:=cg.getintregister(current_asmdata.CurrAsmList,OS_32);
if nodetype=shln then
cg64.a_op64_const_reg_reg(current_asmdata.CurrAsmList,OP_SHL,OS_64,v,left.location.register64,location.register64)
else
cg64.a_op64_const_reg_reg(current_asmdata.CurrAsmList,OP_SHR,OS_64,v,left.location.register64,location.register64);
end
else
begin
{ load right operators in a register }
tmpreg64.reghi:=NR_NO;
tmpreg64.reglo:=cg.getintregister(current_asmdata.CurrAsmList,OS_16);
hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,u16inttype,right.location,tmpreg64.reglo);
if nodetype=shln then
cg64.a_op64_reg_reg(current_asmdata.CurrAsmList,OP_SHL,OS_64,tmpreg64,location.register64)
else
cg64.a_op64_reg_reg(current_asmdata.CurrAsmList,OP_SHR,OS_64,tmpreg64,location.register64);
end;
end;
begin
cunaryminusnode:=ti8086unaryminusnode;
cmoddivnode:=ti8086moddivnode;
cshlshrnode:=ti8086shlshrnode;
cnotnode:=ti8086notnode;
end.