fpc/compiler/x86/cpubase.pas
2023-08-12 23:12:13 +02:00

992 lines
29 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the base types for the i8086, i386 and x86-64 architecture
* This code was inspired by the NASM sources
The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
Julian Hall. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{# Base unit for processor information. This unit contains
enumerations of registers, opcodes, sizes, and other
such things which are processor specific.
}
unit cpubase;
{$i fpcdefs.inc}
interface
uses
globals,
cgbase
;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
{$if defined(x86_64)}
TAsmOp={$i x8664op.inc}
{$elseif defined(i386)}
TAsmOp={$i i386op.inc}
{$elseif defined(i8086)}
TAsmOp={$i i8086op.inc}
{$endif}
{ This should define the array of instructions as string }
op2strtable=array[tasmop] of string[16];
{$ifdef i8086}
ImmInt = SmallInt;
{$else i8086}
ImmInt = Longint;
{$endif i8086}
const
{ First value of opcode enumeration }
firstop = low(tasmop);
{ Last value of opcode enumeration }
lastop = high(tasmop);
{*****************************************************************************
Registers
*****************************************************************************}
const
{ Integer Super registers }
RS_NO = $ffffffff;
RS_RAX = $00; {EAX}
RS_RCX = $01; {ECX}
RS_RDX = $02; {EDX}
RS_RBX = $03; {EBX}
RS_RSI = $04; {ESI}
RS_RDI = $05; {EDI}
RS_RBP = $06; {EBP}
RS_RSP = $07; {ESP}
RS_R8 = $08; {R8}
RS_R9 = $09; {R9}
RS_R10 = $0a; {R10}
RS_R11 = $0b; {R11}
RS_R12 = $0c; {R12}
RS_R13 = $0d; {R13}
RS_R14 = $0e; {R14}
RS_R15 = $0f; {R15}
{ create aliases to allow code sharing between x86-64 and i386 }
RS_EAX = RS_RAX;
RS_EBX = RS_RBX;
RS_ECX = RS_RCX;
RS_EDX = RS_RDX;
RS_ESI = RS_RSI;
RS_EDI = RS_RDI;
RS_EBP = RS_RBP;
RS_ESP = RS_RSP;
{ create aliases to allow code sharing between i386 and i8086 }
RS_AX = RS_RAX;
RS_BX = RS_RBX;
RS_CX = RS_RCX;
RS_DX = RS_RDX;
RS_SI = RS_RSI;
RS_DI = RS_RDI;
RS_BP = RS_RBP;
RS_SP = RS_RSP;
{ Number of first imaginary register }
first_int_imreg = $10;
{ Float Super registers }
RS_ST0 = $00;
RS_ST1 = $01;
RS_ST2 = $02;
RS_ST3 = $03;
RS_ST4 = $04;
RS_ST5 = $05;
RS_ST6 = $06;
RS_ST7 = $07;
RS_ST = $08;
{ Number of first imaginary register }
first_fpu_imreg = $09;
{ MM Super registers }
RS_XMM0 = $00;
RS_XMM1 = $01;
RS_XMM2 = $02;
RS_XMM3 = $03;
RS_XMM4 = $04;
RS_XMM5 = $05;
RS_XMM6 = $06;
RS_XMM7 = $07;
RS_XMM8 = $08;
RS_XMM9 = $09;
RS_XMM10 = $0a;
RS_XMM11 = $0b;
RS_XMM12 = $0c;
RS_XMM13 = $0d;
RS_XMM14 = $0e;
RS_XMM15 = $0f;
RS_XMM16 = $10;
RS_XMM17 = $11;
RS_XMM18 = $12;
RS_XMM19 = $13;
RS_XMM20 = $14;
RS_XMM21 = $15;
RS_XMM22 = $16;
RS_XMM23 = $17;
RS_XMM24 = $18;
RS_XMM25 = $19;
RS_XMM26 = $1a;
RS_XMM27 = $1b;
RS_XMM28 = $1c;
RS_XMM29 = $1d;
RS_XMM30 = $1e;
RS_XMM31 = $1f;
{$if defined(x86_64)}
RS_RFLAGS = $06;
{$elseif defined(i386)}
RS_EFLAGS = $06;
{$elseif defined(i8086)}
RS_FLAGS = $06;
{$endif}
{ Number of first imaginary register }
{$ifdef x86_64}
first_mm_imreg = $20;
{$else x86_64}
first_mm_imreg = $08;
{$endif x86_64}
{ The subregister that specifies the entire register and an address }
{$if defined(x86_64)}
{ Hammer }
R_SUBWHOLE = R_SUBQ;
R_SUBADDR = R_SUBQ;
{$elseif defined(i386)}
{ i386 }
R_SUBWHOLE = R_SUBD;
R_SUBADDR = R_SUBD;
{$elseif defined(i8086)}
{ i8086 }
R_SUBWHOLE = R_SUBW;
R_SUBADDR = R_SUBW;
{$endif}
{ Available Registers }
{$if defined(x86_64)}
{$i r8664con.inc}
{$elseif defined(i386)}
{$i r386con.inc}
{$elseif defined(i8086)}
{$i r8086con.inc}
{$endif}
type
{ Number of registers used for indexing in tables }
{$if defined(x86_64)}
tregisterindex=0..{$i r8664nor.inc}-1;
{$elseif defined(i386)}
tregisterindex=0..{$i r386nor.inc}-1;
{$elseif defined(i8086)}
tregisterindex=0..{$i r8086nor.inc}-1;
{$endif}
const
regnumber_table : array[tregisterindex] of tregister = (
{$if defined(x86_64)}
{$i r8664num.inc}
{$elseif defined(i386)}
{$i r386num.inc}
{$elseif defined(i8086)}
{$i r8086num.inc}
{$endif}
);
regstabs_table : array[tregisterindex] of shortint = (
{$if defined(x86_64)}
{$i r8664stab.inc}
{$elseif defined(i386)}
{$i r386stab.inc}
{$elseif defined(i8086)}
{$i r8086stab.inc}
{$endif}
);
regdwarf_table : array[tregisterindex] of shortint = (
{$if defined(x86_64)}
{$i r8664dwrf.inc}
{$elseif defined(i386)}
{$i r386dwrf.inc}
{$elseif defined(i8086)}
{$i r8086dwrf.inc}
{$endif}
);
{$if defined(x86_64)}
RS_DEFAULTFLAGS = RS_RFLAGS;
NR_DEFAULTFLAGS = NR_RFLAGS;
{$elseif defined(i386)}
RS_DEFAULTFLAGS = RS_EFLAGS;
NR_DEFAULTFLAGS = NR_EFLAGS;
{$elseif defined(i8086)}
RS_DEFAULTFLAGS = RS_FLAGS;
NR_DEFAULTFLAGS = NR_FLAGS;
{$endif}
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
);
const
cond2str:array[TAsmCond] of string[3]=('',
'a','ae','b','be','c','e','g','ge','l','le','na','nae',
'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
'ns','nz','o','p','pe','po','s','z'
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
F_A,F_AE,F_B,F_BE,
F_S,F_NS,F_O,F_NO,
{ For IEEE-compliant floating-point compares,
same as normal counterparts but additionally check PF }
F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
const
FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
F_E,F_NE,F_A,F_AE,F_B,F_BE
);
{*****************************************************************************
Constants
*****************************************************************************}
const
{ declare aliases }
LOC_SSEREGISTER = LOC_MMREGISTER;
LOC_CSSEREGISTER = LOC_CMMREGISTER;
max_operands = 4;
maxfpuregs = 8;
{*****************************************************************************
CPU Dependent Constants
*****************************************************************************}
{$i cpubase.inc}
const
{$ifdef x86_64}
topsize2memsize: array[topsize] of integer =
(0, 8,16,32,64,8,8,16,8,16,32,
16,32,64,
16,32,64,0,0,
64,
0,0,0,
80,
128,
256,
512
);
{$else}
topsize2memsize: array[topsize] of integer =
(0, 8,16,32,64,8,8,16,
16,32,64,
16,32,64,0,0,
64,
0,0,0,
80,
128,
256,
512
);
{$endif}
{*****************************************************************************
Helpers
*****************************************************************************}
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
function reg2opsize(r:Tregister):topsize;
function subreg2opsize(sr : tsubregister):topsize;
function reg_cgsize(const reg: tregister): tcgsize;
function is_calljmp(o:tasmop):boolean;
function is_calljmpuncondret(o:tasmop):boolean;
procedure inverse_flags(var f: TResFlags);
function flags_to_cond(const f: TResFlags) : TAsmCond;
function is_segment_reg(r:tregister):boolean;
function findreg_by_number(r:Tregister):tregisterindex;
function std_regnum_search(const s:string):Tregister;
function std_regname(r:Tregister):string;
function dwarf_reg(r:tregister):shortint;
function dwarf_reg_no_error(r:tregister):shortint;
function eh_return_data_regno(nr: longint): longint;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
{ checks whether two segment registers are normally equal in the current memory model }
function segment_regs_equal(r1,r2:tregister):boolean;
{ checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
function is_x86_string_op(op: TAsmOp): boolean;
{ checks whether the specified op is an x86 parameterless string instruction
(e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
function is_x86_parameterless_string_op(op: TAsmOp): boolean;
{ checks whether the specified op is an x86 parameterized string instruction
(e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
function is_x86_parameterized_string_op(op: TAsmOp): boolean;
function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
function get_x86_string_op_size(op: TAsmOp): TOpSize;
{ returns the 0-based operand number (intel syntax) of the ds:[si] param of
a x86 string instruction }
function get_x86_string_op_si_param(op: TAsmOp):shortint;
{ returns the 0-based operand number (intel syntax) of the es:[di] param of
a x86 string instruction }
function get_x86_string_op_di_param(op: TAsmOp):shortint;
{$ifdef i8086}
{ return whether we need to add an extra FWAIT instruction before the given
instruction, when we're targeting the i8087. This includes almost all x87
instructions, but certain ones, which always have or have not a built in
FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
function requires_fwait_on_8087(op: TAsmOp): boolean;
{$endif i8086}
function UseAVX: boolean;
function UseAVX512: boolean;
implementation
uses
globtype,
rgbase,verbose,
cpuinfo;
const
{$if defined(x86_64)}
std_regname_table : TRegNameTable = (
{$i r8664std.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i r8664rni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i r8664sri.inc}
);
{$elseif defined(i386)}
std_regname_table : TRegNameTable = (
{$i r386std.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i r386rni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i r386sri.inc}
);
{$elseif defined(i8086)}
std_regname_table : TRegNameTable = (
{$i r8086std.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i r8086rni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i r8086sri.inc}
);
{$endif}
{*****************************************************************************
Helpers
*****************************************************************************}
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
begin
case s of
OS_8,OS_S8:
cgsize2subreg:=R_SUBL;
OS_16,OS_S16:
cgsize2subreg:=R_SUBW;
OS_32,OS_S32:
cgsize2subreg:=R_SUBD;
OS_64,OS_S64:
cgsize2subreg:=R_SUBQ;
OS_M64:
cgsize2subreg:=R_SUBNONE;
OS_F32,OS_F64,OS_C64:
case regtype of
R_FPUREGISTER:
cgsize2subreg:=R_SUBWHOLE;
R_MMREGISTER:
case s of
OS_F32:
cgsize2subreg:=R_SUBMMS;
OS_F64:
cgsize2subreg:=R_SUBMMD;
else
internalerror(2009071901);
end;
else
internalerror(2009071902);
end;
OS_M128:
cgsize2subreg:=R_SUBMMX;
OS_M256:
cgsize2subreg:=R_SUBMMY;
OS_M512:
cgsize2subreg:=R_SUBMMZ;
OS_S128,
OS_128,
OS_NO:
{ error message should have been thrown already before, so avoid only
an internal error }
cgsize2subreg:=R_SUBNONE;
else
internalerror(200301231);
end;
end;
function reg_cgsize(const reg: tregister): tcgsize;
const subreg2cgsize:array[Tsubregister] of Tcgsize =
(OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
begin
case getregtype(reg) of
R_INTREGISTER :
reg_cgsize:=subreg2cgsize[getsubreg(reg)];
R_FPUREGISTER :
reg_cgsize:=OS_F80;
R_MMXREGISTER:
reg_cgsize:=OS_M64;
R_MMREGISTER:
reg_cgsize:=subreg2cgsize[getsubreg(reg)];
R_SPECIALREGISTER :
case reg of
NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
reg_cgsize:=OS_16;
{$ifdef x86_64}
NR_DR0..NR_TR7:
reg_cgsize:=OS_64;
{$endif x86_64}
else
reg_cgsize:=OS_32
end;
R_ADDRESSREGISTER:
case reg of
NR_K0..NR_K7: reg_cgsize:=OS_NO;
else internalerror(2003031801);
end;
else
internalerror(2003031802);
end;
end;
function subreg2opsize(sr : tsubregister):topsize;
const
_subreg2opsize : array[tsubregister] of topsize =
(S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
begin
result:=_subreg2opsize[sr];
end;
function reg2opsize(r:Tregister):topsize;
begin
reg2opsize:=S_L;
case getregtype(r) of
R_INTREGISTER :
reg2opsize:=subreg2opsize(getsubreg(r));
R_FPUREGISTER :
reg2opsize:=S_FL;
R_MMXREGISTER,
R_MMREGISTER :
reg2opsize:=S_MD;
R_SPECIALREGISTER :
begin
case r of
NR_CS,NR_DS,NR_ES,
NR_SS,NR_FS,NR_GS :
reg2opsize:=S_W;
else
;
end;
end;
else
internalerror(200303181);
end;
end;
function is_calljmp(o:tasmop):boolean;
begin
case o of
A_CALL,
{$if defined(i386) or defined(i8086)}
A_JCXZ,
{$endif defined(i386) or defined(i8086)}
A_JECXZ,
{$ifdef x86_64}
A_JRCXZ,
{$endif x86_64}
A_JMP,
A_LOOP,
A_LOOPE,
A_LOOPNE,
A_LOOPNZ,
A_LOOPZ,
A_LCALL,
A_LJMP,
A_Jcc :
is_calljmp:=true;
else
is_calljmp:=false;
end;
end;
function is_calljmpuncondret(o:tasmop):boolean;
begin
case o of
A_CALL,
A_JMP,
A_RET,
A_LCALL,
A_LJMP:
Result:=true;
else
Result:=false;
end;
end;
procedure inverse_flags(var f: TResFlags);
const
inv_flags: array[TResFlags] of TResFlags =
(F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
F_BE,F_B,F_AE,F_A,
F_NS,F_S,F_NO,F_O,
F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
begin
f:=inv_flags[f];
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
const
flags_2_cond : array[TResFlags] of TAsmCond =
(C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
C_None,C_None,C_None,C_None,C_None,C_None);
begin
result := flags_2_cond[f];
if (result=C_None) then
InternalError(2014041302);
end;
function is_segment_reg(r:tregister):boolean;
begin
case r of
NR_CS,NR_DS,NR_ES,
NR_SS,NR_FS,NR_GS :
result:=true;
else
result:=false;
end;
end;
function findreg_by_number(r:Tregister):tregisterindex;
var
hr : tregister;
begin
{ for the name the sub reg doesn't matter }
hr:=r;
if (getregtype(hr)=R_MMREGISTER) and
(getsubreg(hr)<>R_SUBMMY) and
(getsubreg(hr)<>R_SUBMMZ) then
setsubreg(hr,R_SUBMMX);
//// TG TODO check
//if (getregtype(hr)=R_MMREGISTER) then
// case getsubreg(hr) of
// R_SUBMMX: setsubreg(hr,R_SUBMMX);
// R_SUBMMY: setsubreg(hr,R_SUBMMY);
// R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
// else setsubreg(hr,R_SUBMMX);
// end;
result:=findreg_by_number_table(hr,regnumber_index);
end;
function std_regnum_search(const s:string):Tregister;
begin
result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
end;
function std_regname(r:Tregister):string;
var
p : tregisterindex;
begin
if (getregtype(r)=R_MMXREGISTER) or
((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
p:=findreg_by_number(r);
if p<>0 then
result:=std_regname_table[p]
else
result:=generic_regname(r);
end;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
const
inverse: array[TAsmCond] of TAsmCond=(C_None,
C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
);
begin
result := inverse[c];
end;
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
result := c1 = c2;
end;
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
begin
Result := (c = C_None) or conditions_equal(Subset, c);
if not Result then
case Subset of
C_A, C_NBE:
Result := (c in [C_A, C_AE, C_NB, C_NC, C_NBE,C_NE, C_NZ]);
C_AE, C_NB, C_NC:
{ C_A / C_NBE: CF = 0 and ZF = 0; not a subset because ZF has to be zero as well
C_AE / C_NB: CF = 0 }
Result := (c in [C_AE, C_NB, C_NC]);
C_B, C_C, C_NAE:
{ C_B / C_NAE: CF = 1
C_BE / C_NA: CF = 1 or ZF = 1 }
Result := (c in [C_B, C_BE, C_C, C_NA, C_NAE]);
C_BE, C_NA:
Result := (c in [C_BE, C_NA]);
C_E, C_Z:
Result := (c in [C_AE, C_BE, C_E, C_NA, C_NG, C_Z]);
C_G, C_NLE:
{ Not-equal can be considered equivalent to less than or greater than }
Result := (c in [C_G, C_GE, C_NE, C_NL, C_NLE,C_NZ]);
C_GE, C_NL:
Result := (c in [C_GE, C_NL]);
C_L, C_NGE:
Result := (c in [C_L, C_LE, C_NE, C_NG, C_NGE,C_NZ]);
C_LE, C_NG:
Result := (c in [C_LE, C_NG]);
C_NE, C_NZ:
{ Note that not equal is NOT a subset of greater/less than because
not equal is less than OR greater than. Same with above and below }
Result := (c in [C_NE, C_NZ]);
C_NP, C_PO:
Result := (c in [C_NP, C_PO]);
C_P, C_PE:
Result := (c in [C_P, C_PE]);
else
Result := False;
end;
end;
function dwarf_reg(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
if result=-1 then
internalerror(200603251);
end;
function dwarf_reg_no_error(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
end;
function eh_return_data_regno(nr: longint): longint;
begin
case nr of
0: result:=0;
{$ifdef x86_64}
1: result:=1;
{$else}
1: result:=2;
{$endif}
else
result:=-1;
end;
end;
function segment_regs_equal(r1, r2: tregister): boolean;
begin
if not is_segment_reg(r1) or not is_segment_reg(r2) then
internalerror(2013062301);
{ every segment register is equal to itself }
if r1=r2 then
exit(true);
{$if defined(i8086)}
case current_settings.x86memorymodel of
mm_tiny:
begin
{ CS=DS=SS }
if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
exit(true);
{ the remaining are distinct from each other }
exit(false);
end;
mm_small,mm_medium:
begin
{ DS=SS }
if ((r1=NR_DS) or (r1=NR_SS)) and
((r2=NR_DS) or (r2=NR_SS)) then
exit(true);
{ the remaining are distinct from each other }
exit(false);
end;
mm_compact,mm_large,mm_huge:
{ all segment registers are different in these models }
exit(false);
end;
{$elseif defined(i386) or defined(x86_64)}
{ DS=SS=ES }
if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
exit(true);
{ the remaining are distinct from each other }
exit(false);
{$endif}
end;
function is_x86_string_op(op: TAsmOp): boolean;
begin
case op of
{$ifdef x86_64}
A_MOVSQ,
A_CMPSQ,
A_SCASQ,
A_LODSQ,
A_STOSQ,
{$endif x86_64}
A_MOVSB,A_MOVSW,A_MOVSD,
A_CMPSB,A_CMPSW,A_CMPSD,
A_SCASB,A_SCASW,A_SCASD,
A_LODSB,A_LODSW,A_LODSD,
A_STOSB,A_STOSW,A_STOSD,
A_INSB, A_INSW, A_INSD,
A_OUTSB,A_OUTSW,A_OUTSD,
A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
result:=true;
else
result:=false;
end;
end;
function is_x86_parameterless_string_op(op: TAsmOp): boolean;
begin
case op of
{$ifdef x86_64}
A_MOVSQ,
A_CMPSQ,
A_SCASQ,
A_LODSQ,
A_STOSQ,
{$endif x86_64}
A_MOVSB,A_MOVSW,A_MOVSD,
A_CMPSB,A_CMPSW,A_CMPSD,
A_SCASB,A_SCASW,A_SCASD,
A_LODSB,A_LODSW,A_LODSD,
A_STOSB,A_STOSW,A_STOSD,
A_INSB, A_INSW, A_INSD,
A_OUTSB,A_OUTSW,A_OUTSD:
result:=true;
else
result:=false;
end;
end;
function is_x86_parameterized_string_op(op: TAsmOp): boolean;
begin
case op of
A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
result:=true;
else
result:=false;
end;
end;
function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
begin
case op of
A_MOVS,A_CMPS,A_INS,A_OUTS:
result:=2;
A_SCAS,A_LODS,A_STOS:
result:=1;
else
internalerror(2017101203);
end;
end;
function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
begin
case op of
A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
result:=A_MOVS;
A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
result:=A_CMPS;
A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
result:=A_SCAS;
A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
result:=A_LODS;
A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
result:=A_STOS;
A_INSB, A_INSW, A_INSD:
result:=A_INS;
A_OUTSB,A_OUTSW,A_OUTSD:
result:=A_OUTS;
else
internalerror(2017101201);
end;
end;
function get_x86_string_op_size(op: TAsmOp): TOpSize;
begin
case op of
A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
result:=S_B;
A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
result:=S_W;
A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
result:=S_L;
{$ifdef x86_64}
A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
result:=S_Q;
{$endif x86_64}
else
internalerror(2017101202);
end;
end;
function get_x86_string_op_si_param(op: TAsmOp):shortint;
begin
case op of
A_MOVS,A_OUTS:
result:=1;
A_CMPS,A_LODS:
result:=0;
A_SCAS,A_STOS,A_INS:
result:=-1;
else
internalerror(2017101102);
end;
end;
function get_x86_string_op_di_param(op: TAsmOp):shortint;
begin
case op of
A_MOVS,A_SCAS,A_STOS,A_INS:
result:=0;
A_CMPS:
result:=1;
A_LODS,A_OUTS:
result:=-1;
else
internalerror(2017101204);
end;
end;
{$ifdef i8086}
function requires_fwait_on_8087(op: TAsmOp): boolean;
begin
case op of
A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
result:=true;
else
result:=false;
end;
end;
{$endif i8086}
function UseAVX: boolean;
begin
Result:={$ifdef i8086}false{$else i8086}(FPUX86_HAS_AVXUNIT in fpu_capabilities[current_settings.fputype]){$endif i8086};
end;
function UseAVX512: boolean;
begin
Result:={$ifdef i8086}false{$else i8086}UseAVX and (FPUX86_HAS_AVX512F in fpu_capabilities[current_settings.fputype]){$endif i8086};
end;
end.