fpc/compiler/x86/nx86mat.pas

1076 lines
44 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Generate x86 code for math nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit nx86mat;
{$i fpcdefs.inc}
interface
uses
node,ncgmat;
type
tx86unaryminusnode = class(tcgunaryminusnode)
{$ifdef SUPPORT_MMX}
procedure second_mmx;override;
{$endif SUPPORT_MMX}
procedure second_float;override;
function pass_1:tnode;override;
end;
tx86notnode = class(tcgnotnode)
procedure second_boolean;override;
{$ifdef SUPPORT_MMX}
procedure second_mmx;override;
{$endif SUPPORT_MMX}
end;
tx86moddivnode = class(tcgmoddivnode)
procedure pass_generate_code;override;
end;
tx86shlshrnode = class(tcgshlshrnode)
{$ifdef SUPPORT_MMX}
procedure second_mmx;override;
{$endif SUPPORT_MMX}
end;
implementation
uses
globtype,
constexp,
cutils,verbose,globals,
symconst,symdef,
aasmbase,aasmtai,aasmcpu,aasmdata,defutil,
cgbase,pass_1,pass_2,
ncon,
cpubase,cpuinfo,
cga,cgobj,hlcgobj,cgx86,cgutils,
tgobj;
{*****************************************************************************
TI386UNARYMINUSNODE
*****************************************************************************}
function tx86unaryminusnode.pass_1 : tnode;
begin
result:=nil;
firstpass(left);
if codegenerror then
exit;
if (left.resultdef.typ=floatdef) then
begin
if use_vectorfpu(left.resultdef) then
expectloc:=LOC_MMREGISTER
else
expectloc:=LOC_FPUREGISTER;
end
{$ifdef SUPPORT_MMX}
else
if (cs_mmx in current_settings.localswitches) and
is_mmx_able_array(left.resultdef) then
begin
expectloc:=LOC_MMXREGISTER;
end
{$endif SUPPORT_MMX}
else
inherited pass_1;
end;
{$ifdef SUPPORT_MMX}
procedure tx86unaryminusnode.second_mmx;
var
op : tasmop;
hreg : tregister;
begin
op:=A_NONE;
secondpass(left);
location_reset(location,LOC_MMXREGISTER,OS_NO);
hreg:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
emit_reg_reg(A_PXOR,S_NO,hreg,hreg);
case left.location.loc of
LOC_MMXREGISTER:
begin
location.register:=left.location.register;
end;
LOC_CMMXREGISTER:
begin
location.register:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
emit_reg_reg(A_MOVQ,S_NO,left.location.register,location.register);
end;
LOC_REFERENCE,
LOC_CREFERENCE:
begin
location.register:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
emit_ref_reg(A_MOVQ,S_NO,left.location.reference,location.register);
end;
else
internalerror(200203225);
end;
if cs_mmx_saturation in current_settings.localswitches then
case mmx_type(resultdef) of
mmxs8bit:
op:=A_PSUBSB;
mmxu8bit:
op:=A_PSUBUSB;
mmxs16bit,mmxfixed16:
op:=A_PSUBSW;
mmxu16bit:
op:=A_PSUBUSW;
else
;
end
else
case mmx_type(resultdef) of
mmxs8bit,mmxu8bit:
op:=A_PSUBB;
mmxs16bit,mmxu16bit,mmxfixed16:
op:=A_PSUBW;
mmxs32bit,mmxu32bit:
op:=A_PSUBD;
else
;
end;
if op = A_NONE then
internalerror(201408202);
emit_reg_reg(op,S_NO,location.register,hreg);
emit_reg_reg(A_MOVQ,S_NO,hreg,location.register);
end;
{$endif SUPPORT_MMX}
procedure tx86unaryminusnode.second_float;
var
l1: TAsmLabel;
href: treference;
reg: tregister;
begin
secondpass(left);
if expectloc=LOC_MMREGISTER then
begin
if cs_opt_fastmath in current_settings.optimizerswitches then
begin
if not(left.location.loc in [LOC_MMREGISTER,LOC_CMMREGISTER,LOC_CREFERENCE,LOC_REFERENCE]) then
hlcg.location_force_mmregscalar(current_asmdata.CurrAsmList,left.location,left.resultdef,true);
location_reset(location,LOC_MMREGISTER,def_cgsize(resultdef));
location.register:=cg.getmmregister(current_asmdata.CurrAsmList,def_cgsize(resultdef));
cg.a_opmm_reg_reg(current_asmdata.CurrAsmList,OP_XOR,location.size,location.register,location.register,nil);
cg.a_opmm_loc_reg(current_asmdata.CurrAsmList,OP_SUB,location.size,left.location,location.register,mms_movescalar);
end
else
begin
location_reset(location,LOC_MMREGISTER,def_cgsize(resultdef));
current_asmdata.getlocaldatalabel(l1);
new_section(current_asmdata.asmlists[al_typedconsts],sec_rodata_norel,l1.name,const_align(16));
current_asmdata.asmlists[al_typedconsts].concat(Tai_label.Create(l1));
case def_cgsize(resultdef) of
OS_F32:
current_asmdata.asmlists[al_typedconsts].concat(tai_const.create_32bit(longint(1 shl 31)));
OS_F64:
begin
current_asmdata.asmlists[al_typedconsts].concat(tai_const.create_32bit(0));
current_asmdata.asmlists[al_typedconsts].concat(tai_const.create_32bit(-(1 shl 31)));
end
else
internalerror(2004110215);
end;
reference_reset_symbol(href,l1,0,resultdef.alignment,[]);
if UseAVX then
begin
if not(left.location.loc in [LOC_MMREGISTER,LOC_CMMREGISTER]) then
hlcg.location_force_mmregscalar(current_asmdata.CurrAsmList,left.location,left.resultdef,true);
location.register:=cg.getmmregister(current_asmdata.CurrAsmList,def_cgsize(resultdef));
cg.a_opmm_ref_reg_reg(current_asmdata.CurrAsmList,OP_XOR,left.location.size,href,left.location.register,location.register,nil)
end
else
begin
if not(left.location.loc=LOC_MMREGISTER) then
hlcg.location_force_mmregscalar(current_asmdata.CurrAsmList,left.location,left.resultdef,false);
location.register:=left.location.register;
cg.a_opmm_ref_reg(current_asmdata.CurrAsmList,OP_XOR,left.location.size,href,location.register,mms_movescalar);
end;
end;
end
else
begin
location_reset(location,LOC_FPUREGISTER,def_cgsize(resultdef));
case left.location.loc of
LOC_REFERENCE,
LOC_CREFERENCE:
begin
location.register:=NR_ST;
cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,
left.location.size,location.size,
left.location.reference,location.register);
emit_none(A_FCHS,S_NO);
end;
LOC_FPUREGISTER,
LOC_CFPUREGISTER:
begin
{ "load st,st" is ignored by the code generator }
cg.a_loadfpu_reg_reg(current_asmdata.CurrAsmList,left.location.size,location.size,left.location.register,NR_ST);
location.register:=NR_ST;
emit_none(A_FCHS,S_NO);
end;
else
internalerror(200312241);
end;
end;
end;
{*****************************************************************************
TX86NOTNODE
*****************************************************************************}
procedure tx86notnode.second_boolean;
var
opsize : tcgsize;
{$if defined(cpu32bitalu) or defined(cpu16bitalu)}
hreg: tregister;
{$endif}
begin
opsize:=def_cgsize(resultdef);
secondpass(left);
if not handle_locjump then
begin
case left.location.loc of
LOC_FLAGS :
begin
location_reset(location,LOC_FLAGS,OS_NO);
location.resflags:=left.location.resflags;
inverse_flags(location.resflags);
end;
LOC_CREFERENCE,
LOC_REFERENCE:
begin
{$if defined(cpu32bitalu)}
if is_64bit(resultdef) then
begin
hreg:=cg.GetIntRegister(current_asmdata.CurrAsmList,OS_32);
tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,left.location.reference);
cg.a_load_ref_reg(current_asmdata.CurrAsmList,OS_32,OS_32,left.location.reference,hreg);
inc(left.location.reference.offset,4);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
cg.a_op_ref_reg(current_asmdata.CurrAsmList,OP_OR,OS_32,left.location.reference,hreg);
end
else
{$elseif defined(cpu16bitalu)}
if is_64bit(resultdef) then
begin
hreg:=cg.GetIntRegister(current_asmdata.CurrAsmList,OS_16);
tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,left.location.reference);
cg.a_load_ref_reg(current_asmdata.CurrAsmList,OS_16,OS_16,left.location.reference,hreg);
inc(left.location.reference.offset,2);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
cg.a_op_ref_reg(current_asmdata.CurrAsmList,OP_OR,OS_16,left.location.reference,hreg);
inc(left.location.reference.offset,2);
cg.a_op_ref_reg(current_asmdata.CurrAsmList,OP_OR,OS_16,left.location.reference,hreg);
inc(left.location.reference.offset,2);
cg.a_op_ref_reg(current_asmdata.CurrAsmList,OP_OR,OS_16,left.location.reference,hreg);
end
else if is_32bit(resultdef) then
begin
hreg:=cg.GetIntRegister(current_asmdata.CurrAsmList,OS_16);
tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,left.location.reference);
cg.a_load_ref_reg(current_asmdata.CurrAsmList,OS_16,OS_16,left.location.reference,hreg);
inc(left.location.reference.offset,2);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
cg.a_op_ref_reg(current_asmdata.CurrAsmList,OP_OR,OS_16,left.location.reference,hreg);
end
else
{$endif}
begin
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_const_ref(A_CMP, TCGSize2Opsize[opsize], 0, left.location.reference);
end;
location_reset(location,LOC_FLAGS,OS_NO);
location.resflags:=F_E;
end;
LOC_CONSTANT,
LOC_REGISTER,
LOC_CREGISTER,
LOC_SUBSETREG,
LOC_CSUBSETREG,
LOC_SUBSETREF,
LOC_CSUBSETREF :
begin
{$if defined(cpu32bitalu)}
if is_64bit(resultdef) then
begin
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_OR,S_L,left.location.register64.reghi,left.location.register64.reglo);
end
else
{$elseif defined(cpu16bitalu)}
if is_64bit(resultdef) then
begin
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_OR,S_W,cg.GetNextReg(left.location.register64.reghi),left.location.register64.reghi);
emit_reg_reg(A_OR,S_W,cg.GetNextReg(left.location.register64.reglo),left.location.register64.reglo);
emit_reg_reg(A_OR,S_W,left.location.register64.reghi,left.location.register64.reglo);
end
else if is_32bit(resultdef) then
begin
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_OR,S_L,cg.GetNextReg(left.location.register),left.location.register);
end
else
{$endif}
begin
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,true);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_TEST,TCGSize2Opsize[opsize],left.location.register,left.location.register);
end;
location_reset(location,LOC_FLAGS,OS_NO);
location.resflags:=F_E;
end;
else
internalerror(200203224);
end;
end;
end;
{$ifdef SUPPORT_MMX}
procedure tx86notnode.second_mmx;
var hreg,r:Tregister;
begin
secondpass(left);
location_reset(location,LOC_MMXREGISTER,OS_NO);
r:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_const_reg(A_MOV,S_L,longint($ffffffff),r);
{ load operand }
case left.location.loc of
LOC_MMXREGISTER:
location_copy(location,left.location);
LOC_CMMXREGISTER:
begin
location.register:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
emit_reg_reg(A_MOVQ,S_NO,left.location.register,location.register);
end;
LOC_REFERENCE,
LOC_CREFERENCE:
begin
location.register:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
emit_ref_reg(A_MOVQ,S_NO,left.location.reference,location.register);
end;
else
internalerror(2019050906);
end;
{ load mask }
hreg:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
emit_reg_reg(A_MOVD,S_NO,r,hreg);
{ lower 32 bit }
emit_reg_reg(A_PXOR,S_NO,hreg,location.register);
{ shift mask }
emit_const_reg(A_PSLLQ,S_B,32,hreg);
{ higher 32 bit }
emit_reg_reg(A_PXOR,S_NO,hreg,location.register);
end;
{$endif SUPPORT_MMX}
{*****************************************************************************
TX86MODDIVNODE
*****************************************************************************}
procedure tx86moddivnode.pass_generate_code;
var
hreg1,hreg2,hreg3,hreg4,rega,regd,tempreg:Tregister;
power:longint;
instr:TAiCpu;
op:Tasmop;
cgsize:TCgSize;
opsize:topsize;
e, sm: aint;
d,m: aword;
m_add, invertsign: boolean;
s: byte;
label
DefaultDiv;
{$ifndef i8086}
procedure DoBMI2ReciprocalDivision;
var
exp_regd: Tregister;
exp_opsize: topsize;
DoMod: Boolean;
SubSize: TSubRegister;
divsize: Byte;
begin
DoMod := (nodetype = modn);
{ Extend 32-bit divides to 64-bit registers and 16-bit
divides to 32-bit registers. Because the domain of
the left input is only up to 2^(X/2 - 1) - 1, (i.e.
2^31 - 1 for 64-bit and 2^15 - 1 for 32-bit), a much
larger error in the reciprocal is permitted. }
if (resultdef.size <= {$ifdef x86_64}4{$else x86_64}2{$endif x86_64}) then
begin
{$ifdef x86_64}
if resultdef.size = 4 then
divsize := 64
else
{$endif x86_64}
divsize := 32;
calc_divconst_magic_unsigned(divsize, d, m, m_add, s);
{ Should never have a zero shift and a magic add together }
if (s = 0) and m_add then
InternalError(2021090203);
{ Extend the input and out registers (the peephole optimizer should
help clean up unnecessary MOVZX instructions }
hreg3 := hreg1;
case resultdef.size of
{$ifdef x86_64}
4:
begin
SubSize := R_SUBQ;
setsubreg(hreg3, R_SUBQ);
{ Make sure the upper 32 bits are zero; the peephole
optimizer will remove this instruction via MovAnd2Mov
if it's not needed }
emit_const_reg(A_AND, S_L, $FFFFFFFF, hreg1);
exp_regd := NR_RDX;
exp_opsize := S_Q;
if m_add then
{ Append 1 to the tail end of the result }
m := (m shr s) or ($8000000000000000 shr (s - 1))
else
m := m shr s;
end;
{$endif x86_64}
1, 2:
begin
{ MULX doesn't have a 16-bit version }
SubSize := R_SUBD;
setsubreg(hreg3, R_SUBD);
if resultdef.size = 1 then
exp_opsize := S_BL
else
exp_opsize := S_WL;
emit_reg_reg(A_MOVZX, exp_opsize, hreg1, hreg3);
exp_regd := NR_EDX;
exp_opsize := S_L;
if m_add then
{ Append 1 to the tail end of the result }
m := (m shr s) or ($80000000 shr (s - 1))
else
m := m shr s;
end;
else
InternalError(2021090211);
end;
Inc(m);
cg.getcpuregister(current_asmdata.CurrAsmList, exp_regd);
emit_const_reg(A_MOV, exp_opsize, aint(m), exp_regd);
hreg2 := cg.getintregister(current_asmdata.CurrAsmList, cgsize);
hreg4 := hreg2;
setsubreg(hreg4, SubSize);
cg.ungetcpuregister(current_asmdata.CurrAsmList, exp_regd);
emit_reg_reg_reg(A_MULX, exp_opsize, hreg3, hreg4, hreg4);
end
else
begin
calc_divconst_magic_unsigned(resultdef.size * 8, d, m, m_add, s);
{ Should never have a zero shift and a magic add together }
if (s = 0) and m_add then
InternalError(2021090204);
cg.getcpuregister(current_asmdata.CurrAsmList, regd);
emit_const_reg(A_MOV, opsize, aint(m), regd);
hreg2 := cg.getintregister(current_asmdata.CurrAsmList, cgsize);
cg.ungetcpuregister(current_asmdata.CurrAsmList, regd);
emit_reg_reg_reg(A_MULX, opsize, hreg1, hreg2, hreg2);
if m_add then
begin
{ addition can overflow, shift first bit considering carry,
then shift remaining bits in regular way. }
cg.a_reg_alloc(current_asmdata.CurrAsmList, NR_DEFAULTFLAGS);
emit_reg_reg(A_ADD, opsize, hreg1, hreg2);
emit_const_reg(A_RCR, opsize, 1, hreg2);
cg.a_reg_dealloc(current_asmdata.CurrAsmList, NR_DEFAULTFLAGS);
dec(s);
end;
if s<>0 then
emit_const_reg(A_SHR, opsize, aint(s), hreg2);
end;
if DoMod then
begin
{ Now multiply the quotient by the original denominator and
subtract the product from the original numerator to get
the remainder. }
{$ifdef x86_64}
if (cgsize in [OS_64,OS_S64]) and (d > $7FFFFFFF) then { Cannot use 64-bit constants in IMUL }
begin
hreg4 := cg.getintregister(current_asmdata.CurrAsmList,cgsize);
emit_const_reg(A_MOV, opsize, aint(d), hreg4);
emit_reg_reg(A_IMUL, opsize, hreg4, hreg2);
end
else
{$endif x86_64}
emit_const_reg(A_IMUL, opsize, aint(d), hreg2);
emit_reg_reg(A_SUB, opsize, hreg2, hreg1);
location.register := hreg1;
end
else
location.register := hreg2;
end;
{$endif not i8086}
procedure DoUnsignedReciprocalDivision;
var
exp_rega,exp_regd:Tregister;
exp_opsize:topsize;
DoMod: Boolean;
begin
{$ifndef i8086}
IF (CPUX86_HAS_BMI2 in cpu_capabilities[current_settings.cputype]) then
begin
{ If BMI2 is available, use more efficient instructions }
DoBMI2ReciprocalDivision;
Exit;
end;
{$endif not i8086}
DoMod := (nodetype = modn);
{ Extend 32-bit divides to 64-bit registers and 16-bit
divides to 32-bit registers. Because the domain of
the left input is only up to 2^(X/2 - 1) - 1, (i.e.
2^31 - 1 for 64-bit and 2^15 - 1 for 32-bit), a much
larger error in the reciprocal is permitted. }
if (resultdef.size <= {$ifdef x86_64}4{$else x86_64}2{$endif x86_64}) then
begin
calc_divconst_magic_unsigned(resultdef.size * 2 * 8,d,m,m_add,s);
{ Should never have a zero shift and a magic add together }
if (s = 0) and m_add then
InternalError(2021090201);
{ Extend the input register (the peephole optimizer should
help clean up unnecessary MOVZX instructions }
hreg3 := hreg1;
case resultdef.size of
{$ifdef x86_64}
4:
begin
setsubreg(hreg3, R_SUBQ);
{ Make sure the upper 32 bits are zero; the peephole
optimizer will remove this instruction via MovAnd2Mov
if it's not needed }
emit_const_reg(A_AND, S_L, $FFFFFFFF, hreg1);
exp_rega := NR_RAX;
exp_regd := NR_RDX;
exp_opsize := S_Q;
if m_add then
{ Append 1 to the tail end of the result }
m := (m shr s) or ($8000000000000000 shr (s - 1))
else
m := m shr s;
end;
{$endif x86_64}
2:
begin
setsubreg(hreg3, R_SUBD);
emit_reg_reg(A_MOVZX, S_WL, hreg1, hreg3);
exp_rega := NR_EAX;
exp_regd := NR_EDX;
exp_opsize := S_L;
if m_add then
{ Append 1 to the tail end of the result }
m := (m shr s) or ($80000000 shr (s - 1))
else
m := m shr s;
end;
1:
begin
setsubreg(hreg3, R_SUBW);
emit_reg_reg(A_MOVZX, S_BW, hreg1, hreg3);
exp_rega := NR_AX;
exp_regd := NR_DX;
regd := NR_DL; { We need to change this from AH }
exp_opsize := S_W;
if m_add then
{ Append 1 to the tail end of the result }
m := (m shr s) or ($8000 shr (s - 1))
else
m := m shr s;
end;
else
InternalError(2021090210);
end;
Inc(m);
cg.getcpuregister(current_asmdata.CurrAsmList,exp_rega);
emit_const_reg(A_MOV,exp_opsize,aint(m),exp_rega);
cg.getcpuregister(current_asmdata.CurrAsmList,exp_regd);
emit_reg(A_MUL,exp_opsize,hreg3);
cg.ungetcpuregister(current_asmdata.CurrAsmList,exp_rega);
if DoMod then
begin
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
emit_reg_reg(A_MOV,opsize,hreg1,hreg2);
end;
end
else
begin
calc_divconst_magic_unsigned(resultdef.size*8,d,m,m_add,s);
{ Should never have a zero shift and a magic add together }
if (s = 0) and m_add then
InternalError(2021090202);
cg.getcpuregister(current_asmdata.CurrAsmList,rega);
emit_const_reg(A_MOV,opsize,aint(m),rega);
cg.getcpuregister(current_asmdata.CurrAsmList,regd);
emit_reg(A_MUL,opsize,hreg1);
cg.ungetcpuregister(current_asmdata.CurrAsmList,rega);
if DoMod then
begin
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
emit_reg_reg(A_MOV,opsize,hreg1,hreg2);
end;
if m_add then
begin
{ addition can overflow, shift first bit considering carry,
then shift remaining bits in regular way. }
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_ADD,opsize,hreg1,regd);
emit_const_reg(A_RCR,opsize,1,regd);
cg.a_reg_dealloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
dec(s);
end;
if s<>0 then
emit_const_reg(A_SHR,opsize,aint(s),regd);
end;
if DoMod then
begin
{ Now multiply the quotient by the original denominator and
subtract the product from the original numerator to get
the remainder. }
{$ifdef x86_64}
if (cgsize in [OS_64,OS_S64]) and (d > $7FFFFFFF) then { Cannot use 64-bit constants in IMUL }
begin
hreg3:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
emit_const_reg(A_MOV,opsize,aint(d),hreg3);
emit_reg_reg(A_IMUL,opsize,hreg3,regd);
end
else
{$endif x86_64}
emit_const_reg(A_IMUL,opsize,aint(d),regd);
emit_reg_reg(A_SUB,opsize,regd,hreg2);
end;
cg.ungetcpuregister(current_asmdata.CurrAsmList,regd);
if not DoMod then
begin
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,cgsize,cgsize,regd,hreg2);
end;
location.register:=hreg2;
end;
begin
secondpass(left);
if codegenerror then
exit;
secondpass(right);
if codegenerror then
exit;
{ put numerator in register }
cgsize:=def_cgsize(resultdef);
opsize:=TCGSize2OpSize[cgsize];
rega:=newreg(R_INTREGISTER,RS_EAX,cgsize2subreg(R_INTREGISTER,cgsize));
if cgsize in [OS_8,OS_S8] then
regd:=NR_AH
else
regd:=newreg(R_INTREGISTER,RS_EDX,cgsize2subreg(R_INTREGISTER,cgsize));
location_reset(location,LOC_REGISTER,cgsize);
hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,resultdef,false);
hreg1:=left.location.register;
if (nodetype=divn) and (right.nodetype=ordconstn) then
begin
if isabspowerof2(tordconstnode(right).value,power) then
begin
{ for signed numbers, the numerator must be adjusted before the
shift instruction, but not with unsigned numbers! Otherwise,
"Cardinal($ffffffff) div 16" overflows! (JM) }
if is_signed(left.resultdef) Then
begin
invertsign:=tordconstnode(right).value<0;
{ use a sequence without jumps, saw this in
comp.compilers (JM) }
{ no jumps, but more operations }
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
emit_reg_reg(A_MOV,opsize,hreg1,hreg2);
if power=1 then
begin
{If the left value is negative, hreg2=(1 shl power)-1=1, otherwise 0.}
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,cgsize,resultdef.size*8-1,hreg2);
end
else
begin
{If the left value is negative, hreg2=$ffffffff, otherwise 0.}
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,cgsize,resultdef.size*8-1,hreg2);
{If negative, hreg2=(1 shl power)-1, otherwise 0.}
{ (don't use emit_const_reg, because if value>high(longint)
then it must first be loaded into a register) }
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_AND,cgsize,(aint(1) shl power)-1,hreg2);
end;
{ add to the left value }
emit_reg_reg(A_ADD,opsize,hreg2,hreg1);
{ do the shift }
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,cgsize,power,hreg1);
if invertsign then
emit_reg(A_NEG,opsize,hreg1);
end
else
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,cgsize,power,hreg1);
location.register:=hreg1;
end
else
begin
if is_signed(left.resultdef) then
begin
e:=tordconstnode(right).value.svalue;
calc_divconst_magic_signed(resultdef.size*8,e,sm,s);
cg.getcpuregister(current_asmdata.CurrAsmList,rega);
emit_const_reg(A_MOV,opsize,sm,rega);
cg.getcpuregister(current_asmdata.CurrAsmList,regd);
emit_reg(A_IMUL,opsize,hreg1);
{ only the high half of result is used }
cg.ungetcpuregister(current_asmdata.CurrAsmList,rega);
{ add or subtract dividend }
if (e>0) and (sm<0) then
emit_reg_reg(A_ADD,opsize,hreg1,regd)
else if (e<0) and (sm>0) then
emit_reg_reg(A_SUB,opsize,hreg1,regd);
{ shift if necessary }
if (s<>0) then
emit_const_reg(A_SAR,opsize,s,regd);
{ extract and add the sign bit }
if (e<0) then
emit_reg_reg(A_MOV,opsize,regd,hreg1);
{ if e>=0, hreg1 still contains dividend }
emit_const_reg(A_SHR,opsize,left.resultdef.size*8-1,hreg1);
emit_reg_reg(A_ADD,opsize,hreg1,regd);
cg.ungetcpuregister(current_asmdata.CurrAsmList,regd);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,cgsize,cgsize,regd,location.register)
end
else
begin
d:=tordconstnode(right).value.uvalue;
if d>=aword(1) shl (left.resultdef.size*8-1) then
begin
location.register:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
{ Ensure that the whole register is 0, since SETcc only sets the lowest byte }
{ If the operands are 64 bits, this XOR routine will be shrunk by the
peephole optimizer. [Kit] }
emit_reg_reg(A_XOR,opsize,location.register,location.register);
if (cgsize in [OS_64,OS_S64]) then { Cannot use 64-bit constants in CMP }
begin
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
emit_const_reg(A_MOV,opsize,aint(d),hreg2);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_CMP,opsize,hreg2,hreg1);
end
else
begin
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_const_reg(A_CMP,opsize,aint(d),hreg1);
end;
{ NOTE: SBB and SETAE are both 3 bytes long without the REX prefix,
both use an ALU for their execution and take a single cycle to
run. The only difference is that SETAE does not modify the flags,
allowing for some possible reuse. [Kit] }
{ Emit a SETcc instruction that depends on the carry bit being zero,
that is, the numerator is greater than or equal to the denominator. }
tempreg:=cg.makeregsize(current_asmdata.CurrAsmList,location.register,OS_8);
instr:=TAiCpu.op_reg(A_SETcc,S_B,tempreg);
instr.condition:=C_AE;
current_asmdata.CurrAsmList.concat(instr);
cg.a_reg_dealloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
end
else
DoUnsignedReciprocalDivision;
end;
end;
end
else if (nodetype=modn) and (right.nodetype=ordconstn) and not(is_signed(left.resultdef)) then
begin
{ unsigned modulus by a (+/-)power-of-2 constant? }
if isabspowerof2(tordconstnode(right).value,power) then
begin
emit_const_reg(A_AND,opsize,(aint(1) shl power)-1,hreg1);
location.register:=hreg1;
end
else
begin
d:=tordconstnode(right).value.uvalue;
if d>=aword(1) shl (left.resultdef.size*8-1) then
begin
if not (CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype]) then
goto DefaultDiv;
location.register:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
hreg3:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
m := aword(-aint(d)); { Two's complement of d }
if (cgsize in [OS_64,OS_S64]) then { Cannot use 64-bit constants in CMP }
begin
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
emit_const_reg(A_MOV,opsize,aint(d),hreg2);
emit_const_reg(A_MOV,opsize,aint(m),hreg3);
emit_reg_reg(A_XOR,opsize,location.register,location.register);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_CMP,opsize,hreg2,hreg1);
end
else
begin
emit_const_reg(A_MOV,opsize,aint(m),hreg3);
emit_reg_reg(A_XOR,opsize,location.register,location.register);
cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_const_reg(A_CMP,opsize,aint(d),hreg1);
end;
{ Emit conditional move that depends on the carry flag being zero,
that is, the comparison result is above or equal }
instr:=TAiCpu.op_reg_reg(A_CMOVcc,opsize,hreg3,location.register);
instr.condition := C_AE;
current_asmdata.CurrAsmList.concat(instr);
cg.a_reg_dealloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
emit_reg_reg(A_ADD,opsize,hreg1,location.register);
end
else
{ Convert the division to a multiplication }
DoUnsignedReciprocalDivision;
end;
end
else if (nodetype=modn) and (right.nodetype=ordconstn) and (is_signed(left.resultdef)) and isabspowerof2(tordconstnode(right).value,power) then
begin
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
if power=1 then
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList,OP_SHR,cgsize,resultdef.size*8-power,hreg1,hreg2)
else
begin
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList,OP_SAR,cgsize,resultdef.size*8-1,hreg1,hreg2);
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList,OP_SHR,cgsize,resultdef.size*8-power,hreg2,hreg2);
end;
emit_reg_reg(A_ADD,opsize,hreg1,hreg2);
cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_AND,cgsize,not((aint(1) shl power)-1),hreg2);
emit_reg_reg(A_SUB,opsize,hreg2,hreg1);
location.register:=hreg1;
end
else
begin
DefaultDiv:
{Bring denominator to a register.}
cg.getcpuregister(current_asmdata.CurrAsmList,rega);
emit_reg_reg(A_MOV,opsize,hreg1,rega);
cg.getcpuregister(current_asmdata.CurrAsmList,regd);
{Sign extension depends on the left type.}
if is_signed(left.resultdef) then
case left.resultdef.size of
{$ifdef x86_64}
8:
emit_none(A_CQO,S_NO);
{$endif x86_64}
4:
emit_none(A_CDQ,S_NO);
else
internalerror(2013102704);
end
else
emit_reg_reg(A_XOR,opsize,regd,regd);
{ Division depends on the result type }
if is_signed(resultdef) then
op:=A_IDIV
else
op:=A_DIV;
if right.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
emit_ref(op,opsize,right.location.reference)
else if right.location.loc in [LOC_REGISTER,LOC_CREGISTER] then
emit_reg(op,opsize,right.location.register)
else
begin
hreg1:=cg.getintregister(current_asmdata.CurrAsmList,right.location.size);
hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,right.resultdef,right.location,hreg1);
emit_reg(op,opsize,hreg1);
end;
{ Copy the result into a new register. Release R/EAX & R/EDX.}
cg.ungetcpuregister(current_asmdata.CurrAsmList,regd);
cg.ungetcpuregister(current_asmdata.CurrAsmList,rega);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,cgsize);
if nodetype=divn then
cg.a_load_reg_reg(current_asmdata.CurrAsmList,cgsize,cgsize,rega,location.register)
else
cg.a_load_reg_reg(current_asmdata.CurrAsmList,cgsize,cgsize,regd,location.register);
end;
end;
{$ifdef SUPPORT_MMX}
procedure tx86shlshrnode.second_mmx;
var
op : TAsmOp;
mmxbase : tmmxtype;
hregister : tregister;
begin
secondpass(left);
if codegenerror then
exit;
secondpass(right);
if codegenerror then
exit;
op:=A_NOP;
mmxbase:=mmx_type(left.resultdef);
location_reset(location,LOC_MMXREGISTER,def_cgsize(resultdef));
case nodetype of
shrn :
case mmxbase of
mmxs16bit,mmxu16bit,mmxfixed16:
op:=A_PSRLW;
mmxs32bit,mmxu32bit:
op:=A_PSRLD;
mmxs64bit,mmxu64bit:
op:=A_PSRLQ;
else
Internalerror(2018022504);
end;
shln :
case mmxbase of
mmxs16bit,mmxu16bit,mmxfixed16:
op:=A_PSLLW;
mmxs32bit,mmxu32bit:
op:=A_PSLLD;
mmxs64bit,mmxu64bit:
op:=A_PSLLD;
else
Internalerror(2018022503);
end;
else
internalerror(2018022502);
end;
{ left and right no register? }
{ then one must be demanded }
if (left.location.loc<>LOC_MMXREGISTER) then
begin
{ register variable ? }
if (left.location.loc=LOC_CMMXREGISTER) then
begin
hregister:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
emit_reg_reg(A_MOVQ,S_NO,left.location.register,hregister);
end
else
begin
if not(left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE]) then
internalerror(2018022505);
hregister:=tcgx86(cg).getmmxregister(current_asmdata.CurrAsmList);
tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,left.location.reference);
emit_ref_reg(A_MOVQ,S_NO,left.location.reference,hregister);
end;
location_reset(left.location,LOC_MMXREGISTER,OS_NO);
left.location.register:=hregister;
end;
{ at this point, left.location.loc should be LOC_MMXREGISTER }
case right.location.loc of
LOC_MMXREGISTER,LOC_CMMXREGISTER:
begin
emit_reg_reg(op,S_NO,right.location.register,left.location.register);
location.register:=left.location.register;
end;
LOC_CONSTANT:
emit_const_reg(op,S_NO,right.location.value,left.location.register);
LOC_REFERENCE,LOC_CREFERENCE:
begin
tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,right.location.reference);
emit_ref_reg(op,S_NO,right.location.reference,left.location.register);
end;
else
internalerror(2018022506);
end;
location.register:=left.location.register;
location_freetemp(current_asmdata.CurrAsmList,right.location);
end;
{$endif SUPPORT_MMX}
end.