fpc/compiler/x86/rax86.pas

2291 lines
84 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Carl Eric Codere and Peter Vreman
Handles the common x86 assembler reader routines
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{
Contains the common x86 (i386 and x86-64) assembler reader routines.
}
unit rax86;
{$i fpcdefs.inc}
interface
uses
aasmbase,aasmtai,aasmdata,aasmcpu,
cpubase,rautils,cclasses;
{ Parser helpers }
function is_prefix(t:tasmop):boolean;
function is_override(t:tasmop):boolean;
Function CheckPrefix(prefixop,op:tasmop): Boolean;
Function CheckOverride(overrideop,op:tasmop): Boolean;
Procedure FWaitWarning;
type
Tx86Operand=class(TOperand)
opsize : topsize;
vopext : smallint; // bitmask: vector-operand extention AVX512 (e.g. vaddps xmm0 {k1} {z})
vbcst : byte;
Procedure SetSize(_size:longint;force:boolean);override;
Procedure SetCorrectSize(opcode:tasmop);override;
Function CheckOperand(ins : TInstruction): boolean; override;
{ handles the @Code symbol }
Procedure SetupCode;
{ handles the @Data symbol }
Procedure SetupData;
constructor create; override;
end;
{ Operands are always in AT&T order.
Intel reader attaches them right-to-left, then shifts to start with 1 }
{ Tx86Instruction }
Tx86Instruction=class(TInstruction)
opsize : topsize;
constructor Create(optype : tcoperand);override;
{ Operand sizes }
procedure AddReferenceSizes; virtual;
procedure SetInstructionOpsize;
procedure CheckOperandSizes;
procedure CheckNonCommutativeOpcodes;
{ Additional actions required by specific reader }
procedure FixupOpcode;virtual;
{ opcode adding }
function ConcatInstruction(p : TAsmList) : tai;override;
function getstring(aAddMemRefSize: boolean = true): string;
{ returns true, if the opcode might have an extension as used by AVX512 }
function MightHaveExtension : boolean;
end;
const
AsmPrefixes = 8{$ifdef i8086}+2{$endif i8086};
AsmPrefix : array[0..AsmPrefixes-1] of TasmOP =(
A_LOCK,A_REP,A_REPE,A_REPNE,A_REPNZ,A_REPZ,A_XACQUIRE,A_XRELEASE{$ifdef i8086},A_REPC,A_REPNC{$endif i8086}
);
AsmOverrides = 6;
AsmOverride : array[0..AsmOverrides-1] of TasmOP =(
A_SEGCS,A_SEGES,A_SEGDS,A_SEGFS,A_SEGGS,A_SEGSS
);
CondAsmOps=3;
CondAsmOp:array[0..CondAsmOps-1] of TasmOp=(
A_CMOVcc, A_Jcc, A_SETcc
);
CondAsmOpStr:array[0..CondAsmOps-1] of string[4]=(
'CMOV','J','SET'
);
implementation
uses
globtype,globals,systems,verbose,
procinfo,
cgbase,cgutils,
itcpugas,cgx86, cutils;
{*****************************************************************************
Parser Helpers
*****************************************************************************}
function is_prefix(t:tasmop):boolean;
var
i : longint;
Begin
is_prefix:=false;
for i:=1 to AsmPrefixes do
if t=AsmPrefix[i-1] then
begin
is_prefix:=true;
exit;
end;
end;
function is_override(t:tasmop):boolean;
var
i : longint;
Begin
is_override:=false;
for i:=1 to AsmOverrides do
if t=AsmOverride[i-1] then
begin
is_override:=true;
exit;
end;
end;
Function CheckPrefix(prefixop,op:tasmop): Boolean;
{ Checks if the prefix is valid with the following opcode }
{ return false if not, otherwise true }
Begin
CheckPrefix := TRUE;
(* Case prefix of
A_REP,A_REPNE,A_REPE:
Case opcode Of
A_SCASB,A_SCASW,A_SCASD,
A_INS,A_OUTS,A_MOVS,A_CMPS,A_LODS,A_STOS:;
Else
Begin
CheckPrefix := FALSE;
exit;
end;
end; { case }
A_LOCK:
Case opcode Of
A_BT,A_BTS,A_BTR,A_BTC,A_XCHG,A_ADD,A_OR,A_ADC,A_SBB,A_AND,A_SUB,
A_XOR,A_NOT,A_NEG,A_INC,A_DEC:;
Else
Begin
CheckPrefix := FALSE;
Exit;
end;
end; { case }
A_NONE: exit; { no prefix here }
else
CheckPrefix := FALSE;
end; { end case } *)
end;
Function CheckOverride(overrideop,op:tasmop): Boolean;
{ Check if the override is valid, and if so then }
{ update the instr variable accordingly. }
Begin
CheckOverride := true;
{ Case instr.getinstruction of
A_MOVS,A_XLAT,A_CMPS:
Begin
CheckOverride := TRUE;
Message(assem_e_segment_override_not_supported);
end
end }
end;
Procedure FWaitWarning;
begin
if (target_info.system=system_i386_GO32V2) and (cs_fp_emulation in current_settings.moduleswitches) then
Message(asmr_w_fwait_emu_prob);
end;
{*****************************************************************************
TX86Operand
*****************************************************************************}
Procedure Tx86Operand.SetSize(_size:longint;force:boolean);
begin
inherited SetSize(_size,force);
{ OS_64 will be set to S_L and be fixed later
in SetCorrectSize }
// multimedia register
case _size of
16: size := OS_M128;
32: size := OS_M256;
64: size := OS_M512;
end;
{$ifdef i8086}
{ allows e.g. using 32-bit registers in i8086 inline asm }
if size in [OS_32,OS_S32] then
opsize:=S_L
else
{$endif i8086}
opsize:=TCGSize2Opsize[size];
end;
Procedure Tx86Operand.SetCorrectSize(opcode:tasmop);
begin
if gas_needsuffix[opcode]=attsufFPU then
begin
case size of
OS_32 : opsize:=S_FS;
OS_64 : opsize:=S_FL;
else
;
end;
end
else if gas_needsuffix[opcode]=attsufFPUint then
begin
case size of
OS_16 : opsize:=S_IS;
OS_32 : opsize:=S_IL;
OS_64 : opsize:=S_IQ;
else
;
end;
end
else if gas_needsuffix[opcode] in [AttSufMM, AttSufMMX, AttSufMMS] then
begin
if (opr.typ=OPR_Reference) then
begin
case size of
OS_32 : size := OS_M32;
OS_64 : size := OS_M64;
else
;
end;
end;
end
else
begin
if size=OS_64 then
opsize:=S_Q;
end;
end;
Function Tx86Operand.CheckOperand(ins : TInstruction): boolean;
var
ErrorRefStr: string;
begin
result:=true;
if (opr.typ=OPR_Reference) then
begin
if not hasvar then
begin
if (getsupreg(opr.ref.base)=RS_EBP) and (opr.ref.offset>0) then
begin
if current_settings.asmmode in asmmodes_x86_intel then
begin
case getsubreg(opr.ref.base) of
R_SUBW:
ErrorRefStr:='[BP+offset]';
R_SUBD:
ErrorRefStr:='[EBP+offset]';
R_SUBQ:
ErrorRefStr:='[RBP+offset]';
else
internalerror(2019061001);
end;
end
else
begin
case getsubreg(opr.ref.base) of
R_SUBW:
ErrorRefStr:='+offset(%bp)';
R_SUBD:
ErrorRefStr:='+offset(%ebp)';
R_SUBQ:
ErrorRefStr:='+offset(%rbp)';
else
internalerror(2019061002);
end;
end;
if current_procinfo.procdef.proccalloption=pocall_register then
message1(asmr_w_no_direct_ebp_for_parameter,ErrorRefStr)
else
message1(asmr_w_direct_ebp_for_parameter_regcall,ErrorRefStr);
end
else if (getsupreg(opr.ref.base)=RS_EBP) and (opr.ref.offset<0) then
begin
if current_settings.asmmode in asmmodes_x86_intel then
begin
case getsubreg(opr.ref.base) of
R_SUBW:
ErrorRefStr:='[BP-offset]';
R_SUBD:
ErrorRefStr:='[EBP-offset]';
R_SUBQ:
ErrorRefStr:='[RBP-offset]';
else
internalerror(2019061003);
end;
end
else
begin
case getsubreg(opr.ref.base) of
R_SUBW:
ErrorRefStr:='-offset(%bp)';
R_SUBD:
ErrorRefStr:='-offset(%ebp)';
R_SUBQ:
ErrorRefStr:='-offset(%rbp)';
else
internalerror(2019061004);
end;
end;
message1(asmr_w_direct_ebp_neg_offset,ErrorRefStr);
end
else if ((ins.opcode<>A_LEA) and (getsupreg(opr.ref.base)=RS_ESP) and (getsubreg(opr.ref.base)<>R_SUBW) and (opr.ref.offset<0)) or
((ins.opcode=A_LEA) and (getsupreg(ins.operands[2].opr.reg)<>RS_ESP) and (getsupreg(opr.ref.base)=RS_ESP) and (getsubreg(opr.ref.base)<>R_SUBW) and (opr.ref.offset<0)) then
begin
if current_settings.asmmode in asmmodes_x86_intel then
begin
case getsubreg(opr.ref.base) of
R_SUBD:
ErrorRefStr:='[ESP-offset]';
R_SUBQ:
ErrorRefStr:='[RSP-offset]';
else
internalerror(2019061005);
end;
end
else
begin
case getsubreg(opr.ref.base) of
R_SUBD:
ErrorRefStr:='-offset(%esp)';
R_SUBQ:
ErrorRefStr:='-offset(%rsp)';
else
internalerror(2019061006);
end;
end;
message1(asmr_w_direct_esp_neg_offset,ErrorRefStr);
end;
end;
if (cs_create_pic in current_settings.moduleswitches) and
assigned(opr.ref.symbol) and
not assigned(opr.ref.relsymbol) then
begin
if not(opr.ref.refaddr in [addr_pic,addr_pic_no_got]) then
begin
if (opr.ref.symbol.name <> '_GLOBAL_OFFSET_TABLE_') then
begin
message(asmr_e_need_pic_ref);
result:=false;
end
else
opr.ref.refaddr:=addr_pic;
end
else
begin
{$ifdef x86_64}
{ should probably be extended to i386, but there the situation
is more complex and ELF-style PIC still need to be
tested/debugged }
if (opr.ref.symbol.bind in [AB_LOCAL,AB_PRIVATE_EXTERN]) and
(opr.ref.refaddr=addr_pic) then
message(asmr_w_useless_got_for_local)
else if (opr.ref.symbol.bind in [AB_GLOBAL,AB_EXTERNAL,AB_COMMON,AB_WEAK_EXTERNAL]) and
(opr.ref.refaddr=addr_pic_no_got) then
message(asmr_w_global_access_without_got);
{$endif x86_64}
end;
end;
end;
end;
procedure Tx86Operand.SetupCode;
begin
{$ifdef i8086}
opr.typ:=OPR_SYMBOL;
opr.symofs:=0;
opr.symbol:=current_asmdata.RefAsmSymbol(current_procinfo.procdef.mangledname,AT_FUNCTION);
opr.symseg:=true;
opr.sym_farproc_entry:=false;
{$else i8086}
Message(asmr_w_CODE_and_DATA_not_supported);
{$endif i8086}
end;
procedure Tx86Operand.SetupData;
begin
{$ifdef i8086}
InitRef;
if current_settings.x86memorymodel=mm_huge then
opr.ref.refaddr:=addr_fardataseg
else
opr.ref.refaddr:=addr_dgroup;
{$else i8086}
Message(asmr_w_CODE_and_DATA_not_supported);
{$endif i8086}
end;
constructor Tx86Operand.create;
begin
inherited;
vopext := 0;
vbcst := 0;
end;
{*****************************************************************************
T386Instruction
*****************************************************************************}
constructor Tx86Instruction.Create(optype : tcoperand);
begin
inherited Create(optype);
Opsize:=S_NO;
end;
{ this will add the sizes for references like [esi] which do not
have the size set yet, it will take only the size if the other
operand is a register }
procedure Tx86Instruction.AddReferenceSizes;
var
operand2,i,j,k : longint;
s : tasmsymbol;
so : aint;
ExistsMemRefNoSize: boolean;
ExistsMemRef: boolean;
ExistsConstNoSize: boolean;
ExistConst: boolean;
ExistsLocalSymSize: boolean;
ExistsBCST: boolean;
memrefsize: integer;
memopsize: integer;
memoffset: asizeint;
vbcst: byte;
mmregs: Set of TSubregister;
multiplicator: integer;
bcst1,bcst2: string;
function ScanLowestOpsize(aValue: int64): int64;
var
i: integer;
begin
result := 0;
if aValue and OT_BITS8 = OT_BITS8 then result := 8
else if aValue and OT_BITS16 = OT_BITS16 then result := 16
else if aValue and OT_BITS32 = OT_BITS32 then result := 32
else if aValue and OT_BITS64 = OT_BITS64 then result := 64
else if aValue and OT_BITS128 = OT_BITS128 then result := 128
else if aValue and OT_BITS256 = OT_BITS256 then result := 256
else if aValue and OT_BITS512 = OT_BITS512 then result := 512;
end;
begin
ExistsMemRefNoSize := false;
ExistsMemRef := false;
ExistsConstNoSize := false;
ExistsLocalSymSize := false;
ExistsBCST := false;
// EXIST A MEMORY- OR CONSTANT-OPERAND WITHOUT SIZE ?
for i := 1 to ops do
begin
if operands[i].Opr.Typ in [OPR_REFERENCE, OPR_LOCAL] then
begin
ExistsMemRef := true;
ExistsBCST := (MemRefInfo(opcode).ExistsSSEAVX) and
(tx86operand(operands[i]).vbcst <> 0);
if (tx86operand(operands[i]).opsize = S_NO) then
begin
ExistsMemRefNoSize := true;
case operands[i].opr.Typ of
OPR_LOCAL: ExistsLocalSymSize := tx86operand(operands[i]).opr.localsym.getsize > 0;
OPR_REFERENCE: ExistsLocalSymSize := true;
else
;
end;
end;
end
else if operands[i].Opr.Typ in [OPR_CONSTANT] then
begin
ExistsConstNoSize := tx86operand(operands[i]).opsize = S_NO;
end;
end;
// ONLY SUPPORTED OPCODES WITH SSE- OR AVX-REGISTERS
if (ExistsMemRef) and
(MemRefInfo(opcode).ExistsSSEAVX) then
begin
// 1. WE HAVE AN SSE- OR AVX-OPCODE WITH MEMORY OPERAND
if (not(ExistsMemRefNoSize)) or
(ExistsLocalSymSize) then
begin
// 2. WE KNOWN THE MEMORYSIZE OF THE MEMORY-OPERAND OR WE CAN
// CALC THE MEMORYSIZE
// 3. CALC THE SIZE OF THE MEMORYOPERAND BY OPCODE-DEFINITION
// 4. COMPARE THE SIZE FROM OPCODE-DEFINITION AND THE REAL MEMORY-OPERAND-SIZE
// - validate memory-reference-size
for i := 1 to ops do
begin
if (operands[i].Opr.Typ in [OPR_REFERENCE, OPR_LOCAL]) then
begin
memrefsize := -1;
if ExistsBCST then
begin
case MemRefInfo(opcode).MemRefSizeBCST of
msbBCST32: memrefsize := 32;
msbBCST64: memrefsize := 64;
else
Internalerror(2019081015);
end;
end
else
case MemRefInfo(opcode).MemRefSize of
msiMem8: memrefsize := 8;
msiMem16: memrefsize := 16;
msiMem32: memrefsize := 32;
msiMem64: memrefsize := 64;
msiMem128: memrefsize := 128;
msiMem256: memrefsize := 256;
msiMem512: memrefsize := 512;
msiMemRegx16y32:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 16;
R_SUBMMY: memrefsize := 32;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx16y32z64:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 16;
R_SUBMMY: memrefsize := 32;
R_SUBMMZ: memrefsize := 64;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx32y64:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 32;
R_SUBMMY: memrefsize := 64;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx32y64z128:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 32;
R_SUBMMY: memrefsize := 64;
R_SUBMMZ: memrefsize := 128;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx64y128:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 64;
R_SUBMMY: memrefsize := 128;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx64y256:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 64;
R_SUBMMY: memrefsize := 256;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx64y128z256:
begin
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 64;
R_SUBMMY: memrefsize := 128;
R_SUBMMZ: memrefsize := 256;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
end;
msiMemRegx64y256z512:
begin
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: memrefsize := 64;
R_SUBMMY: memrefsize := 256;
R_SUBMMZ: memrefsize := 512;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
end;
msiMemRegSize:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
if (tx86operand(operands[j]).opsize <> S_NO) and
(tx86operand(operands[j]).size <> OS_NO) then
begin
case tx86operand(operands[j]).opsize of
S_B : memrefsize := 8;
S_W : memrefsize := 16;
S_L : memrefsize := 32;
S_Q : memrefsize := 64;
S_XMM : memrefsize := 128;
S_YMM : memrefsize := 256;
S_ZMM : memrefsize := 512;
else Internalerror(2019081010);
end;
break;
end;
end;
end;
end;
msiMemRegConst128,
msiMemRegConst256,
msiMemRegConst512:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_CONSTANT then
begin
for k := 1 to ops do
begin
if operands[k].Opr.Typ = OPR_REGISTER then
begin
if (tx86operand(operands[k]).opsize <> S_NO) and
(tx86operand(operands[k]).size <> OS_NO) then
begin
case tx86operand(operands[k]).opsize of
S_B : memrefsize := 8;
S_W : memrefsize := 16;
S_L : memrefsize := 32;
S_Q : memrefsize := 64;
S_XMM : memrefsize := 128;
S_YMM : memrefsize := 256;
S_ZMM : memrefsize := 512;
else Internalerror(777200);
end;
break;
end;
end;
end;
break;
end;
end;
// no exists const-operand
if memrefsize = -1 then
begin
case MemRefInfo(opcode).MemRefSize of
msiMemRegConst128: memrefsize := 128;
msiMemRegConst256: memrefsize := 256;
msiMemRegConst512: memrefsize := 512;
else Internalerror(2019081012);
end;
end;
end;
msiXMem32,
msiYMem32,
msiZMem32,
msiXMem64,
msiYMem64,
msiZMem64: ; // ignore; gather/scatter opcodes haven a fixed element-size, not a fixed memory-size
// the vector-register have indices with base of the memory-address in the memory-operand
msiMultipleMinSize8,
msiMultipleMinSize16,
msiMultipleMinSize32,
msiMultipleMinSize64,
msiMultipleMinSize128,
msiMultipleMinSize256,
msiMultipleMinSize512:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
memrefsize := ScanLowestOpsize(MemRefInfo(opcode).RegXMMSizeMask);
break;
end;
R_SUBMMY: begin
memrefsize := ScanLowestOpsize(MemRefInfo(opcode).RegYMMSizeMask);
break;
end;
R_SUBMMZ: begin
memrefsize := ScanLowestOpsize(MemRefInfo(opcode).RegZMMSizeMask);
break;
end;
else;
end;
end;
end;
if memrefsize = -1 then
begin
case MemRefInfo(opcode).MemRefSize of
msiMultipleMinSize8: memrefsize := 8;
msiMultipleMinSize16: memrefsize := 16;
msiMultipleMinSize32: memrefsize := 32;
msiMultipleMinSize64: memrefsize := 64;
msiMultipleMinSize128: memrefsize := 128;
msiMultipleMinSize256: memrefsize := 256;
msiMultipleMinSize512: memrefsize := 512;
else;
end;
end;
end;
msiNoSize,
msiNoMemRef,
msiUnknown,
msiUnsupported,
msiVMemMultiple,
msiVMemRegSize,
msiMultiple:
;
else
Internalerror(2020111001);
end;
if memrefsize > -1 then
begin
// CALC REAL-MEMORY-OPERAND-SIZE AND A POSSIBLE OFFSET
// OFFSET:
// e.g. PAND XMM0, [RAX + 16] =>> OFFSET = 16 BYTES
// PAND XMM0, [RAX + a.b + 10] =>> OFFSET = 10 BYTES (a = record-variable)
memopsize := 0;
case operands[i].opr.typ of
OPR_LOCAL: memopsize := operands[i].opr.localvarsize * 8;
OPR_REFERENCE:
if operands[i].opr.ref.refaddr = addr_pic then
memopsize := sizeof(pint) * 8
else
memopsize := operands[i].opr.varsize * 8;
else
;
end;
//if memopsize = 0 then memopsize := topsize2memsize[tx86operand(operands[i]).opsize];
if memopsize = 0 then
begin
{$ifdef i386}
{ 64-bit operands are allowed for SSE and AVX instructions, so
go by the byte size instead for these families of opcodes }
if (MemRefInfo(opcode).ExistsSSEAVX) then
begin
memopsize := tx86operand(operands[i]).typesize * 8;
if tx86operand(operands[i]).typesize = 8 then
{ Will be S_L otherwise and won't be corrected in time }
tx86operand(operands[i]).opsize := S_Q;
end
else
{$endif i386}
memopsize := topsize2memsize[tx86operand(operands[i]).opsize];
end;
if (memopsize > 0) and
(memrefsize > 0) then
begin
memoffset := 0;
case operands[i].opr.typ of
OPR_LOCAL:
memoffset := operands[i].opr.localconstoffset;
OPR_REFERENCE:
memoffset := operands[i].opr.constoffset;
else
;
end;
if ((operands[i].opr.ref.base=NR_ESP) or (operands[i].opr.ref.index=NR_ESP)) and (memoffset < 0) then
begin
Message2(asmr_w_check_mem_operand_negative_offset,
//std_op2str[opcode],
getstring(false),
ToStr(memoffset));
end
else if ((tx86operand(operands[i]).hastype) and (memopsize < memrefsize)) or
(memopsize < (memrefsize + memoffset * 8)) then
begin
if memopsize < memrefsize then
begin
if memoffset = 0 then
begin
Message3(asmr_w_check_mem_operand_size3,
getstring(false),
ToStr(memopsize),
ToStr(memrefsize)
);
end
else
begin
Message4(asmr_w_check_mem_operand_size_offset,
getstring(false),
ToStr(memopsize),
ToStr(memrefsize),
ToStr(memoffset)
);
end;
end;
end;
end;
end;
end;
end;
end;
end;
if (ExistsMemRefNoSize or ExistsConstNoSize) and
(MemRefInfo(opcode).ExistsSSEAVX) then
begin
for i := 1 to ops do
begin
if (tx86operand(operands[i]).opsize = S_NO) then
begin
case operands[i].Opr.Typ of
OPR_REFERENCE,
OPR_LOCAL:
begin
if ExistsBCST then
begin
case MemRefInfo(opcode).MemRefSizeBCST of
msbBCST32: begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_32;
end;
msbBCST64: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
end;
else
Internalerror(2019081017);
end;
end
else
case MemRefInfo(opcode).MemRefSize of
msiMem8:
begin
tx86operand(operands[i]).opsize := S_B;
tx86operand(operands[i]).size := OS_8;
end;
msiMultipleMinSize8:
begin
tx86operand(operands[i]).opsize := S_B;
tx86operand(operands[i]).size := OS_8;
Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"8 bit memory operand"');
end;
msiMem16:
begin
tx86operand(operands[i]).opsize := S_W;
tx86operand(operands[i]).size := OS_16;
end;
msiMultipleMinSize16:
begin
tx86operand(operands[i]).opsize := S_W;
tx86operand(operands[i]).size := OS_16;
Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"16 bit memory operand"');
end;
msiMem32:
begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_32;
end;
msiMultipleMinSize32:
begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_32;
Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"32 bit memory operand"');
end;
msiMem64:
begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
end;
msiMultipleMinSize64:
begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"64 bit memory operand"');
end;
msiMem128:
begin
tx86operand(operands[i]).opsize := S_XMM;
tx86operand(operands[i]).size := OS_M128;
end;
msiMultipleMinSize128:
begin
tx86operand(operands[i]).opsize := S_XMM;
tx86operand(operands[i]).size := OS_M128;
Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"128 bit memory operand"');
end;
msiMem256:
begin
tx86operand(operands[i]).opsize := S_YMM;
tx86operand(operands[i]).size := OS_M256;
opsize := S_YMM;
end;
msiMultipleMinSize256:
begin
tx86operand(operands[i]).opsize := S_YMM;
tx86operand(operands[i]).size := OS_M256;
opsize := S_YMM;
Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"256 bit memory operand"');
end;
msiMem512:
begin
tx86operand(operands[i]).opsize := S_ZMM;
tx86operand(operands[i]).size := OS_M512;
opsize := S_ZMM;
end;
msiMultipleMinSize512:
begin
tx86operand(operands[i]).opsize := S_ZMM;
tx86operand(operands[i]).size := OS_M512;
opsize := S_ZMM;
Message2(asmr_w_check_mem_operand_automap_multiple_size, GetString(false), '"512 bit memory operand"');
end;
msiMemRegSize:
begin
// mem-ref-size = register size
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
if (tx86operand(operands[j]).opsize <> S_NO) and
(tx86operand(operands[j]).size <> OS_NO) then
begin
tx86operand(operands[i]).opsize := tx86operand(operands[j]).opsize;
tx86operand(operands[i]).size := tx86operand(operands[j]).size;
break;
end
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
msiMemRegx16y32:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_W;
tx86operand(operands[i]).size := OS_M16;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_M32;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx16y32z64:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_W;
tx86operand(operands[i]).size := OS_M16;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_M32;
break;
end;
R_SUBMMZ: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx32y64:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_M32;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx32y64z128:
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_M32;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
break;
end;
R_SUBMMZ: begin
tx86operand(operands[i]).opsize := S_XMM;
tx86operand(operands[i]).size := OS_M128;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
msiMemRegx64y128:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_XMM;
tx86operand(operands[i]).size := OS_M128;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx64y128z256:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_XMM;
tx86operand(operands[i]).size := OS_M128;
break;
end;
R_SUBMMZ: begin
tx86operand(operands[i]).opsize := S_YMM;
tx86operand(operands[i]).size := OS_M256;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx64y256:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_YMM;
tx86operand(operands[i]).size := OS_M256;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegx64y256z512:
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
case getsubreg(operands[j].opr.reg) of
R_SUBMMX: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_M64;
break;
end;
R_SUBMMY: begin
tx86operand(operands[i]).opsize := S_YMM;
tx86operand(operands[i]).size := OS_M256;
break;
end;
R_SUBMMZ: begin
tx86operand(operands[i]).opsize := S_ZMM;
tx86operand(operands[i]).size := OS_M512;
break;
end;
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end;
end;
msiMemRegConst128,
msiMemRegConst256,
msiMemRegConst512:
begin
ExistConst := false;
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_CONSTANT then
begin
ExistConst := true;
break;
end;
end;
if ExistConst then
begin
for j := 1 to ops do
begin
if operands[j].Opr.Typ = OPR_REGISTER then
begin
if (tx86operand(operands[j]).opsize <> S_NO) and
(tx86operand(operands[j]).size <> OS_NO) then
begin
tx86operand(operands[i]).opsize := tx86operand(operands[j]).opsize;
tx86operand(operands[i]).size := tx86operand(operands[j]).size;
break;
end
else Message(asmr_e_unable_to_determine_reference_size);
end;
end;
end
else
begin
case MemRefInfo(opcode).MemRefSize of
msiMemRegConst128: begin
tx86operand(operands[i]).opsize := S_XMM;
tx86operand(operands[i]).size := OS_M128;
break;
end;
msiMemRegConst256: begin
tx86operand(operands[i]).opsize := S_YMM;
tx86operand(operands[i]).size := OS_M256;
break;
end;
msiMemRegConst512: begin
tx86operand(operands[i]).opsize := S_ZMM;
tx86operand(operands[i]).size := OS_M512;
break;
end;
else
Internalerror(2019081018);
end;
end;
end;
msiXMem32,
msiYMem32,
msiZMem32,
msiXMem64,
msiYMem64,
msiZMem64: ; // ignore; gather/scatter opcodes haven a fixed element-size, not a fixed memory-size
// the vector-register have indices with base of the memory-address in the memory-operand
msiNoSize: ; // all memory-sizes are ok
msiNoMemRef:; // ignore;
msiVMemMultiple,
msiVMemRegSize: ; // ignore
msiUnknown,
msiUnsupported,
msiMultiple: Message(asmr_e_unable_to_determine_reference_size); // TODO individual message
else
Internalerror(2019081008);
end;
end;
OPR_CONSTANT:
case MemRefInfo(opcode).ConstSize of
csiMem8: begin
tx86operand(operands[i]).opsize := S_B;
tx86operand(operands[i]).size := OS_8;
end;
csiMem16: begin
tx86operand(operands[i]).opsize := S_W;
tx86operand(operands[i]).size := OS_16;
end;
csiMem32: begin
tx86operand(operands[i]).opsize := S_L;
tx86operand(operands[i]).size := OS_32;
end;
{$ifdef x86_64}
csiMem64: begin
tx86operand(operands[i]).opsize := S_Q;
tx86operand(operands[i]).size := OS_64;
end;
{$else}
csiMem64: begin
internalerror(2019050910);
end;
{$endif}
csiUnknown, csiMultiple, csiNoSize:
;
end;
else
;
end;
end;
end;
end;
for i:=1 to ops do
begin
operands[i].SetCorrectSize(opcode);
if tx86operand(operands[i]).opsize=S_NO then
begin
{$ifdef x86_64}
if (opcode=A_MOVQ) and
(ops=2) and
(operands[1].opr.typ=OPR_CONSTANT) then
opsize:=S_Q
else
{$endif x86_64}
case operands[i].Opr.Typ of
OPR_LOCAL,
OPR_REFERENCE :
begin
{ for 3-operand opcodes, operand #1 (in ATT order) is always an immediate,
don't consider it. }
if i=ops then
operand2:=i-1
else
operand2:=i+1;
if operand2>0 then
begin
{ Only allow register as operand to take the size from }
if operands[operand2].opr.typ=OPR_REGISTER then
begin
if ((opcode<>A_MOVD) and
(opcode<>A_CVTSI2SS)) then
begin
//tx86operand(operands[i]).opsize:=tx86operand(operands[operand2]).opsize;
// torsten - 31.01.2012
// old: xmm/ymm-register operands have a opsize = "S_NO"
// new: xmm/ymm-register operands have a opsize = "S_XMM/S_YMM"
// any SSE- and AVX-opcodes have mixed operand sizes (e.g. cvtsd2ss xmmreg, xmmreg/m32)
// in this case is we need the old handling ("S_NO")
// =>> ignore
if (tx86operand(operands[operand2]).opsize <> S_XMM) and
(tx86operand(operands[operand2]).opsize <> S_YMM) and
(tx86operand(operands[operand2]).opsize <> S_ZMM) then
tx86operand(operands[i]).opsize:=tx86operand(operands[operand2]).opsize
else tx86operand(operands[operand2]).opsize := S_NO;
end;
end
else
begin
{ if no register then take the opsize (which is available with ATT),
if not availble then give an error }
if opsize<>S_NO then
tx86operand(operands[i]).opsize:=opsize
else
begin
if (m_delphi in current_settings.modeswitches) then
Message(asmr_w_unable_to_determine_reference_size_using_dword)
else
Message(asmr_e_unable_to_determine_reference_size);
{ recovery }
tx86operand(operands[i]).opsize:=S_L;
end;
end;
end
else
begin
if opsize<>S_NO then
tx86operand(operands[i]).opsize:=opsize
else if not(NoMemorySizeRequired(opcode) or
(opcode=A_JMP) or (opcode=A_JCC) or (opcode=A_CALL) or (opcode=A_LCALL) or (opcode=A_LJMP)) then
begin
if (m_delphi in current_settings.modeswitches) then
Message(asmr_w_unable_to_determine_reference_size_using_dword)
else
Message(asmr_e_unable_to_determine_reference_size);
{ recovery }
tx86operand(operands[i]).opsize:=S_L;
end;
end;
end;
OPR_SYMBOL :
begin
{ Fix lea which need a reference }
if opcode=A_LEA then
begin
s:=operands[i].opr.symbol;
so:=operands[i].opr.symofs;
operands[i].opr.typ:=OPR_REFERENCE;
Fillchar(operands[i].opr.ref,sizeof(treference),0);
operands[i].opr.ref.symbol:=s;
operands[i].opr.ref.offset:=so;
end;
{$if defined(x86_64)}
tx86operand(operands[i]).opsize:=S_Q;
{$elseif defined(i386)}
tx86operand(operands[i]).opsize:=S_L;
{$elseif defined(i8086)}
tx86operand(operands[i]).opsize:=S_W;
{$endif}
end;
else
;
end;
end;
end;
if MemRefInfo(opcode).ExistsSSEAVX then
begin
// validate broadcast-memory-operands
vbcst := 0;
mmregs := [];
for i := 1 to ops do
if operands[i].Opr.Typ in [OPR_REFERENCE, OPR_LOCAL] then vbcst := tx86operand(operands[i]).vbcst
else if operands[i].Opr.Typ = OPR_REGISTER then
begin
if getsubreg(operands[i].opr.reg) in [R_SUBMMX, R_SUBMMY, R_SUBMMZ] then
begin
include(mmregs, getsubreg(operands[i].opr.reg));
end;
end;
if vbcst <> 0 then
begin
// found broadcast-memory-operand (e.g. "{1to8}")
// check is correct
multiplicator := 0;
if mmregs = [R_SUBMMX] then multiplicator := 1
else if mmregs = [R_SUBMMY] then multiplicator := 2
else if mmregs = [R_SUBMMZ] then multiplicator := 4
else
begin
//TG TODO
end;
if MemRefInfo(opcode).BCSTTypes <> [] then
begin
str(MemRefInfo(opcode).BCSTXMMMultiplicator * multiplicator, bcst1);
str(vbcst, bcst2);
case vbcst of
2: if not(bt1to2 in MemRefInfo(opcode).BCSTTypes) then
Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2);
4: if not(bt1to4 in MemRefInfo(opcode).BCSTTypes) then
Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2);
8: if not(bt1to8 in MemRefInfo(opcode).BCSTTypes) then
Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2);
16: if not(bt1to16 in MemRefInfo(opcode).BCSTTypes) then
Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2);
end;
end
else if MemRefInfo(opcode).BCSTXMMMultiplicator * multiplicator <> vbcst then
begin
str(MemRefInfo(opcode).BCSTXMMMultiplicator * multiplicator, bcst1);
str(vbcst, bcst2);
Message2(asmr_e_mismatch_broadcasting_elements, '1to' + bcst1, '1to' + bcst2);
end;
end;
end;
end;
procedure Tx86Instruction.SetInstructionOpsize;
function CheckSSEAVX: Boolean;
var
i: integer;
iSizeMask: int64;
bBroadcastMemRef: boolean;
bExistMemRef: boolean;
ValidOpSizes: Set of topsize;
begin
Result := False;
with MemRefInfo(opcode) do
begin
if (ExistsSSEAVX) then
begin
bBroadcastMemRef := false;
for i := 1 to ops do
bBroadcastMemRef := bBroadcastMemRef or ((tx86operand(operands[i]).vopext and OTVE_VECTOR_BCST) = OTVE_VECTOR_BCST);
if bBroadcastMemRef then
begin
opsize := S_NO;
result := true;
end
else
begin
if (gas_needsuffix[opcode] = AttSufMMS) and (ops > 0) then
begin
// special handling = use source operand for calculate instructions-opsize
// e.g. vcvtsi2sd, vcvtsi2ss, vcvtusi2sd, vcvtusi2ss,
// vfpclass..
if (ops > 2) and
(tx86operand(operands[1]).opr.typ = OPR_CONSTANT) then
opsize:=tx86operand(operands[2]).opsize
else opsize:=tx86operand(operands[1]).opsize;
if (MemRefSize in [msiMultipleMinSize128, msiMultipleMinSize256, msiMultipleMinSize512]) and
(not(opsize in [S_XMM, S_YMM, S_ZMM])) then
begin
// special handling for external gas assembler, special opcodes (e.g. vfpclassps/pd)
case MemRefSize of
msiMultipleMinSize128: opsize := S_XMM;
msiMultipleMinSize256: opsize := S_YMM;
msiMultipleMinSize512: opsize := S_ZMM;
else;
end;
end;
result := true;
end
else if MemRefSize in MemRefMultiples - [msiVMemMultiple] then
begin
case ops of
2: begin
opsize:=tx86operand(operands[1]).opsize;
result := true;
end;
3,4:
begin
if (tx86operand(operands[1]).opr.typ <> OPR_CONSTANT) then
opsize:=tx86operand(operands[1]).opsize
else opsize:=tx86operand(operands[2]).opsize;
result := true;
end;
end;
if (result) and
(ops > 0) and
(MemRefSize in [msiMultipleMinSize128, msiMultipleMinSize256, msiMultipleMinSize512]) and
(gas_needsuffix[opcode] in [AttSufMMS, AttSufMMX]) then
begin
// external gas assembler need suffix (different opsizes possible)
// - in fpc not exists datatypes for vector-variables
// =>> all memsize = ok, but any special opcodes (marked with attSufMMS,attSUFMMX) needed in any combination of operandtypes the exact opsize
// =>> check instructions-opsize and use the correct vector-mem-opsize
for i := 1 to ops do
if tx86operand(operands[i]).opr.typ in [OPR_REGISTER] then
begin
ValidOpSizes := [];
case tx86operand(operands[i]).opsize of
S_XMM: iSizeMask := RegXMMSizeMask;
S_YMM: iSizeMask := RegYMMSizeMask;
S_ZMM: iSizeMask := RegZMMSizeMask;
else iSizeMask := 0;
end;
if iSizemask and OT_BITS128 = OT_BITS128 then include(ValidOpSizes, S_XMM);
if iSizemask and OT_BITS256 = OT_BITS256 then include(ValidOpSizes, S_YMM);
if iSizemask and OT_BITS512 = OT_BITS512 then include(ValidOpSizes, S_ZMM);
if (ValidOpsizes <> []) then
begin
if not(opsize in ValidOpSizes) then
begin
// instructions-opsize is invalid =>> use smallest valid opsize
if iSizemask and OT_BITS128 = OT_BITS128 then opsize := S_XMM
else if iSizemask and OT_BITS256 = OT_BITS256 then opsize := S_YMM
else if iSizemask and OT_BITS512 = OT_BITS512 then opsize := S_ZMM;
end;
end
else ; // empty ValidOpsize =>> nothing todo???
break;
end;
end;
end
else if
(gas_needsuffix[opcode] = AttSufNone) and
(not(MemRefSize in [msiMemRegSize])) then
begin
// external gnu-assembler: no suffix =>> use instructions.opsize to define memory-reference size
// Tx86Instruction: local variable: operand.opsize
for i := 1 to ops do
if tx86operand(operands[i]).opr.typ in [OPR_REFERENCE,OPR_LOCAL] then
begin
opsize := tx86operand(operands[i]).opsize;
result := true;
break;
end;
end;
end;
end;
end;
end;
begin
if opsize<>S_NO then
exit;
case ops of
0 : ;
1 :
begin
{ "push es" must be stored as a long PM }
if ((opcode=A_PUSH) or
(opcode=A_POP)) and
(operands[1].opr.typ=OPR_REGISTER) and
is_segment_reg(operands[1].opr.reg) then
{$ifdef i8086}
opsize:=S_W
{$else i8086}
opsize:=S_L
{$endif i8086}
else
opsize:=tx86operand(operands[1]).opsize;
end;
2 : begin
case opcode of
A_MOVZX,A_MOVSX :
begin
if tx86operand(operands[1]).opsize=S_NO then
begin
tx86operand(operands[1]).opsize:=S_B;
if (m_delphi in current_settings.modeswitches) then
Message(asmr_w_unable_to_determine_reference_size_using_byte)
else
Message(asmr_e_unable_to_determine_reference_size);
end;
case tx86operand(operands[1]).opsize of
S_W :
case tx86operand(operands[2]).opsize of
S_L :
opsize:=S_WL;
{$ifdef x86_64}
S_Q :
opsize:=S_WQ;
{$endif}
else
;
end;
S_B :
begin
case tx86operand(operands[2]).opsize of
S_W :
opsize:=S_BW;
S_L :
opsize:=S_BL;
{$ifdef x86_64}
S_Q :
opsize:=S_BQ;
{$endif}
else
;
end;
end;
else
;
end;
end;
A_MOVD : { movd is a move from a mmx register to a
32 bit register or memory, so no opsize is correct here PM }
exit;
A_MOVQ :
opsize:=S_IQ;
A_OUT :
opsize:=tx86operand(operands[1]).opsize;
else
if not CheckSSEAVX then
opsize:=tx86operand(operands[2]).opsize;
end;
end;
3,4 : if not CheckSSEAVX then
opsize:=tx86operand(operands[ops]).opsize;
end;
end;
procedure Tx86Instruction.CheckOperandSizes;
var
sizeerr : boolean;
i : longint;
begin
{ Check only the most common opcodes here, the others are done in
the assembler pass }
case opcode of
A_PUSH,A_POP,A_DEC,A_INC,A_NOT,A_NEG,
A_CMP,A_MOV,
A_ADD,A_SUB,A_ADC,A_SBB,
A_AND,A_OR,A_TEST,A_XOR: ;
else
exit;
end;
{ Handle the BW,BL,WL separatly }
sizeerr:=false;
{ special push/pop selector case }
if ((opcode=A_PUSH) or
(opcode=A_POP)) and
(operands[1].opr.typ=OPR_REGISTER) and
is_segment_reg(operands[1].opr.reg) then
exit;
if opsize in [S_BW,S_BL,S_WL] then
begin
if ops<>2 then
sizeerr:=true
else
begin
case opsize of
S_BW :
sizeerr:=(tx86operand(operands[1]).opsize<>S_B) or (tx86operand(operands[2]).opsize<>S_W);
S_BL :
sizeerr:=(tx86operand(operands[1]).opsize<>S_B) or (tx86operand(operands[2]).opsize<>S_L);
S_WL :
sizeerr:=(tx86operand(operands[1]).opsize<>S_W) or (tx86operand(operands[2]).opsize<>S_L);
{$ifdef x86_64}
S_BQ:
sizeerr:=(tx86operand(operands[1]).opsize<>S_B) or (tx86operand(operands[2]).opsize<>S_Q);
S_WQ:
sizeerr:=(tx86operand(operands[1]).opsize<>S_W) or (tx86operand(operands[2]).opsize<>S_Q);
S_LQ:
sizeerr:=(tx86operand(operands[1]).opsize<>S_L) or (tx86operand(operands[2]).opsize<>S_Q);
{$endif}
else
;
end;
end;
end
else
begin
for i:=1 to ops do
begin
if (operands[i].opr.typ<>OPR_CONSTANT) and
(tx86operand(operands[i]).opsize in [S_B,S_W,S_L]) and
(tx86operand(operands[i]).opsize<>opsize) then
sizeerr:=true;
end;
end;
if sizeerr then
begin
{ if range checks are on then generate an error }
if (cs_compilesystem in current_settings.moduleswitches) or
not (cs_check_range in current_settings.localswitches) then
Message(asmr_w_size_suffix_and_dest_dont_match)
else
Message(asmr_e_size_suffix_and_dest_dont_match);
end;
end;
{ This check must be done with the operand in ATT order
i.e.after swapping in the intel reader
but before swapping in the NASM and TASM writers PM }
procedure Tx86Instruction.CheckNonCommutativeOpcodes;
begin
if (
(ops=2) and
(operands[1].opr.typ=OPR_REGISTER) and
(operands[2].opr.typ=OPR_REGISTER) and
{ if the first is ST and the second is also a register
it is necessarily ST1 .. ST7 }
((operands[1].opr.reg=NR_ST) or
(operands[1].opr.reg=NR_ST0))
) or
(ops=0) then
if opcode=A_FSUBR then
opcode:=A_FSUB
else if opcode=A_FSUB then
opcode:=A_FSUBR
else if opcode=A_FDIVR then
opcode:=A_FDIV
else if opcode=A_FDIV then
opcode:=A_FDIVR
else if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
if (
(ops=1) and
(operands[1].opr.typ=OPR_REGISTER) and
(getregtype(operands[1].opr.reg)=R_FPUREGISTER) and
(operands[1].opr.reg<>NR_ST) and
(operands[1].opr.reg<>NR_ST0)
) then
if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
end;
procedure Tx86Instruction.FixupOpcode;
begin
{ does nothing by default }
end;
{*****************************************************************************
opcode Adding
*****************************************************************************}
function Tx86Instruction.ConcatInstruction(p : TAsmList) : tai;
var
siz : topsize;
i : longint;
asize : int64;
ai : taicpu;
begin
ConcatInstruction:=nil;
ai:=nil;
for i:=1 to Ops do
if not operands[i].CheckOperand(self) then
exit;
{ Get Opsize }
if (opsize<>S_NO) or (Ops=0) then
siz:=opsize
else
begin
if (Ops=2) and (operands[1].opr.typ=OPR_REGISTER) then
siz:=tx86operand(operands[1]).opsize
else
siz:=tx86operand(operands[Ops]).opsize;
{ MOVD should be of size S_LQ or S_QL, but these do not exist PM }
if (ops=2) and
(tx86operand(operands[1]).opsize<>S_NO) and
(tx86operand(operands[2]).opsize<>S_NO) and
(tx86operand(operands[1]).opsize<>tx86operand(operands[2]).opsize) then
siz:=S_NO;
end;
if ((opcode=A_MOVD)or
(opcode=A_CVTSI2SS)) and
((tx86operand(operands[1]).opsize=S_NO) or
(tx86operand(operands[2]).opsize=S_NO)) then
siz:=S_NO;
{ NASM does not support FADD without args
as alias of FADDP
and GNU AS interprets FADD without operand differently
for version 2.9.1 and 2.9.5 !! }
if (ops=0) and
((opcode=A_FADD) or
(opcode=A_FMUL) or
(opcode=A_FSUB) or
(opcode=A_FSUBR) or
(opcode=A_FDIV) or
(opcode=A_FDIVR)) then
begin
if opcode=A_FADD then
opcode:=A_FADDP
else if opcode=A_FMUL then
opcode:=A_FMULP
else if opcode=A_FSUB then
opcode:=A_FSUBP
else if opcode=A_FSUBR then
opcode:=A_FSUBRP
else if opcode=A_FDIV then
opcode:=A_FDIVP
else if opcode=A_FDIVR then
opcode:=A_FDIVRP;
message1(asmr_w_fadd_to_faddp,std_op2str[opcode]);
end;
{It is valid to specify some instructions without operand size.}
if siz=S_NO then
begin
if (ops=1) and (opcode=A_INT) then
siz:=S_B;
if (ops=1) and (opcode=A_XABORT) then
siz:=S_B;
{$ifdef i8086}
if (ops=1) and (opcode=A_BRKEM) then
siz:=S_B;
{$endif i8086}
if (ops=1) and (opcode=A_RET) or (opcode=A_RETN) or (opcode=A_RETF) or
(opcode=A_RETW) or (opcode=A_RETNW) or (opcode=A_RETFW) or
{$ifndef x86_64}
(opcode=A_RETD) or (opcode=A_RETND) or
{$endif x86_64}
(opcode=A_RETFD)
{$ifdef x86_64}
or (opcode=A_RETQ) or (opcode=A_RETNQ) or (opcode=A_RETFQ)
{$endif x86_64}
then
siz:=S_W;
if (ops=1) and (opcode=A_PUSH) then
begin
{$ifdef i8086}
if (tx86operand(operands[1]).opr.val>=-128) and (tx86operand(operands[1]).opr.val<=127) then
begin
siz:=S_B;
message(asmr_w_unable_to_determine_constant_size_using_byte);
end
else
begin
siz:=S_W;
message(asmr_w_unable_to_determine_constant_size_using_word);
end;
{$else i8086}
{ We are a 32 compiler, assume 32-bit by default. This is Delphi
compatible but bad coding practise.}
siz:=S_L;
message(asmr_w_unable_to_determine_reference_size_using_dword);
{$endif i8086}
end;
if (opcode=A_JMP) or (opcode=A_JCC) or (opcode=A_CALL) then
if ops=1 then
siz:=S_NEAR
else
siz:=S_FAR;
end;
{ GNU AS interprets FDIV without operand differently
for version 2.9.1 and 2.10
we add explicit args to it !! }
if (ops=0) and
((opcode=A_FSUBP) or
(opcode=A_FSUBRP) or
(opcode=A_FDIVP) or
(opcode=A_FDIVRP) or
(opcode=A_FSUB) or
(opcode=A_FSUBR) or
(opcode=A_FADD) or
(opcode=A_FADDP) or
(opcode=A_FDIV) or
(opcode=A_FDIVR)) then
begin
message1(asmr_w_adding_explicit_args_fXX,std_op2str[opcode]);
ops:=2;
operands[1].opr.typ:=OPR_REGISTER;
operands[2].opr.typ:=OPR_REGISTER;
operands[1].opr.reg:=NR_ST0;
operands[2].opr.reg:=NR_ST1;
end;
if (ops=1) and
(
(operands[1].opr.typ=OPR_REGISTER) and
(getregtype(operands[1].opr.reg)=R_FPUREGISTER) and
(operands[1].opr.reg<>NR_ST) and
(operands[1].opr.reg<>NR_ST0)
) and
(
(opcode=A_FSUBP) or
(opcode=A_FSUBRP) or
(opcode=A_FDIVP) or
(opcode=A_FDIVRP) or
(opcode=A_FADDP) or
(opcode=A_FMULP)
) then
begin
message1(asmr_w_adding_explicit_first_arg_fXX,std_op2str[opcode]);
ops:=2;
operands[2].opr.typ:=OPR_REGISTER;
operands[2].opr.reg:=operands[1].opr.reg;
operands[1].opr.reg:=NR_ST0;
end;
if (ops=1) and
(
(operands[1].opr.typ=OPR_REGISTER) and
(getregtype(operands[1].opr.reg)=R_FPUREGISTER) and
(operands[1].opr.reg<>NR_ST) and
(operands[1].opr.reg<>NR_ST0)
) and
(
(opcode=A_FSUB) or
(opcode=A_FSUBR) or
(opcode=A_FDIV) or
(opcode=A_FDIVR) or
(opcode=A_FADD) or
(opcode=A_FMUL)
) then
begin
message1(asmr_w_adding_explicit_second_arg_fXX,std_op2str[opcode]);
ops:=2;
operands[2].opr.typ:=OPR_REGISTER;
operands[2].opr.reg:=NR_ST0;
end;
{ Check for 'POP CS' }
if (opcode=A_POP) and (ops=1) and (operands[1].opr.typ=OPR_REGISTER) and
(operands[1].opr.reg=NR_CS) then
{$ifdef i8086}
{ On i8086 we print only a warning, because 'POP CS' works on 8086 and 8088
CPUs, but isn't supported on any later CPU }
Message(asmr_w_pop_cs_not_portable);
{$else i8086}
{ On the i386 and x86_64 targets, we print out an error, because no CPU,
supported by these targets support 'POP CS' }
Message(asmr_e_pop_cs_not_valid);
{$endif i8086}
{ I tried to convince Linus Torvalds to add
code to support ENTER instruction
(when raising a stack page fault)
but he replied that ENTER is a bad instruction and
Linux does not need to support it
So I think its at least a good idea to add a warning
if someone uses this in assembler code
FPC itself does not use it at all PM }
if (opcode=A_ENTER) and
(target_info.system in [system_i386_linux,system_i386_FreeBSD,system_i386_android]) then
Message(asmr_w_enter_not_supported_by_linux);
ai:=taicpu.op_none(opcode,siz);
ai.fileinfo:=filepos;
ai.SetOperandOrder(op_att);
ai.Ops:=Ops;
ai.Allocate_oper(Ops);
for i:=1 to Ops do
begin
ai.oper[i-1]^.vopext := (operands[i] as tx86operand).vopext;
case operands[i].opr.typ of
OPR_CONSTANT :
ai.loadconst(i-1,operands[i].opr.val);
OPR_REGISTER:
ai.loadreg(i-1,operands[i].opr.reg);
OPR_SYMBOL:
{$ifdef i8086}
if operands[i].opr.symseg then
taicpu(ai).loadsegsymbol(i-1,operands[i].opr.symbol)
else
{$endif i8086}
ai.loadsymbol(i-1,operands[i].opr.symbol,operands[i].opr.symofs);
OPR_LOCAL :
with operands[i].opr do
begin
ai.loadlocal(i-1,localsym,localsymofs,localindexreg,
localscale,localgetoffset,localforceref);
ai.oper[i-1]^.localoper^.localsegment:=localsegment;
// check for embedded broadcast
if MemRefInfo(opcode).ExistsSSEAVX then
begin
asize := 0;
if ((operands[i] as tx86operand).vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST) and
(MemRefInfo(opcode).MemRefSizeBCST in [msbBCST32,msbBCST64]) then
begin
case operands[i].size of
OS_32,OS_M32: asize:=OT_BITS32;
OS_64,OS_M64: asize:=OT_BITS64;
else;
end;
end;
if asize<>0 then
//ai.oper[i-1]^.ot:=(ai.oper[i-1]^.ot and not OT_SIZE_MASK) or asize;
ai.oper[i-1]^.ot:=(ai.oper[i-1]^.ot and OT_NON_SIZE) or asize;
end;
end;
OPR_REFERENCE:
begin
if current_settings.optimizerswitches <> [] then
if (not(MemRefInfo(opcode).MemRefSize in MemRefSizeInfoVMems)) and (opcode<>A_XLAT) and not is_x86_string_op(opcode) then
optimize_ref(operands[i].opr.ref,true);
ai.loadref(i-1,operands[i].opr.ref);
if operands[i].size<>OS_NO then
begin
asize:=0;
case operands[i].size of
OS_8,OS_S8 :
asize:=OT_BITS8;
OS_16,OS_S16, OS_M16:
asize:=OT_BITS16;
OS_32,OS_S32 :
{$ifdef i8086}
if siz=S_FAR then
asize:=OT_FAR
else
asize:=OT_BITS32;
{$else i8086}
asize:=OT_BITS32;
{$endif i8086}
OS_F32,OS_M32 :
asize:=OT_BITS32;
OS_64,OS_S64:
begin
{ Only FPU and SSE/AVX operations know about 64bit
values, for all integer operations it is seen as 32bit
this applies only to i386, see tw16622}
if (gas_needsuffix[opcode] in [attsufFPU,attsufFPUint]) or (MemRefInfo(opcode).ExistsSSEAVX) then
asize:=OT_BITS64
{$ifdef i386}
else
asize:=OT_BITS32
{$endif i386}
;
end;
OS_F64,OS_C64, OS_M64 :
asize:=OT_BITS64;
OS_F80 :
asize:=OT_BITS80;
OS_128,OS_M128:
asize := OT_BITS128;
OS_M256:
asize := OT_BITS256;
OS_M512:
asize := OT_BITS512;
else
;
end;
if asize<>0 then
ai.oper[i-1]^.ot:=(ai.oper[i-1]^.ot and OT_NON_SIZE) or asize;
end;
end;
else
;
end;
end;
{ Condition ? }
if condition<>C_None then
ai.SetCondition(condition);
{ Set is_jmp, it enables asmwriter to emit short jumps if appropriate }
if (opcode=A_JMP) or (opcode=A_JCC) then
ai.is_jmp := True;
{ Concat the opcode or give an error }
if assigned(ai) then
p.concat(ai)
else
Message(asmr_e_invalid_opcode_and_operand);
result:=ai;
end;
function Tx86Instruction.getstring(aAddMemRefSize: boolean): string;
var
i : longint;
s, sval : string;
regnr: string;
addsize : boolean;
begin
s:='['+std_op2str[opcode];
for i:=1 to ops do
begin
with operands[i] as Tx86Operand do
begin
if i=1 then
s:=s+' '
else
s:=s+',';
{ type }
addsize:=false;
case operands[i].opr.typ of
OPR_CONSTANT : begin
str(operands[i].opr.val, sval);
s:=s+ sval;
end;
OPR_REGISTER : begin
regnr := '';
str(getsupreg(opr.reg),regnr);
if getsubreg(opr.reg)= R_SUBMMX then
s:=s+'xmmreg' + regnr
else
if getsubreg(opr.reg)= R_SUBMMY then
s:=s+'ymmreg' + regnr
else
if getsubreg(opr.reg)= R_SUBMMZ then
s:=s+'zmmreg' + regnr
else
if getregtype(opr.reg)= R_MMXREGISTER then
s:=s+'mmxreg'
else
if getregtype(opr.reg)= R_FPUREGISTER then
s:=s+'fpureg'
else
if getregtype(opr.reg)=R_INTREGISTER then
begin
s:=s+'reg';
addsize:=true;
end
else
if getregtype(opr.reg)=R_ADDRESSREGISTER then
begin
s:=s+'k' + regnr;
end;
end;
OPR_LOCAL,
OPR_REFERENCE: begin
s:=s + 'mem';
if aAddMemRefSize then
addsize:=true;
end;
else s:=s + '???';
end;
if addsize then
begin
sval := '';
str(tcgsize2size[size], sval);
s := s + sval;
end;
if vopext <> 0 then
begin
str(vopext and $07, regnr);
if vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
s := s + ' {k' + regnr + '}';
if vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then
s := s + ' {z}';
if vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
s := s + ' {sae}';
if vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
case vopext and OTVE_VECTOR_BCST_MASK of
OTVE_VECTOR_BCST2: s := s + ' {1to2}';
OTVE_VECTOR_BCST4: s := s + ' {1to4}';
OTVE_VECTOR_BCST8: s := s + ' {1to8}';
OTVE_VECTOR_BCST16: s := s + ' {1to16}';
end;
if vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
case vopext and OTVE_VECTOR_ER_MASK of
OTVE_VECTOR_RNSAE: s := s + ' {rn-sae}';
OTVE_VECTOR_RDSAE: s := s + ' {rd-sae}';
OTVE_VECTOR_RUSAE: s := s + ' {ru-sae}';
OTVE_VECTOR_RZSAE: s := s + ' {rz-sae}';
end;
end;
end;
end;
GetString:=s+']';
end;
function Tx86Instruction.MightHaveExtension: boolean;
begin
Result:=aasmcpu.MightHaveExtension(opcode);
end;
end.