fpc/packages/pasjpeg/examples/wrbmp.pas
peter b90270401a * move pasjpeg
* add fpmake.pp for pasjpeg

git-svn-id: trunk@9907 -
2008-01-24 23:09:54 +00:00

609 lines
20 KiB
ObjectPascal

Unit wrbmp;
{ Copyright (C) 1994-1996, Thomas G. Lane.
This code contributed by James Arthur Boucher.
This file contains routines to write output images in Microsoft "BMP"
format (MS Windows 3.x and OS/2 1.x flavors).
Either 8-bit colormapped or 24-bit full-color format can be written.
No compression is supported. }
interface
{$I jconfig.inc}
uses
jmorecfg,
jpeglib,
jinclude,
jdeferr,
jerror,
jdmaster,
cdjpeg; { Common decls for cjpeg/djpeg applications }
{ The module selection routine for BMP format output. }
{GLOBAL}
function jinit_write_bmp (cinfo : j_decompress_ptr;
is_os2 : boolean) : djpeg_dest_ptr;
implementation
{ To support 12-bit JPEG data, we'd have to scale output down to 8 bits.
This is not yet implemented. }
{$ifndef BITS_IN_JSAMPLE_IS_8}
Sorry, this code only copes with 8-bit JSAMPLEs. { deliberate syntax err }
{$endif}
{ Since BMP stores scanlines bottom-to-top, we have to invert the image
from JPEG's top-to-bottom order. To do this, we save the outgoing data
in a virtual array during put_pixel_row calls, then actually emit the
BMP file during finish_output. The virtual array contains one JSAMPLE per
pixel if the output is grayscale or colormapped, three if it is full color.}
{ Private version of data destination object }
type
bmp_dest_ptr = ^bmp_dest_struct;
bmp_dest_struct = record
pub : djpeg_dest_struct; { public fields }
is_os2 : boolean; { saves the OS2 format request flag }
whole_image : jvirt_sarray_ptr; { needed to reverse row order }
data_width : JDIMENSION; { JSAMPLEs per row }
row_width : JDIMENSION; { physical width of one row in the BMP file }
pad_bytes : int; { number of padding bytes needed per row }
cur_output_row : JDIMENSION; { next row# to write to virtual array }
end;
{ Forward declarations }
{LOCAL}
procedure write_colormap(cinfo : j_decompress_ptr;
dest : bmp_dest_ptr;
map_colors : int;
map_entry_size : int); forward;
{ Write some pixel data.
In this module rows_supplied will always be 1. }
{METHODDEF}
procedure put_pixel_rows (cinfo : j_decompress_ptr;
dinfo : djpeg_dest_ptr;
rows_supplied : JDIMENSION); far;
{ This version is for writing 24-bit pixels }
var
dest : bmp_dest_ptr;
image_ptr : JSAMPARRAY;
{register} inptr : JSAMPLE_PTR;
outptr : BGRptr;
{register} col : JDIMENSION;
pad : int;
begin
dest := bmp_dest_ptr (dinfo);
{ Access next row in virtual array }
image_ptr := cinfo^.mem^.access_virt_sarray
(j_common_ptr(cinfo), dest^.whole_image,
dest^.cur_output_row, JDIMENSION (1), TRUE);
Inc(dest^.cur_output_row);
{ Transfer data. Note destination values must be in BGR order
(even though Microsoft's own documents say the opposite). }
inptr := JSAMPLE_PTR(dest^.pub.buffer^[0]);
outptr := BGRptr(image_ptr^[0]);
for col := pred(cinfo^.output_width) downto 0 do
begin
outptr^.r := inptr^; { can omit GETJSAMPLE() safely }
Inc(inptr);
outptr^.g := inptr^;
Inc(inptr);
outptr^.b := inptr^;
Inc(inptr);
Inc(outptr);
end;
{ Zero out the pad bytes. }
pad := dest^.pad_bytes;
while (pad > 0) do
begin
Dec(pad);
JSAMPLE_PTR(outptr)^ := 0;
Inc(JSAMPLE_PTR(outptr));
end;
end;
{METHODDEF}
procedure put_gray_rows (cinfo : j_decompress_ptr;
dinfo : djpeg_dest_ptr;
rows_supplied : JDIMENSION); far;
{ This version is for grayscale OR quantized color output }
var
dest : bmp_dest_ptr;
image_ptr : JSAMPARRAY;
{register} inptr, outptr : JSAMPLE_PTR;
{register} col : JDIMENSION;
pad : int;
begin
dest := bmp_dest_ptr (dinfo);
{ Access next row in virtual array }
image_ptr := cinfo^.mem^.access_virt_sarray
(j_common_ptr(cinfo), dest^.whole_image,
dest^.cur_output_row, JDIMENSION (1), TRUE);
Inc(dest^.cur_output_row);
{ Transfer data. }
inptr := JSAMPLE_PTR(dest^.pub.buffer^[0]);
outptr := JSAMPLE_PTR(image_ptr^[0]);
for col := pred(cinfo^.output_width) downto 0 do
begin
outptr^ := inptr^; { can omit GETJSAMPLE() safely }
Inc(outptr);
Inc(inptr);
end;
{ Zero out the pad bytes. }
pad := dest^.pad_bytes;
while (pad > 0) do
begin
Dec(pad);
outptr^ := 0;
Inc(outptr);
end;
end;
{ Startup: normally writes the file header.
In this module we may as well postpone everything until finish_output. }
{METHODDEF}
procedure start_output_bmp (cinfo : j_decompress_ptr;
dinfo : djpeg_dest_ptr); far;
begin
{ no work here }
end;
{ Finish up at the end of the file.
Here is where we really output the BMP file.
First, routines to write the Windows and OS/2 variants of the file header. }
{LOCAL}
procedure write_bmp_header (cinfo : j_decompress_ptr;
dest : bmp_dest_ptr);
{ Write a Windows-style BMP file header, including colormap if needed }
var
bmpfileheader : packed array[0..14-1] of byte;
bmpinfoheader : packed array[0..40-1] of byte;
var
headersize, bfSize : INT32 ;
bits_per_pixel, cmap_entries : int;
begin
{ Compute colormap size and total file size }
if (cinfo^.out_color_space = JCS_RGB) then
begin
if (cinfo^.quantize_colors) then
begin
{ Colormapped RGB }
bits_per_pixel := 8;
cmap_entries := 256;
end
else
begin
{ Unquantized, full color RGB }
bits_per_pixel := 24;
cmap_entries := 0;
end;
end
else
begin
{ Grayscale output. We need to fake a 256-entry colormap. }
bits_per_pixel := 8;
cmap_entries := 256;
end;
{ File size }
headersize := 14 + 40 + cmap_entries * 4; { Header and colormap }
bfSize := headersize + INT32 (dest^.row_width) * INT32 (cinfo^.output_height);
{ Set unused fields of header to 0 }
MEMZERO(@bmpfileheader, SIZEOF(bmpfileheader));
MEMZERO(@bmpinfoheader, SIZEOF(bmpinfoheader));
{ Fill the file header }
bmpfileheader[0] := $42; { first 2 bytes are ASCII 'B', 'M' }
bmpfileheader[1] := $4D;
{PUT_4B(bmpfileheader, 2, bfSize);} { bfSize }
bmpfileheader[2] := byte ((bfSize) and $FF);
bmpfileheader[2+1] := byte (((bfSize) shr 8) and $FF);
bmpfileheader[2+2] := byte (((bfSize) shr 16) and $FF);
bmpfileheader[2+3] := byte (((bfSize) shr 24) and $FF);
{ we leave bfReserved1 & bfReserved2 = 0 }
{PUT_4B(bmpfileheader, 10, headersize);} { bfOffBits }
bmpfileheader[10] := byte (headersize and $FF);
bmpfileheader[10+1] := byte ((headersize shr 8) and $FF);
bmpfileheader[10+2] := byte ((headersize shr 16) and $FF);
bmpfileheader[10+3] := byte ((headersize shr 24) and $FF);
{ Fill the info header (Microsoft calls this a BITMAPINFOHEADER) }
{PUT_2B(bmpinfoheader, 0, 40);} { biSize }
bmpinfoheader[0] := byte ((40) and $FF);
bmpinfoheader[0+1] := byte (((40) shr 8) and $FF);
{PUT_4B(bmpinfoheader, 4, cinfo^.output_width);} { biWidth }
bmpinfoheader[4] := byte ((cinfo^.output_width) and $FF);
bmpinfoheader[4+1] := byte ((cinfo^.output_width shr 8) and $FF);
bmpinfoheader[4+2] := byte ((cinfo^.output_width shr 16) and $FF);
bmpinfoheader[4+3] := byte ((cinfo^.output_width shr 24) and $FF);
{PUT_4B(bmpinfoheader, 8, cinfo^.output_height);} { biHeight }
bmpinfoheader[8] := byte (cinfo^.output_height and $FF);
bmpinfoheader[8+1] := byte ((cinfo^.output_height shr 8) and $FF);
bmpinfoheader[8+2] := byte ((cinfo^.output_height shr 16) and $FF);
bmpinfoheader[8+3] := byte ((cinfo^.output_height shr 24) and $FF);
{PUT_2B(bmpinfoheader, 12, 1);} { biPlanes - must be 1 }
bmpinfoheader[12] := byte (1 and $FF);
bmpinfoheader[12+1] := byte ((1 shr 8) and $FF);
{PUT_2B(bmpinfoheader, 14, bits_per_pixel);} { biBitCount }
bmpinfoheader[14] := byte (bits_per_pixel and $FF);
bmpinfoheader[14+1] := byte ((bits_per_pixel shr 8) and $FF);
{ we leave biCompression = 0, for none }
{ we leave biSizeImage = 0; this is correct for uncompressed data }
if (cinfo^.density_unit = 2) then
begin { if have density in dots/cm, then }
{PUT_4B(bmpinfoheader, 24, INT32 (cinfo^.X_density*100));} { XPels/M }
bmpinfoheader[24] := byte (INT32 (cinfo^.X_density*100) and $FF);
bmpinfoheader[24+1] := byte ((INT32 (cinfo^.X_density*100) shr 8) and $FF);
bmpinfoheader[24+2] := byte ((INT32 (cinfo^.X_density*100) shr 16) and $FF);
bmpinfoheader[24+3] := byte ((INT32 (cinfo^.X_density*100) shr 24) and $FF);
{PUT_4B(bmpinfoheader, 28, INT32 (cinfo^.Y_density*100));} { XPels/M }
bmpinfoheader[28] := byte (INT32 (cinfo^.Y_density*100) and $FF);
bmpinfoheader[28+1] := byte ((INT32 (cinfo^.Y_density*100) shr 8) and $FF);
bmpinfoheader[28+2] := byte ((INT32 (cinfo^.Y_density*100) shr 16) and $FF);
bmpinfoheader[28+3] := byte ((INT32 (cinfo^.Y_density*100) shr 24) and $FF);
end;
{PUT_2B(bmpinfoheader, 32, cmap_entries);} { biClrUsed }
bmpinfoheader[32] := byte (cmap_entries and $FF);
bmpinfoheader[32+1] := byte ((cmap_entries shr 8) and $FF);
{ we leave biClrImportant := 0 }
if (JFWRITE(dest^.pub.output_file, @bmpfileheader, 14) <> size_t (14)) then
ERREXIT(j_common_ptr(cinfo), JERR_FILE_WRITE);
if (JFWRITE(dest^.pub.output_file, @bmpinfoheader, 40) <> size_t (40)) then
ERREXIT(j_common_ptr(cinfo), JERR_FILE_WRITE);
if (cmap_entries > 0) then
write_colormap(cinfo, dest, cmap_entries, 4);
end;
{LOCAL}
procedure write_os2_header (cinfo : j_decompress_ptr;
dest : bmp_dest_ptr);
{ Write an OS2-style BMP file header, including colormap if needed }
var
bmpfileheader : array[0..14-1] of byte;
bmpcoreheader : array[0..12-1] of byte;
headersize, bfSize : INT32;
bits_per_pixel, cmap_entries : int;
begin
{ Compute colormap size and total file size }
if (cinfo^.out_color_space = JCS_RGB) then
begin
if (cinfo^.quantize_colors) then
begin
{ Colormapped RGB }
bits_per_pixel := 8;
cmap_entries := 256;
end
else
begin
{ Unquantized, full color RGB }
bits_per_pixel := 24;
cmap_entries := 0;
end;
end
else
begin
{ Grayscale output. We need to fake a 256-entry colormap. }
bits_per_pixel := 8;
cmap_entries := 256;
end;
{ File size }
headersize := 14 + 12 + cmap_entries * 3; { Header and colormap }
bfSize := headersize + INT32 (dest^.row_width) * INT32 (cinfo^.output_height);
{ Set unused fields of header to 0 }
MEMZERO(@bmpfileheader, SIZEOF(bmpfileheader));
MEMZERO(@bmpcoreheader, SIZEOF(bmpcoreheader));
{ Fill the file header }
bmpfileheader[0] := $42; { first 2 bytes are ASCII 'B', 'M' }
bmpfileheader[1] := $4D;
{PUT_4B(bmpfileheader, 2, bfSize);} { bfSize }
bmpfileheader[2] := byte ((bfSize) and $FF);
bmpfileheader[2+1] := byte (((bfSize) shr 8) and $FF);
bmpfileheader[2+2] := byte (((bfSize) shr 16) and $FF);
bmpfileheader[2+3] := byte (((bfSize) shr 24) and $FF);
{ we leave bfReserved1 & bfReserved2 := 0 }
{PUT_4B(bmpfileheader, 10, headersize);} { bfOffBits }
bmpfileheader[10] := byte ((headersize) and $FF);
bmpfileheader[10+1] := byte (((headersize) shr 8) and $FF);
bmpfileheader[10+2] := byte (((headersize) shr 16) and $FF);
bmpfileheader[10+3] := byte (((headersize) shr 24) and $FF);
{ Fill the info header (Microsoft calls this a BITMAPCOREHEADER) }
{PUT_2B(bmpcoreheader, 0, 12);} { bcSize }
bmpcoreheader[0] := byte (12 and $FF);
bmpcoreheader[0+1] := byte ((12 shr 8) and $FF);
{PUT_2B(bmpcoreheader, 4, cinfo^.output_width);} { bcWidth }
bmpcoreheader[4] := byte (cinfo^.output_width and $FF);
bmpcoreheader[4+1] := byte ((cinfo^.output_width shr 8) and $FF);
{PUT_2B(bmpcoreheader, 6, cinfo^.output_height);} { bcHeight }
bmpcoreheader[6] := byte (cinfo^.output_height and $FF);
bmpcoreheader[6+1] := byte ((cinfo^.output_height shr 8) and $FF);
{PUT_2B(bmpcoreheader, 8, 1);} { bcPlanes - must be 1 }
bmpcoreheader[8] := byte (1 and $FF);
bmpcoreheader[8+1] := byte ((1 shr 8) and $FF);
{PUT_2B(bmpcoreheader, 10, bits_per_pixel);} { bcBitCount }
bmpcoreheader[10] := byte (bits_per_pixel and $FF);
bmpcoreheader[10+1] := byte ((bits_per_pixel shr 8) and $FF);
if (JFWRITE(dest^.pub.output_file, @bmpfileheader, 14) <> size_t (14)) then
ERREXIT(j_common_ptr(cinfo), JERR_FILE_WRITE);
if (JFWRITE(dest^.pub.output_file, @bmpcoreheader, 12) <> size_t (12)) then
ERREXIT(j_common_ptr(cinfo), JERR_FILE_WRITE);
if (cmap_entries > 0) then
write_colormap(cinfo, dest, cmap_entries, 3);
end;
{ Write the colormap.
Windows uses BGR0 map entries; OS/2 uses BGR entries. }
{LOCAL}
procedure write_colormap (cinfo : j_decompress_ptr;
dest : bmp_dest_ptr;
map_colors : int;
map_entry_size : int);
var
colormap : JSAMPARRAY;
num_colors : int;
outfile : FILEptr;
i : int;
var
output_color_map : Array[0..255] of BGRtype;
output_ext_color_map : Array[0..255] of record
b,g,r,a : byte;
end;
begin
colormap := cinfo^.colormap;
num_colors := cinfo^.actual_number_of_colors;
outfile := dest^.pub.output_file;
if (colormap <> NIL) then
begin
if (cinfo^.out_color_components = 3) then
begin
{ Normal case with RGB colormap }
if (map_entry_size = 4) then
for i := 0 to pred(num_colors) do
with output_ext_color_map[i] do
begin
b := GETJSAMPLE(cinfo^.colormap^[2]^[i]);
g := GETJSAMPLE(cinfo^.colormap^[1]^[i]);
r := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
a := 0;
end
else
for i := 0 to pred(num_colors) do
with output_color_map[i] do
begin
b := GETJSAMPLE(cinfo^.colormap^[2]^[i]);
g := GETJSAMPLE(cinfo^.colormap^[1]^[i]);
r := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
end;
end
else
begin
{ Grayscale colormap (only happens with grayscale quantization) }
if (map_entry_size = 4) then
for i := 0 to pred(num_colors) do
with output_ext_color_map[i] do
begin
b := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
g := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
r := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
a := 0;
end
else
for i := 0 to pred(num_colors) do
with output_color_map[i] do
begin
b := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
g := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
r := GETJSAMPLE(cinfo^.colormap^[0]^[i]);
end;
end;
i := num_colors;
end
else
begin
{ If no colormap, must be grayscale data. Generate a linear "map". }
{ Nomssi: do not use "num_colors" here, it should be 0 }
if (map_entry_size = 4) then
for i := 0 to pred(256) do
with output_ext_color_map[i] do
begin
b := i;
g := i;
r := i;
a := 0;
end
else
for i := 0 to pred(256) do
with output_color_map[i] do
begin
b := i;
g := i;
r := i;
end;
i := 256;
end;
{ Pad colormap with zeros to ensure specified number of colormap entries }
if (i > map_colors) then
ERREXIT1(j_common_ptr(cinfo), JERR_TOO_MANY_COLORS, i);
while (i < map_colors) do
begin
if (map_entry_size = 4) then
with output_ext_color_map[i] do
begin
b := 0;
g := 0;
r := 0;
a := 0;
end
else
with output_color_map[i] do
begin
b := 0;
g := 0;
r := 0;
end;
Inc(i);
end;
if (map_entry_size = 4) then
JFWRITE(outfile, @output_ext_color_map, map_colors*4)
else
JFWRITE(outfile, @output_color_map, map_colors*3);
end;
{METHODDEF}
procedure finish_output_bmp (cinfo : j_decompress_ptr;
dinfo : djpeg_dest_ptr); far;
var
dest : bmp_dest_ptr;
{register} outfile : FILEptr;
image_ptr : JSAMPARRAY;
{register} data_ptr : JSAMPLE_PTR;
row : JDIMENSION;
{register} { col : JDIMENSION; }
progress : cd_progress_ptr;
begin
dest := bmp_dest_ptr (dinfo);
outfile := dest^.pub.output_file;
progress := cd_progress_ptr (cinfo^.progress);
{ Write the header and colormap }
if (dest^.is_os2) then
write_os2_header(cinfo, dest)
else
write_bmp_header(cinfo, dest);
{ Write the file body from our virtual array }
for row := cinfo^.output_height downto 1 do
begin
if (progress <> NIL) then
begin
progress^.pub.pass_counter := long (cinfo^.output_height - row);
progress^.pub.pass_limit := long (cinfo^.output_height);
progress^.pub.progress_monitor (j_common_ptr(cinfo));
end;
image_ptr := cinfo^.mem^.access_virt_sarray
(j_common_ptr(cinfo), dest^.whole_image, row-1, JDIMENSION(1), FALSE);
data_ptr := JSAMPLE_PTR(image_ptr^[0]);
{ Nomssi - This won't work for 12bit samples }
JFWRITE(outfile, data_ptr, dest^.row_width);
{
for col := pred(dest^.row_width) downto 0 do
begin
putc(GETJSAMPLE(data_ptr^), outfile);
Inc(data_ptr);
end;
}
end;
if (progress <> NIL) then
Inc(progress^.completed_extra_passes);
{ Make sure we wrote the output file OK }
{fflush(outfile);
if (ferror(outfile)) then
ERREXIT(cinfo, JERR_FILE_WRITE);}
end;
{ The module selection routine for BMP format output. }
{GLOBAL}
function jinit_write_bmp (cinfo : j_decompress_ptr;
is_os2 : boolean) : djpeg_dest_ptr;
var
dest : bmp_dest_ptr;
row_width : JDIMENSION;
var
progress : cd_progress_ptr;
begin
{ Create module interface object, fill in method pointers }
dest := bmp_dest_ptr (
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(bmp_dest_struct)) );
dest^.pub.start_output := start_output_bmp;
dest^.pub.finish_output := finish_output_bmp;
dest^.is_os2 := is_os2;
if (cinfo^.out_color_space = JCS_GRAYSCALE) then
begin
dest^.pub.put_pixel_rows := put_gray_rows;
end
else
if (cinfo^.out_color_space = JCS_RGB) then
begin
if (cinfo^.quantize_colors) then
dest^.pub.put_pixel_rows := put_gray_rows
else
dest^.pub.put_pixel_rows := put_pixel_rows;
end
else
ERREXIT(j_common_ptr(cinfo), JERR_BMP_COLORSPACE);
{ Calculate output image dimensions so we can allocate space }
jpeg_calc_output_dimensions(cinfo);
{ Determine width of rows in the BMP file (padded to 4-byte boundary). }
row_width := cinfo^.output_width * cinfo^.output_components;
dest^.data_width := row_width;
while ((row_width and 3) <> 0) do
Inc(row_width);
dest^.row_width := row_width;
dest^.pad_bytes := int (row_width - dest^.data_width);
{ Allocate space for inversion array, prepare for write pass }
dest^.whole_image := cinfo^.mem^.request_virt_sarray
(j_common_ptr(cinfo), JPOOL_IMAGE, FALSE,
row_width, cinfo^.output_height, JDIMENSION (1));
dest^.cur_output_row := 0;
if (cinfo^.progress <> NIL) then
begin
progress := cd_progress_ptr (cinfo^.progress);
Inc(progress^.total_extra_passes); { count file input as separate pass }
end;
{ Create decompressor output buffer. }
dest^.pub.buffer := cinfo^.mem^.alloc_sarray
(j_common_ptr(cinfo), JPOOL_IMAGE, row_width, JDIMENSION (1));
dest^.pub.buffer_height := 1;
jinit_write_bmp := djpeg_dest_ptr(dest);
end;
end. { BMP_SUPPORTED }