fpc/rtl/powerpc/powerpc.inc

1226 lines
38 KiB
PHP

{
This file is part of the Free Pascal run time library.
Copyright (c) 2000-2006 by the Free Pascal development team.
Portions Copyright (c) 2000 by Casey Duncan (casey.duncan@state.co.us)
Processor dependent implementation for the system unit for
PowerPC
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{$IFNDEF LINUX}
{$IFNDEF MORPHOS}
{$IFNDEF AMIGAOS4}
{$IFNDEF AIX}
{$DEFINE USE_DCBZ}
{$ENDIF AIX}
{$ENDIF AMIGAOS4}
{$ENDIF MORPHOS}
{$ENDIF LINUX}
{****************************************************************************
PowerPC specific stuff
****************************************************************************}
{$i ../ppcgen/ppcfpuex.inc}
{$ifndef FPUNONE}
{ This function is never called directly, it's a dummy to hold the register save/
load subroutines
}
{$ifndef MACOS}
label
_restfpr_14_x,
_restfpr_15_x,
_restfpr_16_x,
_restfpr_17_x,
_restfpr_18_x,
_restfpr_19_x,
_restfpr_20_x,
_restfpr_21_x,
_restfpr_22_x,
_restfpr_23_x,
_restfpr_24_x,
_restfpr_25_x,
_restfpr_26_x,
_restfpr_27_x,
_restfpr_28_x,
_restfpr_29_x,
_restfpr_30_x,
_restfpr_31_x,
_restfpr_14_l,
_restfpr_15_l,
_restfpr_16_l,
_restfpr_17_l,
_restfpr_18_l,
_restfpr_19_l,
_restfpr_20_l,
_restfpr_21_l,
_restfpr_22_l,
_restfpr_23_l,
_restfpr_24_l,
_restfpr_25_l,
_restfpr_26_l,
_restfpr_27_l,
_restfpr_28_l,
_restfpr_29_l,
_restfpr_30_l,
_restfpr_31_l;
procedure saverestorereg;assembler; nostackframe;
asm
{ exit }
.globl _restfpr_14_x
_restfpr_14_x: lfd f14, -144(r11)
.globl _restfpr_15_x
_restfpr_15_x: lfd f15, -136(r11)
.globl _restfpr_16_x
_restfpr_16_x: lfd f16, -128(r11)
.globl _restfpr_17_x
_restfpr_17_x: lfd f17, -120(r11)
.globl _restfpr_18_x
_restfpr_18_x: lfd f18, -112(r11)
.globl _restfpr_19_x
_restfpr_19_x: lfd f19, -104(r11)
.globl _restfpr_20_x
_restfpr_20_x: lfd f20, -96(r11)
.globl _restfpr_21_x
_restfpr_21_x: lfd f21, -88(r11)
.globl _restfpr_22_x
_restfpr_22_x: lfd f22, -80(r11)
.globl _restfpr_23_x
_restfpr_23_x: lfd f23, -72(r11)
.globl _restfpr_24_x
_restfpr_24_x: lfd f24, -64(r11)
.globl _restfpr_25_x
_restfpr_25_x: lfd f25, -56(r11)
.globl _restfpr_26_x
_restfpr_26_x: lfd f26, -48(r11)
.globl _restfpr_27_x
_restfpr_27_x: lfd f27, -40(r11)
.globl _restfpr_28_x
_restfpr_28_x: lfd f28, -32(r11)
.globl _restfpr_29_x
_restfpr_29_x: lfd f29, -24(r11)
.globl _restfpr_30_x
_restfpr_30_x: lfd f30, -16(r11)
.globl _restfpr_31_x
_restfpr_31_x: lwz r0, 4(r11)
lfd f31, -8(r11)
mtlr r0
ori r1, r11, 0
blr
{ exit with restoring lr }
.globl _restfpr_14_l
_restfpr_14_l: lfd f14, -144(r11)
.globl _restfpr_15_l
_restfpr_15_l: lfd f15, -136(r11)
.globl _restfpr_16_l
_restfpr_16_l: lfd f16, -128(r11)
.globl _restfpr_17_l
_restfpr_17_l: lfd f17, -120(r11)
.globl _restfpr_18_l
_restfpr_18_l: lfd f18, -112(r11)
.globl _restfpr_19_l
_restfpr_19_l: lfd f19, -104(r11)
.globl _restfpr_20_l
_restfpr_20_l: lfd f20, -96(r11)
.globl _restfpr_21_l
_restfpr_21_l: lfd f21, -88(r11)
.globl _restfpr_22_l
_restfpr_22_l: lfd f22, -80(r11)
.globl _restfpr_23_l
_restfpr_23_l: lfd f23, -72(r11)
.globl _restfpr_24_l
_restfpr_24_l: lfd f24, -64(r11)
.globl _restfpr_25_l
_restfpr_25_l: lfd f25, -56(r11)
.globl _restfpr_26_l
_restfpr_26_l: lfd f26, -48(r11)
.globl _restfpr_27_l
_restfpr_27_l: lfd f27, -40(r11)
.globl _restfpr_28_l
_restfpr_28_l: lfd f28, -32(r11)
.globl _restfpr_29_l
_restfpr_29_l: lfd f29, -24(r11)
.globl _restfpr_30_l
_restfpr_30_l: lfd f30, -16(r11)
.globl _restfpr_31_l
_restfpr_31_l: lwz r0, 4(r11)
lfd f31, -8(r11)
mtlr r0
ori r1, r11, 0
blr
end;
{$endif MACOS}
{$endif NOT FPUNONE}
{****************************************************************************
Move / Fill
****************************************************************************}
{$ifndef FPC_SYSTEM_HAS_MOVE}
{$define FPC_SYSTEM_HAS_MOVE}
procedure Move(const source;var dest;count:longint);[public, alias: 'FPC_MOVE'];assembler; nostackframe;
asm
{ count <= 0 ? }
cmpwi cr0,r5,0
{ check if we have to do the move backwards because of overlap }
sub r10,r4,r3
{ carry := boolean(dest-source < count) = boolean(overlap) }
subc r10,r10,r5
{ count < 15 ? (to decide whether we will move dwords or bytes }
cmpwi cr1,r5,15
{ if overlap, then r10 := -1 else r10 := 0 }
subfe r10,r10,r10
{ count < 63 ? (32 + max. alignment (31) }
{ change to 64, because for overlap, we do not re-increment r5,
which could then lead to a counter being zero at start and thus
running forever }
cmpwi cr7,r5,64
{ if count <= 0, stop }
ble cr0,.LMoveDone
{ load the begin of the source in the data cache }
dcbt 0,r3
{ and the dest as well }
dcbtst 0,r4
{ if overlap, then r0 := count else r0 := 0 }
and r0,r5,r10
{ if overlap, then point source and dest to the end }
add r3,r3,r0
add r4,r4,r0
{ if overlap, then r6 := 0, else r6 := -1 }
not r6,r10
{ if overlap, then r10 := -2, else r10 := 0 }
slwi r10,r10,1
{ if overlap, then r10 := -1, else r10 := 1 }
addi r10,r10,1
{ if count < 15, copy everything byte by byte }
blt cr1,.LMoveBytes
{ if no overlap, then source/dest += -1, otherwise they stay }
{ After the next instruction, r3/r4 + r10 = next position to }
{ load/store from/to }
add r3,r3,r6
add r4,r4,r6
{ otherwise, guarantee 4 byte alignment for dest for starters }
.LMove4ByteAlignLoop:
lbzux r0,r3,r10
stbux r0,r4,r10
{ is dest now 4 aligned? }
andi. r0,r4,3
subi r5,r5,1
{ while not aligned, continue }
bne cr0,.LMove4ByteAlignLoop
{$ifndef ppc603}
{ check for 32 byte alignment }
andi. r7,r4,31
{$endif non ppc603}
{ we are going to copy one byte again (the one at the newly }
{ aligned address), so increase count byte 1 }
{ This is only true if there is no overlap, thus }
{ use r5:=r5-r6; which does what is needed. }
sub r5,r5,r6
{ count div 4 for number of dwords to copy }
srwi r0,r5,2
{ if 11 <= count < 63, copy using dwords }
blt cr7,.LMoveDWords
{$ifndef ppc603}
{ # of dwords to copy to reach 32 byte alignment (*4) }
{ (depends on forward/backward copy) }
{ if forward copy, r6 = -1 -> r8 := 32 }
{ if backward copy, r6 = 0 -> r8 := 0 }
rlwinm r8,r6,0,31-6+1,31-6+1
{ if forward copy, we have to copy 32 - unaligned count bytes }
{ if backward copy unaligned count bytes }
sub r7,r8,r7
{ if backward copy, the calculated value is now negate -> }
{ make it positive again }
not r8, r6
add r7, r7, r8
xor r7, r7, r8
{$endif not ppc603}
{ multiply the update count with 4 }
slwi r10,r10,2
slwi r6,r6,2
{ and adapt the source and dest }
add r3,r3,r6
add r4,r4,r6
{$ifndef ppc603}
beq cr0,.LMove32BytesAligned
.L32BytesAlignMoveLoop:
{ count >= 39 -> align to 8 byte boundary and then use the FPU }
{ since we're already at 4 byte alignment, use dword store }
subic. r7,r7,4
lwzux r0,r3,r10
subi r5,r5,4
stwux r0,r4,r10
bne .L32BytesAlignMoveLoop
.LMove32BytesAligned:
{ count div 32 ( >= 1, since count was >=63 }
srwi r0,r5,5
{ remainder }
andi. r5,r5,31
{ to decide if we will do some dword stores (instead of only }
{ byte stores) afterwards or not }
{$else not ppc603}
srwi r0,r5,4
andi. r5,r5,15
{$endif not ppc603}
cmpwi cr1,r5,11
mtctr r0
{ r0 := count div 4, will be moved to ctr when copying dwords }
srwi r0,r5,2
{$if not defined(ppc603) and not defined(FPUNONE)}
{ adjust the update count: it will now be 8 or -8 depending on overlap }
slwi r10,r10,1
{ adjust source and dest pointers: because of the above loop, dest is now }
{ aligned to 8 bytes. So if we add r6 we will still have an 8 bytes }
{ aligned address) }
add r3,r3,r6
add r4,r4,r6
slwi r6,r6,1
{$IFDEF USE_DCBZ}
{ the dcbz offset must give a 32 byte aligned address when added }
{ to the current dest address and its address must point to the }
{ bytes that will be overwritten in the current iteration. In case }
{ of a forward loop, the dest address has currently an offset of }
{ -8 compared to the bytes that will be overwritten (and r6 = -8). }
{ In case of a backward of a loop, the dest address currently has }
{ an offset of +32 compared to the bytes that will be overwritten }
{ (and r6 = 0). So the forward dcbz offset must become +8 and the }
{ backward -32 -> (-r6 * 5) - 32 gives the correct offset }
slwi r7,r6,2
add r7,r7,r6
neg r7,r7
subi r7,r7,32
{$ENDIF USE_DCBZ}
.LMove32ByteDcbz:
lfdux f0,r3,r10
lfdux f1,r3,r10
lfdux f2,r3,r10
lfdux f3,r3,r10
{$IFDEF USE_DCBZ}
{ must be done only now, in case source and dest are less than }
{ 32 bytes apart! }
dcbz r4,r7
{$ENDIF USE_DCBZ}
stfdux f0,r4,r10
stfdux f1,r4,r10
stfdux f2,r4,r10
stfdux f3,r4,r10
bdnz .LMove32ByteDcbz
.LMove32ByteLoopDone:
{$else not ppc603}
.LMove16ByteLoop:
lwzux r11,r3,r10
lwzux r7,r3,r10
lwzux r8,r3,r10
lwzux r9,r3,r10
stwux r11,r4,r10
stwux r7,r4,r10
stwux r8,r4,r10
stwux r9,r4,r10
bdnz .LMove16ByteLoop
{$endif not ppc603}
{ cr0*4+eq is true if "count and 31" = 0 }
beq cr0,.LMoveDone
{ make r10 again -1 or 1, but first adjust source/dest pointers }
sub r3,r3,r6
sub r4,r4,r6
{$ifndef ppc603}
srawi r10,r10,3
srawi r6,r6,3
{$else not ppc603}
srawi r10,r10,2
srawi r6,r6,2
{$endif not ppc603}
{ cr1 contains whether count <= 11 }
ble cr1,.LMoveBytes
.LMoveDWords:
mtctr r0
andi. r5,r5,3
{ r10 * 4 }
slwi r10,r10,2
slwi r6,r6,2
add r3,r3,r6
add r4,r4,r6
.LMoveDWordsLoop:
lwzux r0,r3,r10
stwux r0,r4,r10
bdnz .LMoveDWordsLoop
beq cr0,.LMoveDone
{ make r10 again -1 or 1 }
sub r3,r3,r6
sub r4,r4,r6
srawi r10,r10,2
srawi r6,r6,2
.LMoveBytes:
add r3,r3,r6
add r4,r4,r6
mtctr r5
.LMoveBytesLoop:
lbzux r0,r3,r10
stbux r0,r4,r10
bdnz .LMoveBytesLoop
.LMoveDone:
end;
{$endif FPC_SYSTEM_HAS_MOVE}
{$ifndef FPC_SYSTEM_HAS_FILLCHAR}
{$define FPC_SYSTEM_HAS_FILLCHAR}
Procedure FillChar(var x;count:longint;value:byte);assembler;
{ input: x in r3, count in r4, value in r5 }
{$ifndef FPC_ABI_AIX}
{ in the AIX ABI, we can use te red zone for temp storage, otherwise we have }
{ to explicitely allocate room }
var
temp : packed record
case byte of
0: (l1,l2: longint);
{$ifndef FPUNONE}
1: (d: double);
{$endif}
end;
{$endif FPC_ABI_AIX}
asm
{ no bytes? }
cmpwi cr6,r4,0
{ less than 15 bytes? }
cmpwi cr7,r4,15
{ less than 64 bytes? }
cmpwi cr1,r4,64
{ fill r5 with ValueValueValueValue }
rlwimi r5,r5,8,16,23
{ setup for aligning x to multiple of 4}
rlwinm r10,r3,0,31-2+1,31
rlwimi r5,r5,16,0,15
ble cr6,.LFillCharDone
{ get the start of the data in the cache (and mark it as "will be }
{ modified") }
dcbtst 0,r3
subfic r10,r10,4
blt cr7,.LFillCharVerySmall
{ just store 4 bytes instead of using a loop to align (there are }
{ plenty of other instructions now to keep the processor busy }
{ while it handles the (possibly unaligned) store) }
stw r5,0(r3)
{ r3 := align(r3,4) }
add r3,r3,r10
{ decrease count with number of bytes already stored }
sub r4,r4,r10
{$IFNDEF FPUNONE}
blt cr1,.LFillCharSmall
{$IFDEF USE_DCBZ}
{ if we have to fill with 0 (which happens a lot), we can simply use }
{ dcbz for the most part, which is very fast, so make a special case }
{ for that }
cmplwi cr1,r5,0
{$ENDIF}
{ align to a multiple of 32 (and immediately check whether we aren't }
{ already 32 byte aligned) }
rlwinm. r10,r3,0,31-5+1,31
{ setup r3 for using update forms of store instructions }
subi r3,r3,4
{ get number of bytes to store }
subfic r10,r10,32
{ if already 32byte aligned, skip align loop }
beq .L32ByteAlignLoopDone
{ substract from the total count }
sub r4,r4,r10
.L32ByteAlignLoop:
{ we were already aligned to 4 byres, so this will count down to }
{ exactly 0 }
subic. r10,r10,4
stwu r5,4(r3)
bne .L32ByteAlignLoop
.L32ByteAlignLoopDone:
{ get the amount of 32 byte blocks }
srwi r10,r4,5
{ and keep the rest in r4 (recording whether there is any rest) }
rlwinm. r4,r4,0,31-5+1,31
{ move to ctr }
mtctr r10
{ check how many rest there is (to decide whether we'll use }
{ FillCharSmall or FillCharVerySmall) }
cmplwi cr7,r4,11
{$IFDEF USE_DCBZ}
{ if filling with zero, only use dcbz }
bne cr1, .LFillCharNoZero
{ make r3 point again to the actual store position }
addi r3,r3,4
.LFillCharDCBZLoop:
dcbz 0,r3
addi r3,r3,32
bdnz .LFillCharDCBZLoop
{ if there was no rest, we're finished }
beq .LFillCharDone
b .LFillCharVerySmall
{$ENDIF USE_DCBZ}
.LFillCharNoZero:
{$ifdef FPC_ABI_AIX}
stw r5,-4(r1)
stw r5,-8(r1)
lfd f0,-8(r1)
{$else FPC_ABI_AIX}
stw r5,temp
stw r5,temp+4
lfd f0,temp
{$endif FPC_ABI_AIX}
{ make r3 point to address-8, so we're able to use fp double stores }
{ with update (it's already -4 now) }
subi r3,r3,4
{$IFDEF USE_DCBZ}
{ load r10 with 8, so that dcbz uses the correct address }
li r10, 8
{$ENDIF}
.LFillChar32ByteLoop:
{$IFDEF USE_DCBZ}
dcbz r3,r10
{$ENDIF USE_DCBZ}
stfdu f0,8(r3)
stfdu f0,8(r3)
stfdu f0,8(r3)
stfdu f0,8(r3)
bdnz .LFillChar32ByteLoop
{ if there was no rest, we're finished }
beq .LFillCharDone
{ make r3 point again to the actual next byte that must be written }
addi r3,r3,8
b .LFillCharVerySmall
.LFillCharSmall:
{$ENDIF FPUNONE}
{ when we arrive here, we're already 4 byte aligned }
{ get count div 4 to store dwords }
srwi r10,r4,2
{ get ready for use of update stores }
subi r3,r3,4
mtctr r10
rlwinm. r4,r4,0,31-2+1,31
.LFillCharSmallLoop:
stwu r5,4(r3)
bdnz .LFillCharSmallLoop
{ if nothing left, stop }
beq .LFillCharDone
{ get ready to store bytes }
addi r3,r3,4
.LFillCharVerySmall:
mtctr r4
subi r3,r3,1
.LFillCharVerySmallLoop:
stbu r5,1(r3)
bdnz .LFillCharVerySmallLoop
.LFillCharDone:
end;
{$endif FPC_SYSTEM_HAS_FILLCHAR}
{$ifndef FPC_SYSTEM_HAS_FILLDWORD}
{$define FPC_SYSTEM_HAS_FILLDWORD}
procedure filldword(var x;count : longint;value : dword);
assembler; nostackframe;
asm
{ registers:
r3 x
r4 count
r5 value
}
cmpwi cr0,r4,0
mtctr r4
subi r3,r3,4
ble .LFillDWordEnd //if count<=0 Then Exit
.LFillDWordLoop:
stwu r5,4(r3)
bdnz .LFillDWordLoop
.LFillDWordEnd:
end;
{$endif FPC_SYSTEM_HAS_FILLDWORD}
{$ifndef FPC_SYSTEM_HAS_INDEXBYTE}
{$define FPC_SYSTEM_HAS_INDEXBYTE}
function IndexByte(const buf;len:longint;b:byte):longint; assembler; nostackframe;
{ input: r3 = buf, r4 = len, r5 = b }
{ output: r3 = position of b in buf (-1 if not found) }
asm
{ load the begin of the buffer in the data cache }
dcbt 0,r3
cmplwi r4,0
mtctr r4
subi r10,r3,1
mr r0,r3
{ assume not found }
li r3,-1
ble .LIndexByteDone
.LIndexByteLoop:
lbzu r9,1(r10)
cmplw r9,r5
bdnzf cr0*4+eq,.LIndexByteLoop
{ r3 still contains -1 here }
bne .LIndexByteDone
sub r3,r10,r0
.LIndexByteDone:
end;
{$endif FPC_SYSTEM_HAS_INDEXBYTE}
{$ifndef FPC_SYSTEM_HAS_INDEXWORD}
{$define FPC_SYSTEM_HAS_INDEXWORD}
function IndexWord(const buf;len:longint;b:word):longint; assembler; nostackframe;
{ input: r3 = buf, r4 = len, r5 = b }
{ output: r3 = position of b in buf (-1 if not found) }
asm
{ load the begin of the buffer in the data cache }
dcbt 0,r3
cmplwi r4,0
mtctr r4
subi r10,r3,2
mr r0,r3
{ assume not found }
li r3,-1
ble .LIndexWordDone
.LIndexWordLoop:
lhzu r9,2(r10)
cmplw r9,r5
bdnzf cr0*4+eq,.LIndexWordLoop
{ r3 still contains -1 here }
bne .LIndexWordDone
sub r3,r10,r0
srawi r3,r3,1
.LIndexWordDone:
end;
{$endif FPC_SYSTEM_HAS_INDEXWORD}
{$ifndef FPC_SYSTEM_HAS_INDEXDWORD}
{$define FPC_SYSTEM_HAS_INDEXDWORD}
function IndexDWord(const buf;len:longint;b:DWord):longint; assembler; nostackframe;
{ input: r3 = buf, r4 = len, r5 = b }
{ output: r3 = position of b in buf (-1 if not found) }
asm
{ load the begin of the buffer in the data cache }
dcbt 0,r3
cmplwi r4,0
mtctr r4
subi r10,r3,4
mr r0,r3
{ assume not found }
li r3,-1
ble .LIndexDWordDone
.LIndexDWordLoop:
lwzu r9,4(r10)
cmplw r9,r5
bdnzf cr0*4+eq, .LIndexDWordLoop
{ r3 still contains -1 here }
bne .LIndexDWordDone
sub r3,r10,r0
srawi r3,r3,2
.LIndexDWordDone:
end;
{$endif FPC_SYSTEM_HAS_INDEXDWORD}
{$ifndef FPC_SYSTEM_HAS_COMPAREBYTE}
{$define FPC_SYSTEM_HAS_COMPAREBYTE}
function CompareByte(const buf1,buf2;len:longint):longint; assembler; nostackframe;
{ input: r3 = buf1, r4 = buf2, r5 = len }
{ output: r3 = 0 if equal, < 0 if buf1 < str2, > 0 if buf1 > str2 }
{ note: almost direct copy of strlcomp() from strings.inc }
asm
{ load the begin of the first buffer in the data cache }
dcbt 0,r3
{ use r0 instead of r3 for buf1 since r3 contains result }
cmplwi r5,0
mtctr r5
subi r11,r3,1
subi r4,r4,1
li r3,0
ble .LCompByteDone
.LCompByteLoop:
{ load next chars }
lbzu r9,1(r11)
lbzu r10,1(r4)
{ calculate difference }
sub. r3,r9,r10
{ if chars not equal or at the end, we're ready }
bdnzt cr0*4+eq, .LCompByteLoop
.LCompByteDone:
end;
{$endif FPC_SYSTEM_HAS_COMPAREBYTE}
{$ifndef FPC_SYSTEM_HAS_COMPAREWORD}
{$define FPC_SYSTEM_HAS_COMPAREWORD}
function CompareWord(const buf1,buf2;len:longint):longint; assembler; nostackframe;
{ input: r3 = buf1, r4 = buf2, r5 = len }
{ output: r3 = 0 if equal, < 0 if buf1 < str2, > 0 if buf1 > str2 }
{ note: almost direct copy of strlcomp() from strings.inc }
asm
{ load the begin of the first buffer in the data cache }
dcbt 0,r3
{ use r0 instead of r3 for buf1 since r3 contains result }
cmplwi r5,0
mtctr r5
subi r11,r3,2
subi r4,r4,2
li r3,0
ble .LCompWordDone
.LCompWordLoop:
{ load next chars }
lhzu r9,2(r11)
lhzu r10,2(r4)
{ calculate difference }
sub. r3,r9,r10
{ if chars not equal or at the end, we're ready }
bdnzt cr0*4+eq, .LCompWordLoop
.LCompWordDone:
end;
{$endif FPC_SYSTEM_HAS_COMPAREWORD}
{$ifndef FPC_SYSTEM_HAS_COMPAREDWORD}
{$define FPC_SYSTEM_HAS_COMPAREDWORD}
function CompareDWord(const buf1,buf2;len:longint):longint; assembler; nostackframe;
{ input: r3 = buf1, r4 = buf2, r5 = len }
{ output: r3 = 0 if equal, < 0 if buf1 < str2, > 0 if buf1 > str2 }
{ note: almost direct copy of strlcomp() from strings.inc }
asm
{ load the begin of the first buffer in the data cache }
dcbt 0,r3
{ use r0 instead of r3 for buf1 since r3 contains result }
cmplwi r5,0
mtctr r5
subi r11,r3,4
subi r4,r4,4
li r3,0
ble .LCompDWordDone
.LCompDWordLoop:
{ load next chars }
lwzu r9,4(r11)
lwzu r10,4(r4)
{ calculate difference }
sub. r0,r9,r10
{ if chars not equal or at the end, we're ready }
bdnzt cr0*4+eq, .LCompDWordLoop
.LCompDWordDone:
cmplw cr1,r9,r10
beq .Ldone
{ since these were two dwords, we have to perform an additional }
{ unsigned comparison and set the result accordingly }
bgt cr1,.Lpos
li r3,-2
.Lpos:
addi r3,r3,1
.Ldone:
end;
{$endif FPC_SYSTEM_HAS_COMPAREDWORD}
{$ifndef FPC_SYSTEM_HAS_INDEXCHAR0}
{$define FPC_SYSTEM_HAS_INDEXCHAR0}
function IndexChar0(const buf;len:longint;b:AnsiChar):longint; assembler; nostackframe;
{ input: r3 = buf, r4 = len, r5 = b }
{ output: r3 = position of found position (-1 if not found) }
asm
{ load the begin of the buffer in the data cache }
dcbt 0,r3
{ length = 0? }
cmplwi r4,0
mtctr r4
subi r9,r3,1
subi r0,r3,1
{ assume not found }
li r3,-1
{ if yes, do nothing }
ble .LIndexChar0Done
.LIndexChar0Loop:
lbzu r10,1(r9)
cmplwi cr1,r10,0
cmplw r10,r5
beq cr1,.LIndexChar0Done
bdnzf cr0*4+eq, .LIndexChar0Loop
bne .LIndexChar0Done
sub r3,r9,r0
.LIndexChar0Done:
end;
{$endif FPC_SYSTEM_HAS_INDEXCHAR0}
{****************************************************************************
String
****************************************************************************}
{$ifndef STR_CONCAT_PROCS}
(*
{$ifndef FPC_SYSTEM_HAS_FPC_SHORTSTR_CONCAT}
{$define FPC_SYSTEM_HAS_FPC_SHORTSTR_CONCAT}
function fpc_shortstr_concat(const s1, s2: shortstring): shortstring; compilerproc; [public, alias: 'FPC_SHORTSTR_CONCAT'];
{ expects that (r3) contains a pointer to the result r4 to s1, r5 to s2 }
assembler;
asm
{ load length s1 }
lbz r6, 0(r4)
{ load length s2 }
lbz r10, 0(r5)
{ length 0 for s1? }
cmplwi cr7,r6,0
{ length 255 for s1? }
subfic. r7,r6,255
{ length 0 for s2? }
cmplwi cr1,r10,0
{ calculate min(length(s2),255-length(s1)) }
subc r8,r7,r10 { r8 := r7 - r10 }
cror 4*6+2,4*1+2,4*7+2
subfe r7,r7,r7 { if r7 >= r10 then r7' := 0 else r7' := -1 }
mtctr r6
and r7,r8,r7 { if r7 >= r10 then r7' := 0 else r7' := r7-r10 }
add r7,r7,r10 { if r7 >= r10 then r7' := r10 else r7' := r7 }
mr r9,r3
{ calculate length of final string }
add r8,r7,r6
stb r8,0(r3)
beq cr7, .Lcopys1loopDone
.Lcopys1loop:
lbzu r0,1(r4)
stbu r0,1(r9)
bdnz .Lcopys1loop
.Lcopys1loopDone:
mtctr r7
beq cr6, .LconcatDone
.Lcopys2loop:
lbzu r0,1(r5)
stbu r0,1(r9)
bdnz .Lcopys2loop
end;
{$endif FPC_SYSTEM_HAS_FPC_SHORTSTR_CONCAT}
*)
{$ifndef FPC_SYSTEM_HAS_FPC_SHORTSTR_APPEND_SHORTSTR}
{$define FPC_SYSTEM_HAS_FPC_SHORTSTR_APPEND_SHORTSTR}
procedure fpc_shortstr_append_shortstr(var s1: shortstring; const s2: shortstring); compilerproc;
{ expects that results (r3) contains a pointer to the current string s1, r4 }
{ high(s1) and (r5) a pointer to the one that has to be concatenated }
assembler; nostackframe;
asm
{ load length s1 }
lbz r6, 0(r3)
{ load length s2 }
lbz r10, 0(r5)
{ length 0? }
cmplw cr1,r6,r4
cmplwi r10,0
{ calculate min(length(s2),high(result)-length(result)) }
sub r9,r4,r6
subc r8,r9,r10 { r8 := r9 - r10 }
cror 4*7+2,4*0+2,4*1+2
subfe r9,r9,r9 { if r9 >= r10 then r9' := 0 else r9' := -1 }
and r9,r8,r9 { if r9 >= r10 then r9' := 0 else r9' := r9-r10 }
add r9,r9,r10 { if r9 >= r10 then r9' := r10 else r9' := r9 }
{ calculate new length }
add r10,r6,r9
{ load value to copy in ctr }
mtctr r9
{ store new length }
stb r10,0(r3)
{ go to last current character of result }
add r3,r6,r3
{ if nothing to do, exit }
beq cr7, .LShortStrAppendDone
{ and concatenate }
.LShortStrAppendLoop:
lbzu r10,1(r5)
stbu r10,1(r3)
bdnz .LShortStrAppendLoop
.LShortStrAppendDone:
end;
{$endif FPC_SYSTEM_HAS_FPC_SHORTSTR_APPEND_SHORTSTR}
{$endif STR_CONCAT_PROCS}
(*
{$define FPC_SYSTEM_HAS_FPC_SHORTSTR_COMPARE}
function fpc_shortstr_compare(const dstr,sstr:shortstring): longint; [public,alias:'FPC_SHORTSTR_COMPARE']; compilerproc;
assembler;
asm
{ load length sstr }
lbz r9,0(r4)
{ load length dstr }
lbz r10,0(r3)
{ save their difference for later and }
{ calculate min(length(sstr),length(dstr)) }
subfc r7,r10,r9 { r0 := r9 - r10 }
subfe r9,r9,r9 { if r9 >= r10 then r9' := 0 else r9' := -1 }
and r7,r7,r9 { if r9 >= r10 then r9' := 0 else r9' := r9-r8 }
add r9,r10,r7 { if r9 >= r10 then r9' := r10 else r9' := r9 }
{ first compare dwords (length/4) }
srwi. r5,r9,2
{ keep length mod 4 for the ends }
rlwinm r9,r9,0,30,31
{ already check whether length mod 4 = 0 }
cmplwi cr1,r9,0
{ so we can load r3 with 0, in case the strings both have length 0 }
mr r8,r3
li r3, 0
{ length div 4 in ctr for loop }
mtctr r5
{ if length < 3, goto byte comparing }
beq LShortStrCompare1
{ setup for use of update forms of load/store with dwords }
subi r4,r4,3
subi r8,r8,3
LShortStrCompare4Loop:
lwzu r3,4(r4)
lwzu r10,4(r8)
sub. r3,r3,r10
bdnzt cr0+eq,LShortStrCompare4Loop
{ r3 contains result if we stopped because of "ne" flag }
bne LShortStrCompareDone
{ setup for use of update forms of load/store with bytes }
addi r4,r4,3
addi r8,r8,3
LShortStrCompare1:
{ if comparelen mod 4 = 0, skip this and return the difference in }
{ lengths }
beq cr1,LShortStrCompareLen
mtctr r9
LShortStrCompare1Loop:
lbzu r3,1(r4)
lbzu r10,1(r8)
sub. r3,r3,r10
bdnzt cr0+eq,LShortStrCompare1Loop
bne LShortStrCompareDone
LShortStrCompareLen:
{ also return result in flags, maybe we can use this in the CG }
mr. r3,r3
LShortStrCompareDone:
end;
*)
{$ifndef FPC_SYSTEM_HAS_FPC_PCHAR_TO_SHORTSTR}
{$define FPC_SYSTEM_HAS_FPC_PCHAR_TO_SHORTSTR}
procedure fpc_pchar_to_shortstr(out res : shortstring;p:PAnsiChar);assembler;[public,alias:'FPC_PCHAR_TO_SHORTSTR']; compilerproc; nostackframe;
{
r3: result address
r4: high(result)
r5: p (source)
}
asm
{ nil? }
mr r8, p
cmplwi p, 0
{ load the begin of the string in the data cache }
dcbt 0, p
{ maxlength }
mr r10,r4
mtctr r10
{ at LStrPasDone, we set the length of the result to 255 - r10 - r4 }
bne .LStrPasStart
{ put zero into r10 }
mr r10, r8
b .LStrPasDone
.LStrPasStart:
{ save address for at the end and use r7 in loop }
mr r7,r3
{ no "subi r7,r7,1" because the first byte = length byte }
subi r8,r8,1
.LStrPasLoop:
lbzu r10,1(r8)
cmplwi cr0,r10,0
stbu r10,1(r7)
bdnzf cr0*4+eq, .LStrPasLoop
{ if we stopped because of a terminating #0, decrease the length by 1 }
cntlzw r4,r10
{ get remaining count for length }
mfctr r10
{ if r10 was zero (-> stopped because of zero byte), then r4 will be 32 }
{ (32 leading zero bits) -> shr 5 = 1, otherwise this will be zero }
srwi r4,r4,5
subfic r10,r10,255
sub r10,r10,r4
{ store length }
.LStrPasDone:
stb r10,0(r3)
end;
{$endif FPC_SYSTEM_HAS_FPC_PCHAR_TO_SHORTSTR}
{$ifndef FPC_SYSTEM_HAS_FPC_PCHAR_LENGTH}
{$define FPC_SYSTEM_HAS_FPC_PCHAR_LENGTH}
function fpc_pchar_length(p:PAnsiChar):sizeint;assembler;[public,alias:'FPC_PCHAR_LENGTH']; compilerproc; nostackframe;
{$include strlen.inc}
{$endif FPC_SYSTEM_HAS_FPC_PCHAR_LENGTH}
{$ifndef INTERNAL_BACKTRACE}
{$define FPC_SYSTEM_HAS_GET_FRAME}
function get_frame:pointer;assembler;{$ifdef SYSTEMINLINE}inline;{$endif} nostackframe;
asm
{ all abi's I know use r1 as stack pointer }
mr r3, r1
end;
{$endif INTERNAL_BACKTRACE}
{NOTE: On MACOS, 68000 code might call powerpc code, through the MixedMode manager,
(even in the OS in system 9). The pointer to the switching stack frame is then
indicated by the first bit set to 1. This is checked below.}
{Both routines below assumes that framebp is a valid framepointer or nil.}
{$define FPC_SYSTEM_HAS_GET_CALLER_ADDR}
function get_caller_addr(framebp:pointer;addr:pointer=nil):pointer;assembler; nostackframe;
asm
cmplwi r3,0
beq .Lcaller_addr_invalid
lwz r3,0(r3)
cmplwi r3,0
beq .Lcaller_addr_invalid
{$ifdef MACOS}
rlwinm r4,r3,0,31,31
cmpwi r4,0
bne cr0,.Lcaller_addr_invalid
{$endif MACOS}
{$ifdef FPC_ABI_AIX}
lwz r3,8(r3)
{$else FPC_ABI_AIX}
lwz r3,4(r3)
{$endif FPC_ABI_AIX}
blr
.Lcaller_addr_invalid:
li r3,0
end;
{$define FPC_SYSTEM_HAS_GET_CALLER_FRAME}
function get_caller_frame(framebp:pointer;addr:pointer=nil):pointer;assembler; nostackframe;
asm
cmplwi r3,0
beq .Lcaller_frame_invalid
lwz r3,0(r3)
{$ifdef MACOS}
rlwinm r4,r3,0,31,31
cmpwi r4,0
bne cr0,.Lcaller_frame_invalid
{$endif MACOS}
blr
.Lcaller_frame_invalid:
li r3,0
end;
{$define FPC_SYSTEM_HAS_SPTR}
Function Sptr : Pointer;assembler;{$ifdef SYSTEMINLINE}inline;{$endif} nostackframe;
asm
mr r3,r1
end;
{****************************************************************************
Str()
****************************************************************************}
{ int_str: generic implementation is used for now }
{****************************************************************************
Multithreading
****************************************************************************}
{ do a thread save inc/dec }
{$define FPC_SYSTEM_HAS_DECLOCKED_LONGINT}
function declocked(var l : longint) : boolean;assembler;nostackframe;
{ input: address of l in r3 }
{ output: boolean indicating whether l is zero after decrementing }
asm
.LDecLockedLoop:
lwarx r10,0,r3
subi r10,r10,1
stwcx. r10,0,r3
bne- .LDecLockedLoop
cntlzw r3,r10
srwi r3,r3,5
end;
{$define FPC_SYSTEM_HAS_INCLOCKED_LONGINT}
procedure inclocked(var l : longint);assembler;nostackframe;
asm
.LIncLockedLoop:
lwarx r10,0,r3
addi r10,r10,1
stwcx. r10,0,r3
bne- .LIncLockedLoop
end;
{$ifdef VER3_2}
function InterLockedDecrement (var Target: longint) : longint; assembler; nostackframe;
{$else VER3_2}
{$define FPC_SYSTEM_HAS_ATOMIC_DEC_32}
function fpc_atomic_dec_32 (var Target: longint) : longint; assembler; nostackframe;
{$endif VER3_2}
{ input: address of target in r3 }
{ output: target-1 in r3 }
{ side-effect: target := target-1 }
asm
.LInterLockedDecLoop:
lwarx r10,0,r3
subi r10,r10,1
stwcx. r10,0,r3
bne .LInterLockedDecLoop
mr r3,r10
end;
{$ifdef VER3_2}
function InterLockedIncrement (var Target: longint) : longint; assembler; nostackframe;
{$else VER3_2}
{$define FPC_SYSTEM_HAS_ATOMIC_INC_32}
function fpc_atomic_inc_32 (var Target: longint) : longint; assembler; nostackframe;
{$endif VER3_2}
{ input: address of target in r3 }
{ output: target+1 in r3 }
{ side-effect: target := target+1 }
asm
.LInterLockedIncLoop:
lwarx r10,0,r3
addi r10,r10,1
stwcx. r10,0,r3
bne .LInterLockedIncLoop
mr r3,r10
end;
{$ifdef VER3_2}
function InterLockedExchange (var Target: longint;Source : longint) : longint; assembler; nostackframe;
{$else VER3_2}
{$define FPC_SYSTEM_HAS_ATOMIC_XCHG_32}
function fpc_atomic_xchg_32 (var Target: longint;Source : longint) : longint; assembler; nostackframe;
{$endif VER3_2}
{ input: address of target in r3, source in r4 }
{ output: target in r3 }
{ side-effect: target := source }
asm
.LInterLockedXchgLoop:
lwarx r10,0,r3
stwcx. r4,0,r3
bne .LInterLockedXchgLoop
mr r3,r10
end;
{$ifdef VER3_2}
function InterLockedExchangeAdd (var Target: longint;Source : longint) : longint; assembler; nostackframe;
{$else VER3_2}
{$define FPC_SYSTEM_HAS_ATOMIC_ADD_32}
function fpc_atomic_add_32 (var Target: longint;Value : longint) : longint; assembler; nostackframe;
{$endif VER3_2}
asm
.LInterLockedXchgAddLoop:
lwarx r10,0,r3
add r10,r10,r4
stwcx. r10,0,r3
bne .LInterLockedXchgAddLoop
sub r3,r10,r4
end;
{$ifdef VER3_2}
function InterlockedCompareExchange(var Target: longint; NewValue: longint; Comperand: longint): longint; assembler; nostackframe;
{$else VER3_2}
{$define FPC_SYSTEM_HAS_ATOMIC_CMP_XCHG_32}
function fpc_atomic_cmp_xchg_32 (var Target: longint; NewValue: longint; Comparand: longint) : longint; [public,alias:'FPC_ATOMIC_CMP_XCHG_32']; assembler; nostackframe;
{$endif VER3_2}
{ input: address of target in r3, newvalue in r4, comparand in r5 }
{ output: value stored in target before entry of the function }
{ side-effect: NewValue stored in target if (target = comparand) }
asm
.LInterlockedCompareExchangeLoop:
lwarx r10,0,r3
sub r9,r10,r5
addic r9,r9,-1
subfe r9,r9,r9
and r8,r4,r9
andc r7,r10,r9
or r6,r7,r8
stwcx. r6,0,r3
bne .LInterlockedCompareExchangeLoop
mr r3, r10
end;
{$ifndef FPC_SYSTEM_HAS_MEM_BARRIER}
{$define FPC_SYSTEM_HAS_MEM_BARRIER}
procedure ReadBarrier;assembler;nostackframe;
asm
isync
end;
procedure ReadDependencyBarrier;
begin
{ reads imply barrier on earlier reads depended on }
end;
procedure ReadWriteBarrier;assembler;nostackframe;
asm
isync
eieio
end;
procedure WriteBarrier;assembler;nostackframe;
asm
eieio
end;
{$endif}