fpc/tests/webtbs/tw14363.pp
Jonas Maebe 7e7e7b34e1 - disabled cs_opt_asmcse for -O2/-O3 on i386. It can still be enabled
explicitly using -Ooasmcse for now. It will probably be completely
    removed before the next major release after 2.4.0 (fixes mantis
    #14363)

git-svn-id: trunk@13545 -
2009-08-16 15:29:47 +00:00

113 lines
4.1 KiB
ObjectPascal

program bug;
{$mode objfpc}{$H+}
uses
Classes, SysUtils, math;
{ you can add units after this }
type tpointarray=array of tpoint;
procedure smallestCircel(var x,y,rsqr: float; const p1i,p2i,p3i: longint; const points: tpointarray);
var //p1i,p2i,p3i: longint;
//hull: TLongintArray;
f1,f2,besti,temp:longint;
nx,ny,nrsqr:float;
p0,p1,p2: ^tpoint;
begin
//(x-x0)^2+(y-y0)^2=r^2=x^2-2xx0+x0^2+y^2-2yy0+y0^2
//(x-x1)^2+(y-y1)^2=r^2=x^2-2xx1+x1^2+y^2-2yy1+y1^2
//(x-x2)^2+(y-y2)^2=r^2=x^2-2xx2+x2^2+y^2-2yy2+y2^2
//=> r^2 - r^2=x^2-2xx0+x0^2+y^2-2yy0+y0^2 - x^2+2xx1-x1^2-y^2+2yy1-y1^2
//-2xx0+x0^2-2yy0+y0^2 +2xx1-x1^2 + 2yy1-y1^2 = 0
//2x(x1-x0) + 2y(y1-y0) = x1^2 + y1^2 - x0^2 - y0^2
//2x(x2-x1) + 2y(y2-y1) = x2^2 + y2^2 - x1^2 - y1^2
//p1i:=hull[i];
p0:=@points[p1i];
//p2i:=hull[j];
p1:=@points[p2i];
//p3i:=hull[k];
p2:=@points[p3i];
nrsqr:=-1;
if p0^.y=p1^.y then begin
if (p1^.y=p2^.y) or (p0^.x=p1^.x) then begin
//Fall 0: points on a line
ny:=p0^.y;
if (p0^.x<=p1^.x) and (p1^.x<=p2^.x) then begin
nx:=(p0^.x + p2^.x) / 2;
nrsqr:=sqr(p0^.x - p2^.x) /4;
end else if (p1^.x<=p0^.x) and (p0^.x<=p2^.x) then begin
nx:=(p1^.x + p2^.x) / 2;
nrsqr:=sqr(p1^.x - p2^.x) /4;
end else begin//if (p0^.x<p2^.x) and (p2^.x<p1^.x) then begin
nx:=(p0^.x + p1^.x) / 2;
nrsqr:=sqr(p0^.x - p1^.x) /4;
end;
end else begin
//=> Fall 1: y0=y1
// 2x(x1-x0) = x1^2 + x0^2 => x = x1^2 + x0^2 / (2(x1-x0))
nx:=(sqr(p1^.x) - sqr(p0^.x)) / (2*(p1^.x-p0^.x));
// 2y(y2-y1) = x2^2 + y2^2 - x1^2 - y1^2 - 2x(x2-x1)
ny := (sqr(p2^.x)+sqr(p2^.y)-sqr(p1^.x)-sqr(p1^.y) - 2*nx*(p2^.x-p1^.x))/(2*(p2^.y-p1^.y));
end;
end else begin
//=> Fall 3: y0<>y1
//2x(x1-x0)*(x2-x1) + 2y(y1-y0)*(x2-x1) = (x1^2 + y1^2 - x0^2 - y0^2) * (x2-x1)
//2x(x1-x0)*(x2-x1) + 2y(y2-y1)*(x1-x0) = (x2^2 + y2^2 - x1^2 - y1^2) * (x1-x0)
//=> 2y(y1-y0)*(x2-x1)-2y(y2-y1)*(x1-x0) = (x1^2 + y1^2 - x0^2 - y0^2) * (x2-x1)-(x2^2 + y2^2 - x1^2 - y1^2) * (x1-x0)
//=> y= ((x1^2 + y1^2 - x0^2 - y0^2) * (x2-x1)-(x2^2 + y2^2 - x1^2 - y1^2) * (x1-x0)) /
// (2(y1-y0)*(x2-x1)-2(y2-y1)*(x1-x0))
temp:=(p1^.y-p0^.y)*(p2^.x-p1^.x)-(p2^.y-p1^.y)*(p1^.x-p0^.x);
if temp=0 then begin
//=>(p1^.y-p0^.y)/(p1^.x-p0^.x) = (p2^.y-p1^.y)/(p2^.x-p1^.x)
//=> p0->p1 parallel to p1->p2
//=> all points lie on a single line
//where is p2 on the line from p0 to p1?
//Eu: (u-p0^.x) * (p1^.y-p0^.y)/(p1^.x-p0^.x) + p0^.y = p2^.y
//=> u = (p2^.y - p0^.y) * (p1^.x-p0^.x) / (p1^.y-p0^.y) + -p0^.x
nx:=(p2^.y - p0^.y) * (p1^.x-p0^.x) / (p1^.y-p0^.y) -p0^.x; //exists, y checked above
if nx > 1 then begin
nx:=(p0^.x + p2^.x) / 2;
ny:=(p0^.y + p2^.y) / 2;
nrsqr:=sqr(p0^.x - p2^.x) /4;
end else if nx<1 then begin
nx:=(p1^.x + p2^.x) / 2;
ny:=(p1^.y + p2^.y) / 2;
nrsqr:=sqr(p1^.x - p2^.x) /4;
end else begin
nx:=(p0^.x + p1^.x) / 2;
ny:=(p0^.y + p1^.y) / 2;
nrsqr:=sqr(p0^.x - p1^.x) /4;
end;
end else begin
ny:=((sqr(p1^.x) + sqr(p1^.y) - sqr(p0^.x) - sqr(p0^.y)) * (p2^.x-p1^.x) - (sqr(p2^.x) + sqr(p2^.y) - sqr(p1^.x) - sqr(p1^.y)) * (p1^.x-p0^.x)) / (2*temp);
//2x(x1-x0) = x1^2 + y1^2 - x0^2 - y0^2 - 2y(y1-y0)
//2x(x2-x1) = x2^2 + y2^2 - x1^2 - y1^2 - 2y(y2-y1)
if p0^.x <> p1^.x then
nx:= (sqr(p1^.x) + sqr(p1^.y) - sqr(p0^.x) - sqr(p0^.y) - 2*ny*(p1^.y-p0^.y)) / (2*(p1^.x-p0^.x))
else
nx:= (sqr(p2^.x) + sqr(p2^.y) - sqr(p1^.x) - sqr(p1^.y) - 2*ny*(p2^.y-p1^.y)) / (2*(p2^.x-p1^.x))
end;
end;
if nrsqr < 0 then
nrsqr := sqr(nx-p0^.x) + sqr(ny-p0^.y);
x:=nx;
y:=ny;
rsqr:=nrsqr;
end;
var x,y,rsqr: float;
points: tpointarray;
s: string;
begin
setlength(points,4);
points[0].x:=55; points[0].y:=14;
points[1].x:=63; points[1].y:=61;
points[2].x:=10; points[2].y:=64;
points[3].x:=20; points[3].y:=44;
smallestCircel(x,y,rsqr,2,1,0,points);
writestr(s,x:4:2,' ',y:4:2,' ',rsqr:4:2);
if (s<>'35.31 41.53 1145.57') then
halt(1);
end.